
  

Competitive vs. Random Audit 
Mechanisms in Environmental 
Regulation: Emissions, Self-
Reporting, and the Role of 
Peer Information 
 
Timo Goeschl 

Marcel Oestreich 

Alice Soldà 

 
 
 
AWI DISCUSSION PAPER SERIES NO. 699 
March 2021 



Competitive vs. Random Audit Mechanisms in
Environmental Regulation: Emissions, Self-Reporting,

and the Role of Peer Information

Timo Goeschl
Heidelberg University

Marcel Oestreich
Brock University

Alice Soldà
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Abstract

In a simplifying analytical framework with endogenous levels of actual and self-reported
emissions, we consolidate the existing literature into three main hypotheses about the
relative merits, for a resource-constrained regulator, of random (RAM) and competitive
(CAM) audit mechanisms in the presence or absence of peer information about actual
emissions. Testing the three hypotheses in a quasi-laboratory experiment (N = 131), we
find supportive evidence that CAM always induce more truthful reporting than RAM.
Moreover, we provide the empirical validation of the theoretical prediction that CAM can
succeed in aligning actual emissions more closely with the social optimum in the presence
of peer information when RAM cannot. Behavioral mechanisms prevent reaching the
first-best outcome.

Keywords: Environmental regulation; regulatory compliance; tournament theory;
mechanism design; Laboratory experiment.
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1 Introduction

In many areas of economic life, regulated entities are obligated to self-report the level of a
regulated activity to a regulator, broadly defined (Innes, 2017). Employees self-report task
completion (Allen Jr and Bunn III, 2003) or workplace incidents (Probst and Estrada, 2010)
to employers. Firms self-report emissions and release of regulated pollutants to environmental
protection agencies (Malik, 1993; Helland, 1998). In several countries during the COVID19-
pandemic, members of the public self-reported border crossings and compliance with quar-
antining regimes to public health authorities (Burns et al., 2020). Once obtained by the
regulator, the reports can be used to determine the deviation of the entity’s activity from a
certain regulatory target and to implement, where appropriate, a reward or a penalty.

The economic literature has made considerable progress in its understanding of how to design
efficient regulatory systems that harness the benefits of self-reporting while deterring misre-
porting through low-cost audit mechanism. Self-reporting acknowledges that the regulated
entities tend to be better informed about their own activity levels than the regulator, who
typically has to incur considerable monitoring costs in order to observe activity (Harford,
1987). It is vulnerable, however, to strategic misreporting (De Marchi and Hamilton, 2006).
As a remedy, regulators can engage in costly audits to verify self-reported activity levels, but
are constrained by limited auditing resources (Harford, 1987; Friesen and Gangadharan, 2013).

Progress has been especially pronounced in the context of environmental regulations where
the activity in question is the emission of regulated pollutants, the regulated entities are firms,
and fees are levied on the basis of self-reported emissions (De Marchi and Hamilton, 2006).
There, the development of competitive audit mechanisms (CAM) (Gilpatric et al., 2011) has
proven a particularly fruitful avenue for both theoretical and experimental research. This
research shows that compared to the more conventional random auditing mechanism (RAM),
CAM induces higher reported emissions and the same level of actual emissions with the same
amount of auditing resources (Gilpatric et al., 2011; Cason et al., 2016). These findings un-
derscore the potential of CAM to reduce misreporting of regulated entities. They also point
towards the adoption of CAM as a partial remedy for dwindling auditing budgets available to
regulatory agencies.

The present paper combines theory and experiments into a unified framework in order to ex-
amine more closely the impact of information structures between regulated entities on activity
and reporting outcomes under the conventional RAM and the more sophisticated CAM. A
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focus on information structures is warranted both by empirical facts and by theoretical re-
sults. Empirically, even in seemingly similar settings information among regulated entities
can differ substantially: Self-reporting employees may work side by side on the factory floor –
or shirk in isolation in their home offices. Self-reporting polluters are as likely to be farmers
cultivating adjacent fields as firms that know little interaction with each other’s activities.
The self-reporting citizens crossing a border may be members of a sports team – or complete
strangers. While existing theory has modeled situations in which regulated entities are un-
informed about the activity levels of their peers, situations in which the regulated entities
are well informed are a common feature of the regulatory landscape. It is not immediately
obvious which situation is more advantageous to the regulator and how the relative perfor-
mance of RAM and CAM is affected by these differences in information structures among the
regulated. For example, better peer information may well be used for collusive behavior that
harms regulatory objectives (Gilpatric et al., 2011). However, a theoretical result shows that
when firms have perfect peer information about each others’ emissions, competitive auditing
not only induces more reporting. It can, in fact, induce the socially optimal level of emissions,
which the random audit mechanism fails to achieve (Oestreich, 2017). The finding that CAM
can not only reduce misreporting (a secondary objective of regulation), but can in fact induce
optimal emissions (a primary objective) is provocative and merits experimental scrutiny.

The paper makes two main contributions. First, it develops an analytical framework that uni-
fies the theoretical contributions by Gilpatric et al. (2011), Cason et al. (2016), and Oestreich
(2017). It does so with a view to deriving experimentally testable hypotheses about the com-
parative performance of CAM and RAM in terms of both activity levels and self-reporting
in the presence and absence of peer information. As a measure of success in integrating
these models, we demonstrate that the core findings of the literature can be replicated in
this simplified setting: In the absence of peer information about activity levels, CAM induces
the same level of actual activity as RAM, but leads to higher self-reported levels. In the
presence of perfect information about each others’ activity levels, CAM induces the socially
optimal activity level while RAM does not. These findings constitute the core testable hy-
potheses that predict the presence and direction of differences in activity levels and reporting
patterns between CAM and RAM depending on whether peer information is present or absent.

The second contribution is that we show in a quasi-laboratory experiment with 131 partici-
pants that all but one of the core hypotheses survive a test in a controlled setting. Participants
play seven rounds of a game that mimics the unifying theoretical model. In each round, par-
ticipants are randomly (re-)matched in groups of three and make two decisions individually:
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their desired level of activity and the level of activity they wish to report. Each unit of ac-
tivity reported incurs a fixed cost. Each unit of activity not reported incurs a penalty if the
participant is audited. After each round, exactly one of the three participants is audited. In
the RAM, the individual audit probability is fixed and uniform. In the CAM, the individual
audit probability depends on the participant’s report of activity level relative to the reports
of the other two participants in the group. Each round is composed of 4 stages: a production
stage, an information stage, a report stage and an audit stage. The game is parametrized
such that the hypotheses developed in the analytical framework give rise to predictions of
empirically distinguishable outcomes with respect to actual and self-reported activity levels.

Our experimental results show that in the absence of peer information, players’ activity levels
are statistically indistinguishable between both regimes: CAM and RAM lead to essentially
the same activity levels. The self-reported activity levels differ, however: Under CAM, player
self-report significantly higher activity than under RAM. As predicted, therefore, CAM out-
performs RAM in terms of the secondary objective of truthful reporting. In the presence of
peer information, CAM outperforms RAM also in terms of the primary regulatory objective:
Activity levels under CAM are significantly lower than under the RAM while self-reported
activity levels are significantly higher. This is the first experimental evidence that CAM suc-
ceeds in aligning activities levels closer with the social optimum, compared to RAM. We also
find that there are behavioral forces that prevent a perfect alignment with the socially optimal
activity level under peer information. These results respond to a call to provide an integrated
experimental analysis of both activity level and self-reporting decisions (Cason et al., 2020),
add evidence on the role of peer information for the regulatory performance of RAM and
CAM, and provide an explanation for a deviation between theoretical predictions and exper-
imental results in Cason et al. (2016).

In the following section, the paper develops the unifying analytical framework that culminates
in the derivation of three testable hypotheses. The experimental design and its parametriza-
tion are presented in section 3 and lead to the concrete experimental predictions. Section
4 reports the results of the experiment and of our statistical tests. Section 5 discusses the
experimental evidence and section 6 concludes with a summary and research outlook.

2 Theoretical Framework

Regulation. We consider a regulatory context with n regulated agents who choose a pri-
vately beneficial, but socially undesirable activity denoted by ei. Agents accrue benefits from
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the activity captured by benefit function g(ei). This benefit function is assumed to be strictly
concave with a maximum at e0. Hence, in the absence of regulation, agents choose the max-
imum beneficial activity level, i.e. ei = e0, for ∀i ∈ N where the marginal benefits are zero,
that is g′(e0) = 0.

Agents are supposed ot pay a linear fee t for every unit of the activity. We suppose that t is
exogenously given; it is set by some higher-level authority. We think of t to induce the efficient
activity level et if agents comply with it and choose the activity level according to g′(et) = t.
For instance, in an environmental application, et would balance aggregated private marginal
benefits from pollution and social marginal cost.

This paper focuses on the problem of the regulator who is in charge of enforcing the fee system.
The regulator has to decide which of the n agents to audit given its limited audit resources.
Accordingly, we define an audit mechanism as a strategy for the regulator to assign an audit
probability pi to every regulated agent i.

Regulator. The regulatory agency is charged with enforcing the fee system. It is at a dis-
advantage in comparison to the regulated agents as it can only observe the chosen activity
level by agents after conducting a costly audit. Its operating budget is fixed including the
resources allotted to conducting audits. Let K be the number of agents which the regulator
can afford to audit, where K ≤ n. Let k ≡ K/n define the audit rate. If the regulator decides
to increase the audit probability for one agent, it has to decrease the audit probability of at
least one other agent in order to keep its budget at balance. Specifically, we have at all times
that the assigned audit probabilities add up to the number of total audits: ∑n

i=1pi = K.
Regulated agents pay fees on reported activity ri. Let r = (r1, ..., rn) denote the vector of
reported activity levels for the n agents. fees on reported activity levels may be potentially
evaded by the agents. Thus, ei − ri is the amount of potentially under-reported activity level
by agent i.

The choice of the regulator is the announcement of an audit mechanism represented by function
pi : (r1, ..., rn)→ [0, 1]n ∀i ∈ N , which maps the vector of activity-reports by the agents into
probabilities for each agent of being audited. We assume that the regulator does know the
unregulated activity level e0 and can use it as reference value to compare activity reports to
when designing the audit mechanism pi(r). After an audit, the regulator can perfectly observe
the actual activity level chosen by the audited agents and potentially levy a linear penalty θ
per unit of under-reported activity level, where θ > t.
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Information structure. The focus in this paper is on the performance of two different audit
mechanisms under different information structures among regulated agents. Our theoretical
framework captures two mutually exclusive assumptions about how much agents know about
each others’ activity levels:

Assumption 1a Agents have no information about each others activity levels.

Assumption 1b Agents have perfect information about each others activity levels.

Timing. An overview of the applied multistage game is as follows:

• In the first stage, the regulator announces an audit mechanism pi : (r1, ..., rn) → [0, 1]n

which maps activity-reports into audit probabilities for each agent upon receiving the
reports.

• In the second stage, agents choose the activity level ei. Agents are not informed (As-
sumption 1a), or perfectly informed (Assumption 1b) about the activities of the other
agents.

• In the third stage, agents choose activity reports ri.

• In the fourth stage, some of the agents are audited according to the announced audit
mechanism at the first stage. A fine θ is levied for every unit of under-reported activity
levels [ei−ri]. This stage is automatic, that is there are no choices to make at this stage.

Problem of the agents. The problem of agent i is to choose activity level ei and activity
report ri in order to maximize its expected profit:1

max
ei≥0, ri≤ei

EΠi(e, r(e)) = g(ei)− tri − pi(r(e))θ[ei − ri] ∀i ∈ N, (1)

where e denotes the vector of activity levels and r denotes the vector of reports chosen by all
agents. Activity levels provide benefits to the agent through g(ei) and their cost is determined
endogenously by the fee t on activity report ri, the agent’s individual audit probability pi and
penalty θ for potentially under-reported activity levels [ei − ri].
1The agency does not reward over-reporting. If an agent is not audited, this agent pays rit in fees. If an agent
is audited this agent pays in addition max{θ(ei − ri), 0}. Since over-reporting is not rewarded, optimality
implies that reported activity levels never exceed actual activity levels, that is ri ≤ ei. Hence, without loss
of generality, we can set max{θ(ei − ri), 0} = θ(ei − ri), and restrict the set of reported activity levels to be
ri ≤ ei.
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Random audit mechanism. The random audit mechanism (RAM) is the common bench-
mark in the literature. The RAM allocates equal audit probabilities among all agents, re-
gardless of the reports, formally: pi = k ∀i ∈ N . We note that the RAM can fully enforce
fees on the regulated activity if the expected marginal cost of under-reporting, kθ is larger
than or equal to the fee rate, t. In that case, agents have no beneficial alternative but to
truthfully report their activity levels. Knowing it is going to pay fees on all of its activity, an
agent chooses socially efficient activity levels et. Thus, the regulator can fully enforce truthful
reporting where ri = ei and implement the socially efficient activity level ei = et ∀i ∈ N , if
the expected fine for under-reporting (audit rate times fine) is sufficiently large, kθ ≥ t.

To reflect the reality of many regulators (constrained auditing budgets and capped fines), we
focus on cases where the relation between fee t and expected fine kθ does not lead to truthful
reporting and socially efficient activity levels when the RAM is applied, that is kθ < t. This
focus sets the stage for the interesting case in which the RAM fails to implement efficient
activity levels, because it is cheaper for the regulated agents to under-report activity levels
(evade fees t) and rather face the expected penalty kθ.

Proposition 1 If kθ < t, the RAM induces zero activity-reporting, i.e.: ri = 0 ∀i ∈ N
and per-agent activity level ei = ekθ, which is implicitly defined by:

g′(ekθ) = kθ for ∀i ∈ N. (2)

This result is independent of the information structure.

Since the RAM leads to zero activity-reporting and to more than socially optimal activity
levels with capped fines and relatively low auditing budgets, the literature has pointed to
more sophisticated audit mechanisms harnessing strategic interactions among the regulated
agents to gain auditing leverage. We refer to these auditing strategies as competitive audit
mechanisms (CAMs) in the following.

Competitive audit mechanism. The literature on CAMs is steadily growing. The main
stylised facts on CAMs are as follows:

• CAMs are applied to regulated agents that self-report their activity level.

• CAMs decrease the audit probability of an agent, if the agent increases its reported
activity levels: ∂pi(r)/∂ri < 0 ∀i ∈ N,
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• CAMs increase the audit probability of an agent, if another agent increases its reported
activity level: ∂pi(r)/∂rj > 0 ∀j 6= i ∈ N,

• CAMs keep the regulator budget balanced: If the regulator increases the audit proba-
bility for one agent, it has to decrease the audit probability of at least one other agent:∑n
i=1∂pi(r)/∂rj = 0 ∀i ∈ N.

We next propose a specific CAM which is in line with the features above. In addition, this
CAM is able to induce the socially optimal activity level in equilibrium, where ei = et ∀i ∈ N :

pi(r) =


0 if p1 ≤ 0,
1 if p1 ≥ 1,

k + λ ln( (Ri)n−1∏n
j 6=i(Rj)

) otherwise,
(3)

where Ri = e0 − ri and e0 serves as a reference value for the regulator to compare reports
against. Parameter λ determines the degree of competitiveness induced by the CAM. By de-
gree of competitiveness we mean how quickly the audit probabilities per agent change in the
reports. If λ = 0, random auditing results where pi = k ∀i ∈ N . If λ > 0, the audit mech-
anism is competitive in that higher reports relative to other agents result in lower assigned
audit probabilities. We will focus on the special case where λ = (t/θ − k)/((n − 1)(2 −N)),
and N =

(
n− 2 +

√
n2 + 4n− 4

)
/(2 (n− 1)). We use this specific functional form for pi(r),

because it can induce the optimal activity level et for all agents as shown below.

It is interesting to note that the smaller the relative audit budget of the regulator (measured
by the difference between t/θ and k), the larger the degree of competitiveness induced by
the CAM. In the event that the audit budget is sufficiently large (t/θ ≤ k) random auditing
results and we recall from the analysis above that the RAM also implements the optimal
activity level and truth-full reporting in that case. As before, we exclude such cases here with
the assumption that kθ < t or k < t/θ.

Illustrative example. In an attempt to illustrate the workings of the proposed CAM,
Figure 1 illustrates the allocation of audit probabilities for a simple example with two agents
(n = 2) when the regulator can afford to audit one of them (K = 1). In that case, the interior
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part of the audit function for agent 1 simplifies to:

p1(r1, r2) =1
2 + λ ln(e

0 − r1

e0 − r2
),

with λ = (t/θ − 1/2)/((2 −
√

2)). Figure 1 displays the audit rates p1 and p2 depending on
reports r1 and r2. The report of agent 2 is fixed at the equilibrium value r2 = r∗2 and the
report of agent 1 r1 varies along the horizontal axis. When the reports coincide (r1 = r2),
the audit probabilities also coincide (p1 = p2 = 1/2). If r1 is increased, p1 decreases and p2

increases.

Audit
Rates

1

1

2

0 r
∗

2
Report
Agent 1

p2(r1; r
∗

2
)

p1(r1; r
∗

2
)

Figure 1: This Figure displays the audit rates p1 and p2 depending on reports r1 and r2 for
the special case when n = 2 and K = 1. The report of agent 2 is fixed at the equilibrium
r2 = r∗2 and report of agent 1 r1 varies along the horizontal axis.

Equilibrium concept. Because agents are symmetric, we conjecture that there is a sym-
metric equilibrium in pure strategies, where ei = ej, ri = rj and pi = k ∀j 6= i ∈ N . The game
is solved by way of backwards induction focusing attention on symmetric equilibria. Since
stage 4 is automatic, we will next analyse stage 3.

2.1 Stage 3: Reporting equilibrium

At this stage agents simultaneously choose reports in order to minimize the total cost of their
chosen activity level given the announced audit mechanism, their own activity level and the
other agents’ activity reports. Agents pay fees for their reported activity level and they face
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expected penalties for their unreported activity level.

Differentiating profit function (1) with respect to ri yields the first-order condition (FOC) for
an interior reporting solution (∂EΠi(e, r(e))/∂ri = 0) – denoted by r∗1. This FOC can be
re-written as:

piθ︸︷︷︸
direct
MB

+ λ(n− 1)θ( ei − r
∗
i

e0 − r∗i
)︸ ︷︷ ︸

indirect
MB

= t︸︷︷︸
MC

, at ri = r∗i ∈ [0, ei]. (4)

Given the reporting choice is in the interior (0 < r∗i < ei), the first-order condition (4) has a
simple “marginal benefit = marginal cost” interpretation: The marginal cost (MC) of reporting
is t, i.e. higher reporting results in paying higher fees. The marginal benefit (MB) of reporting
has a direct effect and an indirect effect on the cost of the activity level. First, reporting one
more unit of activity lowers the cost of activity directly, because the amount of under-reported
activity levels decreases which lowers the expected fine by p1θ. Second, reporting more lowers
the cost of activity levels indirectly, because the audit probability decreases which lowers the
expected fine for the remaining under-reported activity levels by −(∂pi/∂ri)θ(ei − ri) and we
note that ∂pi/∂ri = −λ(n − 1)/(e0 − ri) under the proposed mechanism. It is the second
indirect effect that may induce agents to report some of their activity level while they would
report zero under the RAM, i.e.: when ∂p1/∂r1 = 0.

Proposition 2
The competitive audit mechanism (3) induces a symmetric reporting equilibrium given by:

r∗i (e) = e∗i − e0(2−N)
N − 1 ∀i ∈ N, (5)

where N =
(
n− 2 +

√
n2 + 4n− 4

)
/(2 (n− 1)) and e∗i is the activity level in equilibrium.

This result is independent of the information structure. The reporting equilibrium under the
CAM is larger than under the RAM regardless of the information structure.

We note that Proposition 2 is independent of whether agents have perfect information or no
information about each others’ activity levels. A condition for positive reporting levels is
that the difference between the optimal activity level et and the unregulated activity level
e0 may not be too large. This can be guaranteed with the sufficient condition that g′(e) is
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sufficiently steep. In that case, competitive auditing leads to higher activity reports than
random auditing.

2.2 Stage 2: Activity equilibrium

At this stage agents simultaneously choose activity levels while considering how their choices
translate into the reporting equilibrium at stage 3 given the audit mechanism pi(.) and the
other agents’ activity levels. We assume first that agents have perfect information about the
other agents’ activity levels (Assumption 1b) and subsequently derive the implications of no in-
formation about the other agents’ activity levels (Assumption 1a) . To determine how activity
levels change profit, we consider the total derivative of EΠi(e, r(e)) with respect to ei.2 From
the optimization at the reporting stage we know that ∂EΠi/∂ri = 0. Thus the effect of ei on
EΠi through the agent’s own reporting choice should be ignored (this is the envelope theorem).

Since we conjecture the existence of a symmetric equilibrium in pure strategies, the starting
point of any deviation is e1 = ... = en. Here we consider a deviation of agent i, so after this
deviation we have ei 6= e1 = .. = ei−1 = ei+1 = .. = en. In this case, it must be true that
the strategic effects of all other agents are identical. Thus, the first-order condition (FOC) in
general form can be written as:

dEΠi

dei
= ∂EΠi

∂ei︸ ︷︷ ︸
direct
effect

+ (n− 1)(∂EΠi

∂rj

∂rj
∂ei

)︸ ︷︷ ︸
strategic
effects

, ∀j 6= i ∈ N. (6)

Using the particular profit function in (1), we can re-write the FOC as:

g′(ei)− piθ︸ ︷︷ ︸
direct
effect

− (n− 1)(∂pi
∂rj

∂rj
∂ei

θ(ei − r∗i ))︸ ︷︷ ︸
strategic
effects

= 0, ∀j 6= i ∈ N. (7)

By changing ei, agent i has a direct effect on its own profit. For instance, higher ei may
have positive profit implications, if the benefits from increasing activity levels increase more
quickly than the expected cost of ei regardless of any strategic effects. The strategic effect
2The analysis follows closely Tirole (1988), p. 324.
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comes from the fact that ei not only changes the agent’s own reporting behaviour, but also
the other agents’ reporting behaviour (by ∂rj/∂ei(n − 1)). The change in the other agents’
reporting behaviour affects the audit probability of agent i, pi, which in turn affects agent i’s
expected fine of unreported activity levels (in proportion to (∂pi/∂rj)θ(ei − r∗i )). The total
effect of ei on EΠi is the sum of the direct and strategic effects.

At the point of symmetry (ei = ej and ri = rj, pi = k, ∂pi

∂ri
= ∂pj

∂rj
and ∂rj

∂ei
= ∂rk

∂ei
), we can

re-write the FOC as:

g′(ei) = kθ + ∂ri
∂ej

(t− kθ), at ∀j 6= i ∈ N . (8)

We can learn from (8) that if ∂ri/∂ej = 1 at ei = ej, then as a result we get g′(ei) = t, i.e. a
necessary condition for socially efficient activity levels in equilibrium holds. In other words,
if an audit mechanism induces agent i to increase its report by one, when agent j increases
its activity level by one, then this audit mechanism may implement efficient activity levels
among all agents. This is precisely what the proposed CAM achieves under Assumption 1b.

Proposition 3 Given that agents have perfect information about each other’s activity
levels (Assumption 1b), the competitive audit mechanism (3) induces socially efficient activity
levels for all agents, i.e.: ei = et ∀i ∈ N .

A sufficient condition for the symmetric equilibrium to exist in pure strategies (Proposition
3) is that g′(ei) is sufficiently steep. That means, the marginal benefits from the activity have
to decline sufficiently quickly. This is the case for instance for the parameters we choose for
our experiment below.

In case agents have no information about each others’ activity levels, the report of one agent
cannot react to a change in the activity levels of the other agent. Thus ∂rj/∂ei = 0 and
g′(ei) = kθ at equilibrium, i.e. the agent equalizes marginal benefits from activity levels g′(ei)
to marginal cost, kθ. In this setting (Assumption 1a), the RAM (pi = k) induces the same
activity level among the regulated agents as the CAM. Thus, we can establish the following
proposition:

Proposition 4 Given that agents have no information about each other’s activity level
(Assumption 1a), random auditing leads to the same per-agent activity level than competitive
auditing:

g′(ekθ) = kθ for ∀i ∈ N.
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Activity levels are higher than the socially optimal activity level in that case.

3 Experimental Test and Hypotheses

3.1 Testable Hypotheses

We present below our main testable hypotheses derived from the theoretical framework.

Hypothesis 1. Given that agents have no information about each others activity level, the
competitive audit mechanism leads to a) the same level of activity and b) a higher level of
reported activity than the random audit mechanism.

Hypothesis 2. Given that agents have perfect information about each others activity level,
the competitive audit mechanism leads to a) a lower level of activity and b) a higher level of
reported activity than the random audit mechanism.

Hypothesis 3. Given that agents have perfect information about each others activity level,
the competitive audit mechanism lead to the socially efficient level of activity.

3.2 Experimental Design

In order to test the aforementioned hypotheses, we designed a 2x2 experiment in which we
manipulate the audit mechanism (random vs. competitive) and the information agents have
about each other’s level of activity (No Information vs. Perfect Information).

Participants play 7 rounds of a game that mimics the theoretical framework under a unique
audit mechanism and a unique information structure. The unfolding of a particular round
is displayed in Figure 2. In each round, participants are matched in groups of 3 and make
two decisions individually: first, the level of activity they wish to produce, and second, the
level of activity they wish to report. Reporting an extra unit incurs a fee t. Each unit of
activity not reported costs θ if an audit reveals that the participant under-reported. Audits
take place at the end of each round. Per round, exactly one participant in each group is
audited. Under the random audit mechanism (RAM), the audit probability pRAM is fixed
and uniform. Under the competitive audit mechanism (CAM), the audit probability pCAM

depends on a participant’s report, relative to the reports of the two other participants in the
group. To ensure independence between each round, participants are re-matched every round
following a perfect stranger matching procedure (i.e. a participant never encounters the same
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group member more than once). Each round is composed of 4 stages: a production stage, an
information stage, a report stage and an audit stage.

Figure 2: Unfolding of a round.

Production stage. Participants choose the level of activity to produce on a slider.3 In ad-
dition, participants are asked to report their beliefs about the level of activity chosen by their
fellow group members on two separate sliders. In the Perfect Information (PI) treatment,
participants were asked to provide their beliefs about the actual activity level of each of the
two other participants in their group. In the No Information (NI) treatment, participants are
asked to provide their beliefs about the reported activity level of each of their group members.

To ensure that participants make informed decisions, information about the consequences of
their choices are displayed on the screen. After choosing their activity level and indicating their
beliefs about their group members, participants are informed about their own cost-minimizing
report, their probability of being audited, their probability of not being audited, their payoff
in each case as well as their expected payoffs for this round. In the PI treatment, participants
are additionally informed about the cost-minimizing reports of their fellow group members.
Participants can update their choice and beliefs and see how it affects the aforementioned
3All sliders range from 0 to 100 in increment of 1.
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variables.

Information stage. In the PI treatment, participants are reminded of their chosen activity
level and are informed about the chosen activity level of their fellow group members. In the
NI treatment, participants do not receive any information about their fellow group members
and are only reminded of their own activity level.

Report stage. Participants choose the activity level they wish to report on a slider.4 In
addition, they need to provide their beliefs about the reported activity level of each of the two
remaining group members on a slider.5 As in the production stage, participants are informed
about the payoff-relevant consequences of their choice. In the NI treatment, participants are
reminded of their own choice of activity level, their probability of being audited, their proba-
bility of not being audited, their payoff in each case and their expected payoff for this round.
In the PI treatment, participants are additionally reminded of the actual activity level of their
fellow group members. As in the production stage, participants can update their choice and
beliefs and see how it affects the aforementioned variables.

Audit Stage. At the end of each round, one participant per group is selected for an audit
according to the assigned audit probabilities by the audit mechanism. In the RAM treatment,
each participant has a fixed probability of 1/3 of being audited regardless of their decisions or
the decisions of their fellow group members. In the CAM treatment, the audit probability for
a participant depends on her report relative to the reports of her fellow group members. The
higher a participant’s report relative to the reports of her fellow group members, the lower
her probability of being audited. Conversely, the lower a participant’s report relative to the
reports of her fellow group members, the higher her probability of being audited. The exact
audit probabilities are calculated according to the CAM algorithm presented in equation (3)
in the theory section. Participants can see their final audit probability and conditional payoffs.
In addition, information about the actual and reported activity level of every group member
are displayed on the screen. This information is the same in all treatments.6 By pressing a
button, participants can see whether they have been audited and their earnings for this round.
Before moving to the next round, participants are asked to report the information provided
on the screen on their personal record sheet.
4We set the slider default to the participant’s cost-minimizing report.
5In the PI treatment, the slider default is set to the cost-minimizing reports of each of the two remaining
group members. In the NI treatment, the slider default is set to the participant’s beliefs indicated in the
production stage.

6This feature of the design ensures that treatment differences are not driven by differences in learning.
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Post-experimental Questionnaire. At the end of the session, participants are asked to
report their age, gender and whether French is their native language. In addition, we elicit
risk preferences following Dohmen et al. (2005) by asking participants to indicate how willing
they are to take risks in general on a scale from 0 (not willing at all) to 10 (extremely willing).

Parametrization. Table 1 presents the functional forms and parameters chosen for each
variable in the experiment. With these parameter values, a symmetric equilibrium in pure
strategies exists under the CAM.

Table 1: Parameters of the experiment

Notation/
Functional form

Definition Parameters

N Number of participants per group 3
K Number of audits per round 1

pRAM Random audit probability 0.33
e Activity level [0; 100]
r Reported activity level [0; e]

g′(e) = 10− 0.1e Marginal benefit from activity
t Fee on reported activity level 2.5
θ Penalty on under-reported activity 3
e0 Unregulated activity level 100
et Optimal activity level 75

3.3 Procedure

The experimental design, hypotheses and procedure were pre-registered on the AEA RCT
Registry.7

Participants. A total of 131 participants completed the experiment. Participants were re-
cruited via Hroot (Bock et al., 2014) from a large pool of students, mainly from local engineer-
ing, business, and medical schools, who had previously registered to be potential participants
in economics experiments at GATE-lab (Ecully, France). Overall, 57% of the participants
were female and the average age was 23 years (SD = 3.99).
7RCT ID: AEARCTR-0004996
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Procedure. The experiment was programmed using oTree (Chen et al., 2016) and conducted
online in a highly controlled environment that mimics the conditions of the laboratory (”quasi-
lab experiment”). The experiment was carried out over a series of 8 sessions varying between
15 and 21 participants during fall 2020. Digital copies of the instructions were provided to
the participants, which were read aloud by the experimenter. To help facilitate learning,
participants were asked to answer questions about two hypothetical scenarios related to the
experiment. The experiment took an average of 1.75 hours. We pre-registered a sample size of
30 independent observations per treatment. With that sample size, the minimum detectable
effect size with statistical power at the recommended .80 level is Cohen’s d=0.74 for mean
comparisons between treatments (Cohen, 2013).

Payment. Participants were paid the sum of their earnings for 4 randomly selected rounds
in addition to a 2 euro show-up fee and 3 additional euro for completing the experiment. The
average payoff was 24.71 euros (SD = 7.02). Participant earnings were denominated in ECU
(experimental currency), which was exchanged for euros at the end of the session.8 At the
end of the session, participants were sent a link to electronically retrieve their payment via a
third-party platform.
8In order to avoid large variations in payoffs between treatments, we use an exchange rate of 20 ECU equals
1 euro for the CAM treatments and 30 ECU equals 1 euro in the RAM treatments.
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4 Results

4.1 Descriptive Statistics

Balance Check

Table 2: Summary of participants characteristics, by treatments.

Treatments Cluster % female mean age % French

RAM-NI 33 57.58% 23.73 90.91%
(3.259) (0.318) (1.896)

RAM-PI 33 54.55% 23.88 84.85%
(3.283) (0.303) (2.364)

CAM-NI 30 65.63% 23.5 84.38%
(3.181) (0.253) (2.431)

CAM-PI 35 52.78% 22 88.89%
(3.151) (0.119) (1.983)

Note: Table 2 displays the number of participants, the percentage of female, the mean age,
and the percentage of French native speaker, by treatments. Standard errors in parentheses.

Table 2 summarizes participants characteristics in each treatment including the percentage
of female, the average age, and the percentage of participants who indicated that French
was their native language. Using one-way ANOVAs, we find no significant difference be-
tween treatments in the percentage of female (F(3,130)=0.43, p=0.733), age (F(3,130)=1.67,
p=0.177) and the percentage of participants who indicated French as their native language
(F(3,130)=0.29, p=0.831).
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Data Overview

Figure 3: Distribution of actual and reported level of activity for both RAM (in red) and
CAM (in blue), by information structures.
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Figure 3 provides an overview of our experimental data. The top panel shows the distribution
of the actual activity levels aggregated across rounds at the participants level for both RAM
(in red) and CAM (in blue), by information structure. The lower panel displays the same
information for the reported activity levels.

4.2 Comparative Statics

Figure 4: Evolution of the mean activity levels and mean reported activity levels for both RAM
(in red) and CAM (in blue) across rounds, by information structures. Vertical bars indicate
standard errors. Red dotted lines indicate the Nash Equilibrium for the RAM treatment.
Blue dotted lines indicate the Nash Equilibrium for the CAM treatment.

Our main results are displayed in Figure 4. Figure 4 shows the evolution of the average levels
of actual and reported activity in each round, under both the RAM (in red) and the CAM (in
blue) both in the absence of peer-information (left panel) and when participants have perfect
information about each other’s activity level (right panel). Standard errors are represented
with vertical bars. Red dotted lines indicate the Nash Equilibrium under the RAM, and blue
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dotted lines indicate the Nash Equilibrium under the CAM.

Consistent with our theoretical predictions, the top panel shows that the blue line is always
below the red line when participants have perfect information about each other’s actual activ-
ity level (right panel). In contrast, the blue line and the red line mostly overlap in the absence
of peer-information (left panel). In terms of reporting, the bottom panel shows that the red
line is always below the blue line under both information structures, which is also consistent
with our theoretical predictions.

Analyses of mean

Table 3: Nash equilibrium (NE) and empirical means (EM) of actual and reported levels of
activity, by treatments.

Activity RAM-NI RAM-PI CAM-NI CAM-PI
level NE EM NE EM NE EM NE EM

Actual 90 89.66 90 90.25 90 88.01 75 83.77***
(1.481) (1.427) (1.594) (1.077)

Reported 0 25.20*** 0 27.29*** 64 67.88* 11 55.51***
(4.520) (3.291) (1.676) (2.376)

Obs. 33 33 30 35
Note: Table 3 displays the Nash equilibrium (NE) and empirical means (EM) of both actual and reported
activity levels, by treatment. Standard errors in parentheses. Stars indicates differences from the equilibrium
predictions using one-sample Wilcoxon sign-ranks test. Our unit of observation is the average across all rounds
of a participant’s level of activity. *p<0.05; **p<0.01; ***p<0.001.

Table 3 displays the Nash predictions derived from the model (NE) as well as the observed
actual and reported activity levels (EM) by treatments. In terms of actual activity levels, we
find no difference between the empirical means and the Nash Equilibria for the RAM under
both information structures (two-sided Mann-Whitney tests:9 RAM-NI: p=0.851; RAM-PI:
p=0.376) and for the CAM under no information (MW test: p=0.367). In contrast, the CAM
induces higher levels of activity than predicted by theory under perfect information (MW test:
p<0.001).

9MW test, hereafter.
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In terms of reported levels of activity, we replicate the well-established empirical finding that
individuals self-reporting behavior typically deviates from pure payoff maximization (MW
tests: RAM-NI: p<0.001; RAM-PI: p<0.001; CAM-NI: p=0.035; CAM-PI: p<0.001). While
the rational economic model (Becker, 1968) assumes that people are dishonest whenever it
is financially advantageous to do so, evidence suggests that people can also be influenced by
intrinsic motivations which could include both moral and social considerations, such as lying-
aversion (Gneezy, 2005).

To test our main hypotheses, we now turn to mean comparisons between both mechanisms,
under each information structure. In the absence of peer-information, we find no significant
differences in actual activity level between the CAM and the RAM (MW test: p=0.495) but
significantly higher reported activity levels in the CAM than in the RAM (MW test: p<0.001),
which support Hypothesis 1. When participants can perfectly observe each other’s activity
level, we find that CAM leads to significantly lower levels of activity (MW test: p<0.001)
and higher levels of of reported activity than the RAM (MW test: p<0.001), which support
Hypothesis 2. In contrast, we find that the CAM fails to achieve the socially optimal level of
activity (MW test: p<0.001), which contrast with Hypothesis 3.

Table 4: Effect of the audit mechanisms on actual and reported levels of activity, by informa-
tion structure.

Dep. var: Actual level of activity Reported level of activity
NI PI NI PI

(1) (2) (3) (4) (5) (6) (7) (8)

CAM -1.653 -0.442 -6.479*** -7.864*** 42.67*** 41.92*** 28.22*** 25.57***
(2.175) (2.037) (1.787) (1.676) (4.823) (4.932) (4.058) (4.212)

Round FE X X X X X X X X
Demographics X X X X
Const. 86.10 106.22 86.04 103.39 26.06 23.66 32.93 49.76

(2.129) (11.85) (2.031) (6.151) (4.930) (23.54) (4.650) (21.97)

Obs. 441 434 476 476 441 434 476 476
Clusters 63 62 68 68 63 62 68 68

Note: Table 4 displays the GLS coefficients of random effects regressions clustered at the
participant level. Standard errors in parentheses. Stars indicates significant differences from
the RAM. *p<0.05, **p<0.01, ***p<0.001.

To investigate the effect of the CAM relative to the RAM on the actual and reported level
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of activity under each information structure, we performed random-effects GLS regressions
clustered at the participant level. The independent variables include a dummy variable equals
to 1 if the participant was allocated to the CAM treatment and 0 otherwise; and rounds fixed
effects. The GLS coefficients are displayed in columns (1) to (8) in Table 4. We use the
actual activity levels as the dependent variable in columns (1) to (4). In contrast, we use the
reported activity levels as the dependent variable in columns (6) to (8). Columns (1), (2),
(5) and (6) show the results in the absence of peer-information. Columns (3), (4), (7) and
(8) show the results when participants have perfect information about each other’s activity
levels. We control for participants demographics (gender, age, risk preferences and whether
French is their native language) in columns (2), (4), (6) and (8).10

Consistent with our previous findings, columns (1) and (2) show no significant differences
between RAM and CAM in activity levels in the absence of peer-information (p=0.444 and
p=0.828, respectively). In contrast, CAM induces lower activity levels than RAM under per-
fect information and the results are significant at the 0.1% level (p<0.001 in both models).
In terms of reporting, columns (5) to (8) show that CAM induces significantly higher levels
of reported activity than the RAM, both in the absence of peer-information (p<0.001 in both
models) and when participants have perfect information about each other’s actual activity
levels (p<0.001 in both models).

In summary, we find that the CAM never performs worse than the RAM. First, the CAM
outperforms the RAM in terms of reporting under both information structures. Second, while
the CAM fails to induce the socially optimal level of activity, it leads to lower activity levels
when participants have perfect information about each other’s activity levels.

Result 1: Given that agents have no information about each other’s activity level,
CAM lead to a) the same level of activity and b) a higher level of reported activity
than RAM (support H1).

Result 2: Given that agents have perfect information about each other’s activity
level, CAM lead to a) a lower level of activity and b) a higher level of reported
activity than RAM (support H2).

Result 3: Given that agents have perfect information about each other’s activity
10The missing cluster in columns (2) and (6) is due to one participant leaving the experiment without com-

pleting the post-experiment questionnaire.
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level, CAM does not lead to the socially optimal level of activity (does not sup-
port H3).

Analyses of variance

While our findings suggest that competitive audit mechanisms can be a beneficial alterna-
tive to random auditing, competitive audit mechanisms are more complex and rely on level-k
reasoning. Thus, it is possible that while the data confirms our predictions at the aggre-
gated level, the CAM may induce more heterogeneity in behavioral responses than the RAM.
Higher variance in experiments involving tournaments is a common finding in the literature,
to the exception of Gilpatric et al. (2011), who find that the competitive mechanism leads to
less variance in reporting than random auditing. Figure 3 suggests that the CAM also in-
duces less variance than the RAM in our setting, both in terms of activity levels and reporting.

Table 5: Effect of information structure and audit mechanism on actual and reported levels
of activity.

Dep. var: (eij − ēj)2 (rij − r̄j)2

NI PI NI PI
(1) (2) (3) (4)

CAM -56.54 -115.08* -874.12*** -600.29***
(45.25) (46.95) (156.27) (142.20)

round FE X X X X
Const. 266.15 237.36 1098.40 1124.11

(53.85) (51.07) (128.68) (117.36)

Obs. 441 476 441 476
Clusters 63 68 63 68

Note: Table 5 displays the GLS coefficients of random effects regressions clustered at the
participant level. Standard errors in parentheses. Stars indicates significant differences from
the baseline (RAM-NI). *p<0.05, **p<0.01, ***p<0.001.

To explore this issue further, we first investigate treatment differences in the variance of ac-
tivity choices. To do so, we follow Gilpatric et al. (2011) by estimating random-effects GLS
regressions of the squared deviation from the mean activity level, that is (eij− ēj)2, where ēj is
the treatment-specific mean level of activity in round j, on the treatment dummies. We con-
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trol for rounds fixed effects and standard errors are clustered at the individual level. The GLS
coefficients are reported in column (1) of Table 5. In addition, we also investigate treatment
differences in the variance of reported activity. To do so, we estimate the same random-
effects GLS regression as before, using the squared deviation from the mean reported activity
level as the dependent variable, that is (rij − r̄j)2, where r̄j is the treatment-specific mean re-
ported level of activity in round j. The GLS coefficients are reported in column (2) of Table 5.

Column (1) in Table 5 shows no significant differences in variance between the CAM and
RAM in terms of activity levels in the absence of peer-information (p=0.211). In contrast,
column (2) shows that the CAM leads to significantly less heterogeneity in activity levels
under perfect peer information (p=0.014). Second, we replicate Gilpatric et al.’s (2011) find-
ing that the CAM leads to significantly less heterogeneity in reported activity levels under
both information structures (p<0.001 in both cases), as shown in columns (3) and (4). These
results suggest that, in contrast to experimental findings from previous studies investigating
competitive incentives, our competitive audit mechanism actually leads to relatively less het-
erogeneity in individual behavior.

Result 4: The CAM does not induce more heterogeneity in actual nor reported
activity choices.

5 Discussion and Conclusion

We examine the relative merits in terms of actual and self-reported activity levels of random
(RAM) and competitive (CAM) audit mechanisms in a simplifying analytical framework.
While RAM assign the same audit probability to each regulated agent, CAM assign a lower
audit probability to the agents with higher self-reported activity levels relative to others. We
first consolidate in a simplifying framework with endogenous levels of actual and self-reported
activity the existing theoretical advances and extend it to situations in which peer information
about activity levels is present or absent. Our theoretical model delivers three core predic-
tions. First, in the absence of peer-information, CAM induce higher self-reported activity
levels. Second, in the absence of peer-information, CAM induce the same actual activity lev-
els as compared to RAM. These two results are isomorph to the main findings by Gilpatric
et al. (2011) and Cason et al. (2016) respectively. Third, when agents have perfect information
about each others’ activity levels, CAM not only induce higher self-reported activity levels,
but also induce lower activity levels. Given a particular design, CAM can even induce the
socially optimal level of activity, while this is not feasible under RAM. This result is isomorph
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to the main finding by Oestreich (2017).

We then test these three predictions in a quasi-laboratory experiment with 131 participants,
in which we manipulate the audit mechanism (RAM vs. CAM) as well as the information
structure (no peer information vs. perfect peer information). Consistent with our theory,
we find that the CAM never under-performs the RAM. First, we provide the first empirical
validation of the theoretical prediction that CAM can align activity levels more closely with
the social optimum in the presence of peer information than RAM. This is a relevant result for
policy makers as in many applications, the chosen activity level is the primary objective of the
regulator. In environmental regulations for instance, the regulator is typically more concerned
about the emissions level and less concerned about the reporting levels. While CAM reduce
the activity level, we provide evidence that behavioral mechanisms prevent reaching the first-
best outcome. Finally, the prediction that CAM always induce more truthful reporting than
RAM is also confirmed.

Two stylized facts that are not accounted for by the theoretical framework emerge from the ex-
perimental data. First, while the equilibrium under the CAM may be threatened by collusion,
the collusive equilibrium of no reporting under the CAM is not observed in the data. In fact,
we replicate the well-established finding that self-reporting is significantly higher than pre-
dicted by theory regardless of the information structure. This is consistent with the behavioral
literature that people decisions can also be influenced by payoff-irrelevant motivations such
as social considerations or lying-aversion (Gneezy, 2005). Second, we found that CAM can
induce less heterogeneity in individuals’ decisions, both in terms of actual and self-reported
activity levels, which is consistent with (Gilpatric et al., 2011).

Concluding, our findings suggest that CAM can be a beneficial alternative to RAM for under-
funded regulators. However, our paper focuses on the two limiting cases of the information
structure (no information and perfect information). While some real-life applications could
be sorted into one or the other limiting case, several others are likely to be somewhere in
between (e.g. activity levels are only imperfectly observable or observable with some noise).
Thus, future research might consider whether the advantages of the CAM would emerge in
such context.
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