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Abstract

The shale revolution is gradually transforming the industrial structure of the United

States. This paper quantifies these changes in a model in which industries are

linked by productivity linkages. In this framework, productivity gains in one in-

dustry may spill over to other industries. For 2015 (the most recent data available),

we find that the shale revolution raised US relative wages by around 0.84 percent,

whereas Mexican and Canadian wages declined by 1.12 and 1.43 percent, respec-

tively. Judging by countries’ ability to sell goods to the US, China is the main

beneficiary of the shale revolution with increased US exports of more than $14

billion (7 percent) in 2015. At the same time, the US automobile industry lost

sales of more than $65 billion (almost 10 percent) because of the shale revolution.
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1 Introduction

When in 1947 the now-dissolved U.S. Bureau of Mines published its first report

on the energy trade of the United States, the country ran an energy-trade

surplus of more than six percent. At the time, energy was exported mainly in

form of coal and lignite, and destined for Europe whose coal industry was still

recovering from the war (Routledge, 1968). In the following years, too, the

US exported more energy than it imported, but this changed when Venezuela

and the Netherland Antilles began shipping crude oil to the US. Starting in

1952, the US consistently imported more energy than it exported, generating

an energy-trade deficit that, at its peak in 2008, made up about half the total

US deficit. Only eleven years later, this changed when—after almost seven

decades—the US again exported more energy than it imported (EIA, 2020).1

Several technical developments and their commercialization allowed for this

revolution. Rocks, in particular, formations of shale that were once viewed of

no commercial value are now supplying the US with large amounts of oil and

gas. The shale revolution is gradually reshaping the industrial structure of the

US and to a smaller extent that of other countries. The goal of this paper is

to quantify these changes.2

A productivity-driven growth of an industry typically leads to higher over-

all wages in the country and, as a consequence, the other industries in the

1The energy-trade statistics are now published by the U.S. Energy Information Admin-
istration (EIA), a subsidiary of the United States Department of Energy. While imports
of crude oil are currently still larger than exports, the US is now exporting considerable
amounts of natural gas and petroleum products such as gasoline.

2Hughes (2013) uses the term ‘shale revolution’; a term we adopt here. For brevity, we
may sometimes simply use ‘shale’. In the literature, the term fracking revolution is used as
well. We provide a formal definition of what we mean by shale revolution in Section 5.
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country lose competitiveness and there may be some form of Dutch-disease-

type crowding out. But not all industries lose from shale. The industries that

build and maintain the oil and gas infrastructure are likely to gain. Other in-

dustries benefit from shale because they require cheap energy or because they

are able to tap on the physical capital and, especially, the human capital the

oil and gas industry has been building up over the past two decades. In the

terminology of our model, the tighter an industry is linked to the oil and gas

industry, the more likely it is to benefit from shale.

In our framework, industries are linked by productivity linkages so that an

industry may benefit from possible productivity spillovers from other indus-

tries. The shale revolution is modeled as an increase of the productivity of the

oil and gas industry in the US.

There are many possible factors that may link industries. Two industries

may be linked because they require similar technologies, because they draw

from the same pool of human capital, because one may be a supplier or a

buyer in the other industry’s production chain, because they require similar

infrastructure and similar institutions, or because they have similar climatic,

geographic, or geological prerequisites. None of the factors listed are easily

observed, nor does it seem possible to identify easily which factor (or factors)

cause a link between industries. We can observe, however, the result of such a

link in the data. When two industries are linked, they tend to occur in pairs;

countries that are productive in one of the industries will tend to be productive

in the other as well. On the other hand, when two industries are not linked,

their occurrence in the data should mimic random draws.
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Figure 1: The Shale Revolution

Left hand panels: US oil and gas production (top) and exports and imports
(bottom) over time (Source: EIA, in quadrillion BTU). Shaded area: 2005 -
2015, period under study in this paper. Right hand panel top: Estimated
US productivity and estimated US primary productivity in the oil and gas
industry. Bottom: US production share (US production relative to world
production) and export share.
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This approach of modeling and estimating industry linkages is a modified

version of an approach proposed by Hidalgo, Klinger, Barabási, and Hausmann

(2007). The main difference between the two approaches is that we rigorously

incorporate the industry linkages into an economic model. This allows us to

conduct comparative statics exercises and thus to assess the general equilib-

rium effects of shale. There is a cost to this more rigorous approach in terms of

data requirements. The approach here requires information about countries’

internal trade flows, i.e., flows of goods that are produced and consumed in

the same country. Unlike the bilateral flows used in Hidalgo et al. (2007),

internal flows are available only for relatively coarse industry classes and only

for a relatively short period of time, in our case from 2005 to 2015. The data,

thus, cover the beginning of the shale revolution and the first decade, but the

results we report for 2015 are likely to underestimate the effect one would find

with more recent data.3

This paper contributes in several ways to the existing literature. First,

the paper shows how the type of industry linkages suggested in Hidalgo et al.

(2007) can be modeled rigorously in an economic model. Our theoretical

framework is a Ricardian model of trade with Eaton and Kortum (2002) tech-

nology that we extend to allow for productivity linkages. We are not aware

of previous attempts to model industry linkages in this fashion. The recent

3While one of the largest producers, the US is still a relatively small exporter of oil and
gas. See lower right panel of figure 1. Various factors impede the trade. Until December
2015, for example, the US banned the export of domestically produced crude oil (Clark,
2014). Exporting gas and refined petroleum was possible under the ban. Another important
impediment is the missing infrastructure such as pipelines and ports. For an overview of
the recent infrastructure developments and infrastructure restrictions see EIA (2015a, 2018,
2019). API (2017) expects the “rapid infrastructure development” currently undergoing, to
“continue for a prolonged period of time”.
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economic literature with industry linkages focuses primarily on input-output

linkages. Acemoglu et al. (2012), for example, show in a model with input-

output linkages how shocks at the level of the individual industry may lead to

aggregate fluctuations.

Productivity linkages and input-output linkages serve different purposes

and should be viewed as complements. When studying structural changes

over a period of many years, as we do here, input-output linkages themselves

respond to the structural change under study. Productivity linkages avoid

this endogeneity problem (we continue this discussion in Section 2). The

contribution of the paper to this literature is to propose a framework that

allows us to study the gradual and long-lasting structural changes we are

witnessing with the shale revolution.

Second, by modeling the growth of an industry in a general equilibrium

setting, the paper contributes to the literature on the Dutch disease. Corden

and Neary (1982), Krugman (1987) and Matsuyama (1992) are important

papers in this field.

Finally, the paper contributes to the literature on the shale revolution.

Muehlenbachs et al. (2015) study the effect of shale gas development on lo-

cal housing markets. Using a spatial equilibrium model, Bartik et al. (2019)

estimate the local welfare effects of shale and report an average willingness

to pay for allowing fracking of $2,500 per household annually. Feyrer et al.

(2017) estimate the effect of shale production on income and find that within

100 miles of a well, one million dollars of new oil and gas production generates

$257,000 in wages and $286,000 in royalty and business income (see also James
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and Smith, 2020; Feyrer et al., 2020). Our contribution to this literature is

to show how the shale revolution gradually reshapes the economic structure

of the US. Doing so, we extend the work of Arezki et al. (2017) who study

the effect of shale gas on the US manufacturing sector. Moreover, our setting

allows us to assess the effect of shale on the economic structure in countries

other than the US.

In line with our expectations, US wages increase with the productivity

growth of the oil and gas industry. In our baseline comparative statics exercise,

we find that US wages in 2015 increased by 0.84 percent relative to the average

wage in our sample because of the shale revolution. Wages in Mexico and

Canada, the two main trading partners of the US, decreased by 1.12 and 1.43

percent. These decreases are most likely driven by the fact that both countries

are themselves large oil and gas producers. For 2015, we find that the Canadian

oil and gas industry lost more than a third of its output (almost $100 billion)

because of shale. The Mexican oil and gas industry lost 40 percent (almost

$25 billion).4

Within the US, only few other industries benefit directly from the shale

revolution. The main beneficiary is refined petroleum whose output in 2015

is increased by more than 10 percent because of shale. A large part of the US

vehicle production (almost 10 percent, or $65 billion) is replaced by imports

from abroad (mainly from Canada, Japan and Germany). In fact, the industry

that gains most from shale (after the fossil-energy industries in the US) is the

4These numbers are calculated in a comparative statics exercise in which only a sin-
gle parameter differs from the original equilibrium. All other 120,000 parameters of the
model, including the other primary productivities, trade costs, consumption shares are kept
unchanged.
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Canadian vehicle industry. Judging by countries’ ability to sell goods to the

US, China is the main beneficiary of shale with increased exports to the US

of more than $14 billion (7 percent) in 2015. Other large beneficiaries are

Germany and Japan. Saudi Arabia and Russia, on the other hand, see their

US exports drop by 48 and 33 percent respectively.

The paper is organized as follows. The next section (Section 2) motivates

our choice to use productivity linkages and discusses why using input-output

linkages would not be appropriate. Section 3 presents the theoretical frame-

work. Section 4 describes the empirical framework, the data, and discusses the

estimation results. Section 5 presents the results of the comparative statics

exercises and a summary in Section 6 concludes. An online appendix gives

additional information about the data and the estimation procedure, and pro-

vides tables for the robustness analysis.

2 Industry Linkages in the Short and in the

Long-Run

The shale revolution is transforming the US economy over a period of many

years, and the term evolution, rather than revolution, may be more adequate

to describe the slow, incremental technical advances over the past decades

(Alexander et al., 2011). Studying how the shale revolution transforms the

US economy requires what one may call long-run industry linkages. The in-

dustry linkages should reflect technical characteristics that should themselves

be unaffected by the structural change. This rules out the use of input-output
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linkages. In this section, we explain this position and motivate the approach

taken in this paper.

Imagine, for the moment, a situation in which the US bans the production

of (crude) oil and gas in the country and suppose that the ban is permanent

and unexpected. What would be the consequences of such a decision?

The US input-output tables give good indications of the immediate conse-

quences of the ban. The oil and gas industry itself does not supply many other

industries with its products, but it is the main supplier of petroleum refiner-

ies, whose output is used in virtually any other industry in form of gasoline,

diesel or heating oil (see also the discussion in Section 4). The reduced sup-

ply of these products directly affects all other industries in the US and given

the current dependence on domestically produced oil and gas, the immediate

economic impact of the ban would be severe.

As time goes by, the economy will adapt. Imports of oil and gas from

abroad will increase and will make up for parts of the lost domestic production.

Some firms will try to find alternatives to oil and gas, and other will develop

energy-saving production processes. Since these adaption change the flows

of intermediate goods between the industries, they will necessarily alter the

input-output linkages.

In addition to the diversion of input-output flows, the closure of the domes-

tic oil and gas industry will have other, more indirect consequences. The most

obvious of these is probably the productive knowledge and know-how that is

lost when the industry’s workers move on to other professions, and universities

stop offering petroleum engineering and related courses. These indirect effects,

9



too, may have an impact on other industries.

The question that remains to be answered in this thought experiment is,

then, how we may assess the long-run impact of the ban. Is the presence of a

domestic oil and gas industry essential for some of the other industries? Does

the absence of an oil and gas industry systematically weaken (or strengthen)

other industries? One possible way to answer these question is to study in-

dustry patterns in other countries, and, in the way specified by the theoretical

model, this is the approach taken in this paper.

In our theoretical framework, industry linkages are productivity linkages

and we assume that the linkages equation is log-linear with constant coeffi-

cients,

logAki,t =
K∑

l=1,l 6=k

βlk logAli,t + logαki,t. (1)

Country i’s productivity in industry k at time t, Aki,t, is a function of the

productivities of the country’s other industries at the same point in time.

Productivity gains in one industry may spill over to other industries but we

rule out spillovers from other countries or other points in time. The industry

coefficients, βlk, show the (direct) link between two industries l and k. In

line with our assumption that the coefficients reflect technical relationships

between industries, we assume that they are constant across countries and

vary only slowly over time. For the quantitative analysis in Section 4, the

industry coefficients are estimated using data from 60 countries over a period

of 11 years. Since productivity is not observable, we estimate the industry

coefficients using the industry-exporter-time fixed-effects from the regression
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of a standard gravity equation. Section 4 discusses the estimation procedure.

Finally, the primary productivities, αki,t, capture the part of a country’s

productivity that is not already picked up by any possible spillovers from

other industries. The primary productivities reflect a country’s endowment

with the productivity factors that are necessary in the production of industry

k’s output (e.g., knowledge, know-how, or climatic and geographic factors).

In this framework, the shale revolution is modeled as an increase of the US

primary cabability in the oil and gas industry (see Section 5).

Solving equation (1), we find

logAki,t =
K∑
l=1

λlk logαki,t (2)

where the industry linkages, λlk, are the entries of the linkages matrix Λ that

can be calculated using

Λ = (I −B)−1 , (3)

where B is the matrix of industry coefficients (with zeros on the diagonal) and

I is the identity matrix. Equation (3) reveals some formal similarities between

the model here and the input-output model. The industry coefficients, βlk,

correspond to the entries of the direct requirement matrix, the productivity

linkages, λlk, correspond to the entries of the total requirement matrix, and

the right hand side of equation (3) corresponds to the Leontief inverse. Given

the functional form assumption in (1) where productivity enters both the left

and the right hand side, this similarity was expected.
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3 Theoretical Framework

The variant of the Eaton and Kortum (2002) model we use here is a simpli-

fied version of the original model and has been discussed before in Donaldson

(2018), Costinot et al. (2011), Levchenko and Zhang (2016), and others. We

extend this model to allow industries to be linked so that an industry’s pro-

ductivity may benefit from spillovers from other industries. From the point

of view of the individual firm, the linkages are external and do not affect the

firm’s optimization problem so that the main properties of the original model

are preserved. In particular, Walras’ law continues to hold and the model is

homogeneous of degree zero in wages. The original model is nested in our

model as a special case when industries are presumed independent.

Industry linkages are productivity linkages, but since productivity is not

directly observable, we will define industry linkages as capability linkages.

Capability linkages and productivity linkages are equivalent in this setting be-

cause of the homogeneity property. A country’s (export) capability is defined

as

κki =
Aki
wi
,

where Aki is country i’s productivity in industry k relative to the country’s wage

rate. This ratio of productivity over wages is sometimes called competitiveness

in the literature.5

Consider a static world economy with i = 1, ..., I countries. The world is

5Capabilities, too, are not observable but they are observable in relative terms, i.e.,
country i’s capability relative to some other country’s capability. This relative observability
will be sufficient to estimate the industry linkages.
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Ricardian with each country endowed with a single factor of production (labor)

and trade is driven by productivity differences. In each country, there are

k = 1, ..., K industries (sectors) and in each industry, there are infinitely many

competitive firms. Each firm produces one of infinitely many varieties ω ∈ Ω

of an industry’s output. Labor can move freely across firms and industries,

but not across countries. Let Li denote country i’s labor endowment and wi

its wage rate. We drop time-subscripts in this section, to keep the notation

simpler.

Preferences Preferences are given by a utility function of the form

Ui =
K∏
k=1

(
Qk
i

)µki (4)

where Qk
i is a basket of the varieties of the good produced by industry k.

We assume that
∑K

k=1 µ
k
i = 1 so that µki indicates the fraction of income

that households spend on industry k goods. The varieties are aggregated

symmetrically by a Dixit-Stiglitz-Spence aggregator

Qk
i =

(∫
Ω

qki (ω)
σ−1
σ dω

) σ
σ−1

(5)

where qki (ω) is the quantity of variety ω of industry k consumed in i. House-

holds maximize (4) subject to their budget constraint, wiLi =
∑K

k=1 P
k
i Q

k
i ,

where P k
i is the CES price of the Dixit-Stiglitz-Spence aggregator.
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Technology Markets are competitive and firms set prices equal to marginal

costs
(
wi/z

k
i (ω)

)
where zki (ω) is the firm’s labor productivity drawn randomly

from a Fréchet distribution with a cumulative distribution function of the form

F k
i = exp

{
−
(
z

Aki

)−θ}
.

Here, Aki is a scale parameter; the larger Aki , the larger the probability that

a country draws a high productivity (the mean of the Fréchet distribution is

linear in Aki ). We refer to Aki as country i’s productivity in industry k. In the

original Eaton & Kortum model, Aki is exogenous. When we introduce industry

linkages below, Aki becomes an endogenous variable. The second parameter of

the Fréchet distribution, θ, is a shape parameter that affects the spread of the

distribution. The smaller θ, the larger the “overlap” of the distributions in the

different countries and the more trade takes place within the same industry.

As θ gets larger, the countries will tend to specialize in distinct industries (see

footnote 7 for more).

The productivity draws are independent across countries. Once a produc-

tivity is drawn, anyone in the country is free to produce the variety and every

producer of that variety in the country has access to the same production

technology. No producer has market power and all prices will be set equal to

marginal costs. Trade is subject to iceberg costs, that is, the cost of delivering

one unit of a variety from i to j is dkij ≥ 1 and we assume that

dkij ≤ dkij′d
k
j′j for all i, j, j′.
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Given the assumptions above, the price of variety ω in sector k in country j

purchased from country i is given by

pkij (ω) = pkii (ω) dkij.

This price is a potential (or hypothetical) price because j will only purchase

ω from i if i happens to be the least expensive source. The actual price paid

in j is given by the lowest of all hypothetical prices, that is

pkj (ω) = min
i∈I

{
pkij (ω)

}
= min

{
wi

zki (ω)
dkij

}
.

Under the assumption that productivities are drawn from a Fréchet distribu-

tion, the hypothetical prices, pkij (ω), are distributed exponentially. Since the

minimum of a set of exponentially distributed variables is as well distributed

exponentially, pkj (ω) is distributed as well exponentially. The probability that

i is the least cost producer of variety ω to destination j is then given by

πkij = Pr

{
pkij (ω) ≤ min

s∈Iri
pksj (ω)

}
=

(
Aki
widkij

)θ
∑

s∈I

(
Aks
wsdksj

)θ . (6)

Where we used the fact that both expressions in the curly braces are exponen-

tially distributed.6 Since there are infinitely many varieties in each industry,

this probability is also the fraction of k-varieties that country j buys from

6Let X1, ..., Xn be independent and exponentially distributed random variables with
parameters λ1, ..., λn, then min {X1, ..., Xn} is also exponentially distributed with parameter
λ = λ1 + ...+λn. If x and y are independent and exponentially distributed, i.e., x ∼ exp (λ)
and y ∼ exp (µ), then Pr {x ≤ y} = λ

λ+µ .
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country i.7

Industry linkages take the form of capability linkages. The particular func-

tional form assumption is log-linear with constant coefficients,

log κki =
K∑

l=1,l 6=k

βlk log κli + log ρki , (7)

where ρki is the primary capability of country i in industry k and βlk are

called industry coefficients. Given the functional form assumption, a country’s

capability originates from two sources. First, an industry’s capability may be

influenced by the capabilities of the other industries in the country. The

sum on the right hand side of equation (7) aggregates the contributions of

the other industries (of the network of industries). The second source is a

country’s primary capability ρki . This is a form of remainder that includes

everything not already captured by the contribution of the network. We rule

out spillovers from other countries. Solving equation (7) we find

log κki =
K∑
l=1

λlk log ρli (8)

7 With Xk
ij denoting sector k trade flows from country i to country j, this share can

be written as πkij = Xk
ij/X

k
j where Xk

j is country j’s consumption of sector k goods, i.e.,

Xk
j =

∑
sX

k
sj . The share πkij approaches either 0 or 1 as we increase the shape parameter

θ of the Fréchet distribution since

lim
θ→∞

πkij = lim
θ→∞

(
Aki
widkij

)θ
/min
s∈I


(

Aks
wsdksj

)θ
which equals 1 for i = s and 0 otherwise. In words, as θ increases, the countries tend to
specialize in distinct industries and no intra-industry trade takes place. In some sense, our
model includes the model of Dornbusch et al. (1977) as a special case when I = 2.
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where the industry linkages, λlk, are the entries of the linkages matrix Λ which

can be found using equation (3). Homogeneity of degree zero in wages implies

that the linkages equation must be independent of wages and can, therefore,

be written as

logAki =
K∑
l=1

λlk logαki (9)

where αki is country i’s primary productivity in industry k. The relationship

between αki and ρki is then given by

log ρki = logαki − logwi

(
1−

K∑
l=1

βlk

)
. (10)

The primary capability is determined by the difference between the primary

productivity and a country’s wages weighted by the column-sums of (I −B).

Equilibrium Assuming balanced trade, consumption in i must equal

production in i,
K∑
k=1

Qk
iP

k
i =

I∑
j=1

K∑
k=1

Qk
jP

k
j π

k
ij

and with expenditure matching income in equilibrium, the condition can be

written as

wiLi =
I∑
j=1

K∑
k=1

πkijµ
k
jwjLj (11)

where wiLi on the left hand side of equation (11) is country i’s wage income and

the expression on the right hand side indicates the sources of these payments.

The product µkjwjLj is the size of the market for sector k goods in country

j, and country i supplies a share of πkij to this market. Summing over sectors
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and countries then gives total payments reveived by firms in i.

Equation (11) closes the model and determines the wage vector. The model

has three sets of endogenous variables, wages (equation 11), market shares

(equation 6) and productivities (equation 8, with κki = Aki /wi). The wage of

one country will serve as the numéraire.

4 Estimation Framework, Data and Results

The comparative statics exercises require a number of parameters whose es-

timation we describe in this section. Our first step will be to estimate the

export capabilities that form the basis for the industry linkages and the pro-

ductivities. Then, with the capabilities at hand, we can estimate the industry

linkages.

For the entire empirical part, we will stay within the framework outlined in

section 3; both regression equations are derived from theoretical relationships

discussed before. With the exception of the gravity control variables (e.g.,

distance between countries), population (Li), and the trade elasticity (θ), all

parameters are derived from a single data set on trade flows. What we do

here is, in some sense, to split the information contained in these flows into

endogenous components and into parameters that—for the exercises studied

here—one may reasonably consider exogenous.
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4.1 Empirical Framework

Dividing equation (6) by the same expression for another exporter and replac-

ing πkij by Xk
ij/X

k
j and Aki /wi by κki , gives a gravity equation of the form

(
Xk
ij

Xk
i′j

)
=

(
κki
κki′

)θ( dkij
dki′j

)−θ
. (12)

In this Ricardian model, sector k trade flows from i to j (relative to the same

flows from another exporter) are larger, the larger i’s export capability relative

to the export capability of i′. Similarly, trade flows are larger, the lower the

trade costs between two countries, again, in relative terms.

We follow the literature and estimate the gravity equation with ppml (Pois-

son pseudo maximum likelihood). See Santos Silva and Tenreyro (2006) and

Mayer and Head (2002) for a discussion. In order to derive an estimation equa-

tion from equation (12), we first take logs and add an importer-industry fixed

effect to take care of the difference over exporters. Then we replace θ log κki

by an exporter-industry fixed effect and −θ log dkij by δkijDij, where Dij is a

vector of gravity control variables that we use to measure the cost of trading

between countries. Dij includes an intra-fixed effect that indicates when im-

porter and exporter are the same country. Finally, adding time-subscripts and

a disturbance term gives the estimation equation

Xk
ij,t = exp

(
δki,t + δkj,t + δkij,tDij,t

)
+ ηkij,t. (13)

The data for the gravity control variables are from Head et al. (2010) and
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include, for example, a measure of distance between i and j and indicators of

a common language or a common currency. Appendix A.1 gives more infor-

mation. The control variables are not industry-specific but since we estimate

equation (13) for each industry separately, the coefficients may vary over in-

dustries.

Equation (13) identifies only relative exporter-industry fixed effects (δki,t −

δki′,t) and therefore only relative capabilities (log κki,t − log κki′,t). This will be

important for the comparative statics exercises because it restricts the type of

question we may ask there. Calculating prices, for example, requires informa-

tion about the level of capabilites and the relative capabilities we can identify

here are not sufficient. The comparative statics exercises are, therefore, mute

with respect to prices and in particular with respect to welfare. We return to

this point again in the next section.

We denote the log-difference over exporters with a tilde as in

κ̃ki,t =
κki,t
κki′,t

. (14)

Other relative variables such as d̃kij,t or ρ̃ki,t are defined accordingly. In order

to avoid choosing a reference country, we use the geometric mean over all

exporters as our normalization factor so that κ̃ki,t = κki,t/
∏

s

(
κks,t
) 1
I .

In the second regression, we estimate the industry linkages. In Section 3,

we specified the linkages equation in levels (equation 7), but relative capabili-

ties are sufficient to identify the linkages. Dividing equation (7) by the same

expression for another exporter gives our estimation equation for the industry
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coefficients

log κ̃ki,t =
K∑
l=1

βlk log κ̃li,t + δki + ηki,t, (15)

where we already replaced the relative primary capability, ρ̃ki,t, with an exporter-

industry fixed effect, δki , and a residual, ηki,t, that we minimize. We treat the

residual as an integral part of countries’ primary capability. The industry co-

efficients (βlk) do not carry a time-index nor an exporter-index, in line with

our assumption that the coefficients identify technical relationships between

industries that are constant across countries and vary only slowly over time.

For the 11 years in our sample, we assume that the coefficients are constant.

The industry-coefficients are, therefore, estimated using capability estimates

from 60 countries over a period of 11 years.

Estimation is by OLS. Given the log-linear form of the linkages equation,

we can estimate equation (15) without the need to specify the trade elasticity θ

by using (δki,t− δki′,t) rather than log κ̃ki,t. The difference (δki,t− δki′,t) corresponds

to the convolution θ log κ̃ki,t. Specifying θ will be necessary in Section 5, when

we calculate the equilibrium.

4.2 Constructing the Internal and Bilateral Trade Flows

Our main data are sector-specific trade flows (bilateral and internal) that we

construct from the OECD inter-country input-output data set (OECD, 2018).

Summing the rows of the input-output tables, gives the trade flows required

for our exercises. The original data contain flows for the years 2005 to 2015 for

65 countries and 37 industries and are classified according to ISIC Revision 4.
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The OECD data covers the entire world economy and contains all economic

activities ranging from agriculture via manufacturing to the services industries,

so that summing the flows over industries and importers (
∑

s

∑
mX

m
is ) gives

a country’s gross production. The OECD data set includes a position for the

rest of the world (ROW) that subsumes all flows of the countries that do not

appear explicitly.

Some industries and some countries require special attention because of

poor coverage. We move five countries (Costa Rica, Cyprus, Iceland, Cambo-

dia, and Malta) to the rest of the world because of many missing data, leaving

us with 59 + 1 countries. The 59 countries that appear explicitly in the data

set cover more than 90 percent of world economic output and of total trade

flows.

The original OECD data set aggregates industries 05 (coal) with 06 (oil

and gas) into an aggregate called 05T06. We split this aggregate into its two

constituents using UN Comtrade data for the bilateral flows (Xk
ij,t) and EIA

data for countries’ internal flows (Xk
ii,t). The EIA data (EIA, 2019) are pub-

lished in quantity units that we convert into monetary units by using the ratio

of imports reported by Comtrade relative to the imports reported by the EIA

to evaluate the internal trade flows. Appendix A.1 provides detailed infor-

mation and a discussion. Finally, we merge five of the original 37 industries

with neighboring classes because of missing data. Our data set then has 33

industries, 60 countries (exporters and importers) and covers the eleven years

from 2005 to 2015.
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Figure 2: US Export Capabilities Over Time

US relative export capabilities (left) and relative primary export capabilities
(right) over time. The capabilities are scaled by θ and shown are the convolu-
tions θ log κ̃ki,t and θ log ρ̃ki,t. Industries: 06 (Oil and gas), 09 (Mining support
service activities), and 19 (Refined petroleum).

4.3 Results and Discussion: Capabilities

Figure 2 shows how relative US capabilities evolve during our sample period.

The left hand panel shows capabilities, the right hand panel shows primary

capabilities (both in logarithms and scaled by θ). In 2005, industry 06 (crude

oil and gas) was the least competitive industry in the US, but experienced a

steep increase during the sample period. In 2015, industry 06 still belongs to

the less competitive US industries and even at the current pace, it will take

some time until its export capabilities reach the level of many other industries

23



in the US. In line with the steep increase in 06’s export capabilities, the US

experienced a sharp increase in the primary capability of 06 (right hand panel).

Two other industries (09 and 19) are highlighted in figure 2; both will

turn up at various points in the discussion. Industry 09 is a service called

mining support service activities and may (jointly with industry 06) reflect

what we called the shale revolution in the introduction. We return to this

point again in Section 5, when we discuss how to model the shale revolution in

the comparative statics exercises. The third industry highlighted, industry 19,

is refined petroleum and thus from an input-output point of view down-stream

relative to 06. Similarly to industries 06 and 09, industry 19 experienced a

significant increase during our sample period.

The noticeable growth in competitiveness of the oil and gas industry in

the US becomes even more apparent when we look at deviations from 2005 as

shown in figure 3. The capabilities of industry 06 increased by more than any

of the other industries in the US. Industries 09 and 19 come second and third.

Industry 09 is fairly volatile with a pronounced decline at around 2010. A

similar picture emerges when we look at primary capabilities. Here, industry

09 comes first, followed by industry 06 and 19.

4.4 Results and Discussion: Productivity Linkages

There are 1089 (33×33) linkages with a mean of 0.37 and a standard deviation

of 0.49. 16.9 percent of the linkages are negative. The distribution is right

skewed with a maximum of 3.05 and a minimum of −1.03. Figure 4 shows a

heat-plot of the linkages matrix Λ with larger values in dark and smaller values

24



06
09

19

-.5

0

.5

1

2005 2010 2015

Capabilities

06

09

19

-.5

0

.5

1

1.5

2005 2010 2015

Primary Capabilities

Figure 3: US Export Capabilities Over Time (Levels Relative to their Level
in 2005)

US export capabilities over time relative to their 2005 level. Shown are the con-
volutions θ(log κ̃ki,t − log κ̃ki,2005) and θ(log ρ̃ki,t − log ρ̃ki,2005). Industries: 06 (Oil
and gas), 09 (Mining support service activities), and 19 (Refined petroleum).

in bright shading. The diagonal is prominently showing which indicates that,

typically, the principal link is between an industry’s capability and its own

primary capability. There are some larger off-diagonal entries as well but

most often, the largest link is situated on the diagonal. The in-strengths (the

column-sums of Λ) and the out-strengths (the row-sums of Λ) vary significantly

from industry to industry. Table 6 in the Appendix shows the in-strengths and

the out-strengths of all industries.

Since most of the links in the linkages matrix are fairly weak, a network

representation is appropriate (here we follow Hidalgo et al., 2007). A network
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Figure 4: A Heat-Plot of the Industry Linkages

A heat-plot of the linkages matrix (Λ) with larger values in dark and smaller
values in bright shading.

representation often helps in providing intuition about the structure of a net-

work by simplifying the network by dropping the weaker linkages. In order

to assure that the network remains connected, we first generate the maximum

spanning tree. This is a tree (a network without cycles) that connects all

industries and that maximizes the sum of the linkages (not including the diag-

onal of Λ). The maximum spanning tree is unique for weighted graphs when

all weights are distinct (as we have here). We then add the 60 largest links to

yield an average degree of around 3.

In the network representation in figure 5, each node represents an industry

and nodes are linked either because they are linked by the maximum spanning

tree or because they belong to the stronger links in original matrix. We lay out

the network using a force-spring algorithm where the nodes are represented
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Figure 5: The Industry Network

A network representation of the industry linkages. The node size is propor-
tional to an industry’s degree. The layout and the coloring reflect the four
communities in the network. The figure is drawn with the software package
Gephi.

as equally charged particles and the edges are assumed to be springs (the

algorithm we use is described in Blondel et al., 2008). The layout is then

determined by the relaxed positions of the particles (the nodes). We retouched

the layout manually to avoid overlapping links and untangle dense clusters.

The figure is drawn using the software package Gephi.

The node size is proportional to the industry’s degree in the binary network

and the coloring corresponds to the communities in the network. Using Gephi’s

default algorithm to calculate the network’s modularity, we find four commu-

nities. The communities detected here, roughly correspond to the structure

of the ISIC classification system. Typical entries of the cluster on the right

belong to the first entries of the industry classification system followed by the

large community in the bottom center whose industries belong to the middle
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part of the classification. The community on the left typically contains services

that appear in the last part of the classification. Industries 06 and 19 form a

separate community with industry 13T15 (Textiles, including synthetic fibers)

serving as a bridge to the rest of the network.

From the point of view of someone who looks for patterns in the produc-

tivity data, the weak link of industry 06 with the rest of the industries reflects

the fact that industry 06 typically does not pair often with other industries,

except for an occasional pairing with 19. Similarly, industry 19 does not seem

to pair with many other industries, except industries 06 and 13T15.

From the point of view of our model and its underlying assumptions, the

weak link of industry 06 with the rest of the industries indicates that the factors

(the technologies, the human capital, etc.) required to produce oil and gas are

rather industry-specific and do not seem to transfer easily to other industries.

The industry that is most closely related to the oil and gas industry is the

refined petroleum industry.

The fact that industries 06 and 19 form an independent cluster largely

separate from the rest of the industries, will drive many of the results in the

comparative statics exercises and it is useful to compare our network with two

other industry networks in the literature. First, consider the network discussed

in Hidalgo et al. (2007). While their measure differs from ours, the underlying

data are as well trade flows (though not internal flows). In their network,

too, the oil and gas industry is rather isolated. Given that their network has

almost 800 industries shows that our result is unlikely to be driven by the

smaller number of nodes (industries) in our data set.
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Second, consider the network discussed in Carvalho (2014) which is formed

by input-output flows for 417 industries in the US. In this network, too, the oil

and gas industry is rather isolated and, just as we observe here, its strongest

link is with petroleum refineries. But unlike in our network, petroleum refiner-

ies is one of the best connected industries in the economy with links to almost

any other industry in the country. The connectedness of refined petroleum

reflects the fact that its output (gasoline, diesel, heating oil) are important

inputs in almost any economic activity.

The different connectedness of the 06/19-cluster reflects the different scopes

of the two types of industry linkages. In the short run, refined petroleum and

crude oil and gas (via refined petroleum) have strong links to almost all other

industries and a disruption in any of these two industries will have noticeable

repercussions in the entire US economy. However, in the longer run, the links of

these industries with the rest of the economy are significantly weaker. In fact,

many countries, especially many of the more advanced countries, do not have

very developed industries 06 and 19 and, instead, import gas and petroleum

products from abroad.8

8In 2014, only four countries produced oil or gas from shale commercially (EIA, 2015b).
The United States is by far the dominant producer, producing almost 90 percent of world
output. The other countries are Canada, Argentina, and China. Shale resources, however,
are abundant (EIA, 2013). EIA (2015c) currently lists 46 countries with technically recov-
erable shale oil and shale gas resources. Most of these countries are included in our data
set.
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5 Equilibrium and Comparative Statics

In this section, we conduct the comparative statics exercises that allow us to

assess, how the shale revolution changes the industrial structure of the US

and that of other countries. In the comparative statics exercises, we compare

two equilibria: The original equilibrium (the equilibrium we observe in the

data) and a hypothetical equilibrium that differs from the original because we

change one or more exogenous parameters. In our baseline exercise, we keep

the primary productivity of the US in industry 06 (crude oil and gas) constant

at its 2005 level. The hypothetical equilibrium thus describes a situation in

which the productivity gains made in the industry after 2005 have not taken

place. Comparing the two equilibria then allows us to quantify the effect of

the shale revolution.

5.1 Equilibrium

Our first step is to calculate the original equilibrium (the original wage vector)

for each of the 11 years of the sample. Equation (11) determines wages as a

function of market shares (πkij,t), consumption shares (µkj,t), and population

(Li,t). We use data from the World Bank for countries’ population (see table

7 in the Appendix). Market shares and consumption shares can be calculated

from our data set on trade flows using

πkij,t =
Xk
ij,t

Xk
j,t

and µkj,t =
Xk
j,t

Xj,t

,
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where Xk
j,t =

∑
sX

k
s,t and Xj,t =

∑
sX

s
j,t. With 60 countries in our sample,

the system has 59 wage equations that need to be solved simultaneously. The

wage of one of the countries serves as the numéraire. Table 7 in the Appendix

shows the equilibrium wages in all 60 countries for 2015. As with capabili-

ties and productivities, we normalize wages using the geometric mean across

all countries. Table 7 also shows countries’ per capita income. Given that

wages in our model are a measure of a country’s overall productivity, the high

correlation between both variables is expected.

With wages at hand, we can calculate the productivities using equation (3)

and the primary productivities using equation (10). At this point, we have to

choose a value for the trade elasticity θ. Our baseline value is θ = 6; Section 5.3

discusses how this choice affects the results. A plot of US productivities and

primary productivities over time is almost identical to the plot with capabilities

in figures (2) and (3) above, and therefore not shown. The main difference

between both figures is a different scaling due to θ.

5.2 Comparative Statics

We define the shale revolution as the technological advances of the US oil

and gas industry that affect the industry’s output after 2005. In the baseline

comparative statics exercise, the primary productivity of industry 06 (crude

oil and gas) in the US serves as a proxy for the factors we want to capture. In

Section 5.3, we discuss this choice and the result of two additional exercises.

In the baseline comparative statics exercise, we replace α̃06
US,t by α̃06

US,2005 in

all years and leave all other primary productivities unchanged. Since equation
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Table 1: The Impact of Shale on Relative Wages

Gains Losses

Country Impact Energy Country Impact Energy
of shale reliance* of shale reliance*

USA 0.84 2.46 Greece -0.19 3.20
Ireland 0.37 0.12 Norway -0.31 13.46
Luxembourg 0.30 0.05 Russia -0.37 12.63
Japan 0.30 0.35 Kazakhstan -0.40 8.58
Switzerland 0.27 0.21 ROW -0.73 11.84
Germany 0.24 0.42 Brunei -0.79 37.02
Czech Republic 0.24 0.81 Colombia -0.86 5.04
Philippines 0.23 0.26 Saudi Arabia -0.94 21.95
Korea 0.23 1.43 Mexico -1.12 5.01
Hong Kong 0.22 0.11 Canada -1.43 5.95

Notes: The impact of shale on relative wages in 2015 in percent (relative
to the geometric mean of all countries). Largest and smallest 10 effects by
impact. Impact is the percentage difference between observed wages and wages
predicted in the baseline comparative statics exercise. * Energy reliance is the
share of energy-related production (ISIC Rev. 4 classes 05, 06, 19) in total
production.

(9) holds in relative terms,

log Ãki,t =
K∑
l=1

λlk log α̃ki,t,

we can use it to calculate relative productivities and in turn, use these with

equation (6) and (11) to solve for wages. Solving for the comparative statics

equilibrium we have, as above, 59 wage equations with the wage of one of the

countries serving as numéraire.

Table 1 shows how shale changes relative wages in the 20 most affected

countries (10 largest increases, 10 largest decreases) in 2015. Table 7 in the

Appendix shows the effect in all countries. According to the model, shale
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raised relative wages in the US by around 0.84 percent in 2015. In Mexico and

Canada, America’s two main trading partners, shale lowered relative wages by

1.12 and 1.43 percent, respectively. Mexico and Canada are both large oil and

gas producers themselves which probably explains the drop in wages. In fact,

all countries for which the model predicts a large, negative impact on wages are

typically large producers of energy products (oil, gas, coal). On the other hand,

countries for which the model predicts a positive effect of shale on wages are

typically only small producers of these items. All western European countries,

for example, are predicted to have slightly higher wages, with the exception

of Norway and Greece, two countries with fairly large energy industries.

Figure (6) shows the impact of shale on US market shares in Mexico,

Canada, and in the US itself over time. The impact is measured as the dif-

ference between the original market shares and the market shares we find in

the comparative statics exercise (∆πkij,t = π
(orig)k
ij,t − π(cs)k

ij,t ). The two market

shares coincide in 2005 by assumption. A positive difference indicates that in

the original data, we observe a higher market share than in the hypothetical

situation where we turn off the productivity gains in the oil and gas industry.

The market shares of industry 06 (crude oil and gas) increase in all three coun-

tries. The market shares of almost all other industries decrease with only few

exceptions, of which industry 19 (refined petroleum) is the most important

one. US market shares of industry 19 are higher in all three countries. The

network representation of the industry linkages (figure 5) already indicated a

close relationship between industries 06 and 19 with both industries forming

an independent cluster, that is almost unconnected to the other industries.
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Figure 6: The Impact of Shale on Market Shares

The impact of shale on US market shares (πkij,t) in Mexico, Canada, and the
US over time. Positive values indicate higher market share due to shale. By
assumption, the impact is zero in 2005.

Tables 2 to 4 report the impact of shale on trade flows and on industry

output. The model does not allow us to predict the level of the flows, only

flows relative to another exporter, but we may approximate the levels assuming

that the impact on wages is small, relative to the impact on flows. Consider

the following equation that shows how trade flows depend on the parameters

and the variables of the model.

Xk
ij = πkijµ

k
jwjLj
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Table 2: The Impact of Shale on Trade Flows

Exporter Importer Industry Description Trade flows Impact of shale

Gains observed* predicted* by value* percent

USA USA 06 Crude oil and gas 670.07 347.67 322.40 92.73
USA USA 19 Refined petroleum 404.00 382.11 21.89 5.73
USA Canada 06 Crude oil and gas 16.93 3.74 13.18 351.99
Canada USA 29 Vehicles, trailers 38.12 28.54 9.58 33.58
Japan USA 29 Vehicles, trailers 39.78 33.07 6.71 20.28
Germany USA 29 Vehicles, trailers 38.56 31.93 6.63 20.77
USA Mexico 06 Crude oil and gas 7.66 1.83 5.83 318.93
USA Taiwan 06 Crude oil and gas 6.80 1.30 5.51 424.89
Canada Canada 29 Vehicles, trailers 36.52 31.13 5.39 17.33
Canada Canada 45T47 Wholesale trade 204.03 199.1 4.93 2.48

Losses observed* predicted* by value* percent

USA USA 62T63 IT 548.15 558.87 -10.72 -1.92
Canada Canada 06 Crude oil and gas 93.22 104.46 -11.24 -10.76
USA USA 28 Machinery, nec 284.82 297.76 -12.94 -4.35
USA USA 26 Computers 304.15 322.55 -18.40 -5.71
Saudi Arabia USA 06 Crude oil and gas 11.05 29.94 -18.89 -63.09
Russia USA 06 Crude oil and gas 11.03 30.88 -19.86 -64.30
USA USA 20T21 Chemicals 646.70 667.77 -21.07 -3.16
Mexico USA 06 Crude oil and gas 13.39 35.85 -22.46 -62.66
USA USA 29 Vehicles, trailers 560.55 604.63 -44.09 -7.29
Canada USA 06 Crude oil and gas 51.30 134.82 -83.51 -61.95

Notes: The impact of shale on trade flows (largest and smallest 10 by value in
2015, excluding flows from rest of the world aggregate ROW). Predicted flows
from baseline comparative statics exercise. * Billion US $.

Here, µkj and Lj are known parameters and we have comparative statics predic-

tions for πkij, but we do not have comparative statics predictions for countries’

wages. We may use, however, the wages we found in the original equilibrium

(see Section 5.1) as an approximation. When the US is importer (exporter),

we slightly underestimate (overestimate) the flows. For the other countries,

the bias is reversed.

Table 2 shows the effect of shale on the 20 most affected trade flows for
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2015. By far the largest effect (as measured by value) is observed by the

internal flows of crude oil and gas in the US where the model predicts almost

a doubling of the flows. The flows from the US to its main trading partners

Canada and Mexico are predicted to triple, whereas the flows in the opposite

direction decrease by more than 60 percent. A large part of the internal trade

of vehicles (industry 29) in the US is replaced by imports from abroad (in

particular from Canada, Japan, Germany).

This pattern is confirmed in table 3 that reports aggregate US imports

(
∑

sX
s
i,j=USA,2015). Imports from China increase by more than $14 billion

because of shale. Germany and Japan, too, see their US exports increase

considerably. Countries that observe a decline of their exports to the US are,

again, countries with a large energy industry, such as Saudi Arabia, Russia and

the countries aggregated in ROW (ROW includes countries like Iraq, Iran, and

other Gulf states).

Our last table (table 4) in this section reports industry output (
∑

sX
k
i,s,2015).

Again, we report the 20 most affected industries. The industries that gain most

from shale are industries 06 and 19 in the USA. With the exception of vehi-

cles from Germany and Japan, all other industries in the table that gain are

Canadian. These gains in Canada are offset by a sizeable decline in Canadian

output of crude oil and gas. Seven of the ten industries that lose most are US

American. Industry 29 (vehicles and trailers), for example, is predicted to lose

almost a tenth, or $65 billion, of its output because of shale. The exercise also

predicts large declines for industries 20T21 (Chemicals) and 26 (Computers).
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Table 3: The Impact of Shale on US Imports

Exporter US Imports Impact of shale

Gains observed* predicted* by value* percent

China 215.10 200.92 14.18 7.06
Germany 143.71 130.74 12.97 9.92
Japan 118.82 107.85 10.97 10.17
Ireland 51.49 46.27 5.22 11.29
South Korea 75.19 70.20 4.99 7.10
India 75.45 72.08 3.37 4.67
France 64.78 61.46 3.33 5.41
Great Britain 105.39 102.08 3.31 3.24
Switzerland 31.71 28.67 3.05 10.63
Italy 57.79 54.99 2.80 5.09

Losses observed* predicted* by value* percent

Kazakhstan 3.70 5.49 -1.79 -32.66
Netherlands 31.62 33.60 -1.99 -5.91
Australia 29.87 32.24 -2.37 -7.36
Colombia 7.30 10.38 -3.08 -29.66
Norway 12.32 17.09 -4.76 -27.87
Mexico 76.84 90.05 -13.21 -14.67
Saudi Arabia 19.34 37.55 -18.21 -48.49
Russia 41.23 61.70 -20.48 -33.19
Canada 258.19 311.07 -52.89 -17.00
ROW 235.39 344.09 -108.70 -31.59

Notes: The impact of shale on US imports (largest and smallest 10 by value
for 2015). Predicted imports from baseline comparative statics. * Billion US$.
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Table 4: The Impact of Shale on Industry Output

Country Industry Description Output Impact of shale

Gains observed* predicted* by value* percent

USA 06 Crude oil and gas 765.18 366.61 398.57 108.72
USA 19 Refined petroleum 482.86 436.67 46.20 10.58
Canada 29 Vehicles, trailers 80.60 65.04 15.56 23.92
Canada 45T47 Wholesale trade 244.93 235.98 8.94 3.79
Germany 29 Vehicles, trailers 408.42 400.88 7.54 1.88
Japan 29 Vehicles, trailers 415.59 408.59 6.99 1.71
Canada 69T82 Technical services 166.76 160.24 6.52 4.07
Canada 10T12 Food products 122.20 117.07 5.14 4.39
Canada 20T21 Chemicals 45.35 40.37 4.97 12.32
Canada 24 Basic metals 49.14 44.47 4.67 10.51

Losses observed* predicted* by value* percent

USA 45T47 Wholesale trade 2934.14 2954.40 -20.26 -0.69
USA 69T82 Technical services 3342.31 3365.66 -23.35 -0.69
Russia 06 Crude oil and gas 362.42 386.82 -24.39 -6.31
Mexico 06 Crude oil and gas 33.84 58.57 -24.73 -42.22
USA 28 Machinery, nec 362.21 388.79 -26.58 -6.84
USA 64T66 Finance & insurance 2291.04 2322.17 -31.13 -1.34
USA 26 Computers 365.96 404.85 -38.88 -9.60
USA 20T21 Chemicals 771.76 815.54 -43.77 -5.37
USA 29 Vehicles, trailers 637.81 703.11 -65.30 -9.29
Canada 06 Crude oil and gas 164.81 258.83 -94.02 -36.32

Notes: The impact of shale on industry output (largest and smallest 10 by
value in 2015, excluding industries from the rest of the world aggregate ROW).
Predicted output is output predicted in the baseline comparative statics exer-
cise. * Billion US$.
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5.3 Discussion

The impact of the shale revolution resembles the situation described in the

models of the Dutch disease. The lower an industry’s trade costs, the larger

the impact. In the case of services, where trade costs are often considerable,

the impact of shale is small or negligible.

In this section, we resume some of the discussions we started before. First,

we discuss our choice to model the shale revolution by keeping industry 06

at its 2005 level. Second, we analyze how our choice of setting the trade

elasticity, θ, equal to 6 affects our results and we also discuss how the results

change when we exclude a number of countries with gaps in the data. Finally,

we will discuss the contribution of shale to the structural change in the US

relative to the contribution of other US industries.

5.3.1 Industry 09 and Trade Costs

In our baseline exercise, we used the primary productivity of industry 06 (crude

oil and gas) as a proxy for the factors that allowed for the shale revolution.

There is, however, a second industry (09, mining support service activities)

that may as well reflect some of the technological advances we are interested

in. Some of the technical operations of the mining industry, “particularly

[operations] related to the extraction of hydrocarbons, may also be carried out

for third parties by specialized units as an industrial service, which is reflected

in [industry] 09” (United Nations, 2008, page 79). In fact, the capabilities and

productivities of industry 09 in the US increase just as much as the capabilities

and productivities of industry 06 (see figures 2 and 3). We will, therefore,
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include industry 09 together with 06 in a second comparative statics exercise.

In a third exercise, we keep both the primary productivity and the trade costs

of industry 06 constant at its level in 2005.

Overall, the results of the second exercise closely resembles the results of

the first. Table 8 in the Appendix shows the effect of both exercises on the

US market shares in Mexico. For our baseline exercise, the model predicts a

reduction of the US market share of industry 06 in Mexico from 24.88 percent

to 5.94. For the second exercise, the reduction is slightly smaller to 6.38. The

only noticeable difference between both exercises is the prediction of industry

09 that sees an increase in our baseline model (from 0.06 to 0.11) and a decrease

in the second exercise (from 0.06 to 0.02). For all other industries, there is

almost no difference between the two exercises. A possible explanation for this

is that industry 09 is by far the smallest industry in our sample by value. Total

world consumption of 09 is almost only half the size of the second smallest

industry in the sample.

In the third comparative statics exercise, we keep the primary productivity

of industry 06 and the trade costs of industry 06 at their level in 2005. Here,

too, the numbers do not differ much from the baseline exercise (see Table

8). During the sample period, US trade costs of 06 decrease but most of the

large infrastructure developments take place after 2015. See footnote 3 in the

introduction for more information on the infrastructure developments.
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5.3.2 Trade Elasticity and Countries with Data Gaps

In all comparative statics exercises, we have set the trade elasticity θ equal

to 6. As equation (6) shows, θ influences how changes in productivity carry

over to changes in market shares and via the wage equation to changes in

wages. Mayer and Head (2002) compare the estimation results from several

hundred estimates and classify them according to the methodology used. Their

preferred estimate is 5.03, which is somewhat lower than our choice. Table 8

in the appendix shows how θ affects the US market shares in Mexico we find in

the baseline exercise. Setting θ equal to 3 gives almost identical results to our

baseline choice of 6, but raising the value to 8 increases the predicted impact

of shale. Looking, again, at the US share of industry 06, we see that when θ

equals 8, the model predicts a reduction from 24.88 to 1.67 whereas when θ

equals 6, the reduction is smaller (from 24.88 to 5.94). Overall, a choice of 6

seems more conservative than a value of 8 and reducing θ further only has a

small effect on the results so that we may conclude that the results are robust

with respect to our choice of θ.

In Appendix A.1, we report that for some countries, the output of oil, gas

and coal reported by the EIA differed from the output reported by the OECD.

These were mainly smaller countries (such as Hong Kong or Luxembourg)

and countries with a dominating energy industry (such as Saudi Arabia). In

order to see whether these countries affect the results, we re-calculate the

capabilities, wages and productivities and re-run our baseline comparative

statics exercise for this smaller set of countries. Table 8 in the appendix reports

how this change affects the US market shares in Mexico. Using the smaller
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set of 53 countries, the predicted impact of shale is smaller. For example,

the US market share of industry 06 in Mexico reduces from 24.88 to 8.19

when we exclude these countries rather than from 24.88 to 5.94 in the case

of 60 countries. For all other industries, the predicted changes are small or

negligible, so that having a larger sample seems preferable and any bias caused

by these countries is unlikely to be substantial.

5.3.3 Decomposing the Structural Change in the US

We close this section with a discussion about the contribution of shale to the

structural change in the US, relative to the contribution of other US industries.

Our measure of an industry’s contribution to the country’s structural change is

the industry’s contribution to the country’s wage variations. Above, we have

seen that shale raised wages in 2015 by about 0.84 percent in the baseline

comparative statics exercise. A question this number raises is, whether this

impact is large relative to the impact of the other 32 industries.

In order to answer this question, we conduct for each industry a compar-

ative statics exercise in which we keep the industry’s primary productivity at

the level it had in 2005. Subtracting the resulting wages from the wages of

the original equilibrium gives, for each industry, a series of yearly wage dif-

ferences. The absolute value of these wage differences, relative to the sum of

absolute wage differences of all industries is then our measure of an industry’s

contribution to the economy’s structural change.

Figure 7 shows each industry’s contribution over time. For 2005, the com-

parative statics equilibrium coincides with the original equilibrium so that each
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Figure 7: Structural Change in the US (2005 to 2015)

Decomposition of the US overall structural change into parts that can be
attributed to each industry. The contribution of each industry to the overall
structural change is measured by each industry’s contribution to the country’s
wage variation.

industry’s contribution is 1/K = 1/33. The industries’ contributions varies

considerably in the following years. At around the financial crisis in 2007, the

contribution of industry 68 (real estate activities) is particularly prominent.

In recent years, industry 10T12 (food products) is an important contributor to

the US structural change. The contribution of industry 06 (crude oil and gas)

is not particularly large but fairly steady over time. Its impact is more gradual

and persistent than that of many others. It is possible that the contribution of

oil and gas increases, when the recent infrastructure investments in pipelines

and export facilities are reflected in the data.
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6 Summary

This paper quantifies the general equilibrium effects of the shale revolution in

a Ricardian model of trade in which industries are connected by productivity

linkages. In this framework, productivity gains in one industry may spill over

to other industries. The reason for this modeling choice is that the analysis

requires industry linkages that are constant over a longer period and that are

themselves unaffected by the structural change we want to analyze. This rules

out, for example, the use of input-output linkages. The productivity linkages

are external to the firm, so that the model preserves the simple structure of the

original Eaton & Kortum model. Modeling industry linkages in this fashion

in a general equilibrium model seems to be new in the literature.

We model the shale revolution as an increase of the productivity of the oil

and gas industry in the US. These productivity improvements may spill over

to other industries and may, in principle, outweigh any negative impact from

the higher wage level that is caused by the productivity increases (the Dutch

disease).

The industry network implied by the estimated linkages is a modular net-

work in which industries form separate clusters. Industries have tight connec-

tions with industries from the same cluster, but weak connection with indus-

tries in different clusters. The oil and gas industry forms a separate cluster

with petroleum refineries. The productivity improvements in the oil and gas

industry will, therefore, spill over to petroleum refineries, but will have only

minor effects on the productivities of the other industries in the US.

For 2015 (the most recent data available), the comparative statics exercises
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predict slightly higher wages in the US (0.84 percent) relative to the average

wage in all countries in the sample. In Mexico and Canada, Americas two

main trading partners, wages decline. Many industries in the US see their

output reduced because of the higher wages, but the impact varies widely

from industry to industry. In the case of refined petroleum, the higher wages

are outweighed by the productivity spillovers, so that the overall effect is pos-

itive. Since services are not easily traded and thus face much less competition

from abroad, the higher US wages barely affect their output. The impact of

the shale revolution is most pronounced in the case of manufacturing goods

(vehicles, chemicals, electronics, or machinery). Goods that the US previously

would have produced domestically are now replaced by imports from abroad.

China, in particular, is benefiting from this replacement. Given the recent and

planned infrastructure developments, such as the building of new ports and

pipelines, it seems likely that the structural changes reported in this paper are

only the first signs of a more profound structural change of the country in the

coming years.
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A Online Appendix

A.1 The Construction of the Data Set

Constructing Trade Flows from international input-output tables

We calculate the bilateral trade flows by summing up the rows of the interna-

tional input-output tables (OECD, 2018). The original data are in million US

Dollars which we convert into Dollars. Negative values (130 of the 1673100

values are negative) and zeros are replaced by one. We move the following five

countries to the balance position ROW because of many missing data: Costa

Rica, Cyprus, Iceland, Cambodia, and Malta. We use MX1 for Mexico and

CN1 for China. The following industries are merged because of missing data:

90T96 and 97T98 to 90T98; 84 and 85 to 84T85; 31T33, 35T39, and 41T43 to

31T43. This leaves us with 60 exporters and importers (of which one is ROW)

and 32 industries for a period of 11 years (from 2005 to 2015). See table 7 for

a list of the countries included in the analysis.

Splitting Industry 05T06 into 05 and 06 Industry 05T06 is split into

its two components 05 (Coal and lignite) and 06 (Crude oil and gas) using UN

Comtrade data (Harvard Dataverse, 2019) for the bilateral trade flows and

EIA (EIA, 2019) data for the internal trade flows.

The UN Comtrade data are classified according to the Harmonized System

(HS 1992). Since there is no direct concordance between the HS-products and

the industries in ISIC Rev. 4, we use a chain of concordances: from ISIC Rev.

4 to CPC2 to HS (2007) to HS (1992). Following this chain, we assign the
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following HS 1992 classes to ISIC Rev. 4 class 05: 2701, 2702, 2704, 2705,

2706, 2707, 2708 and the following HS (1992) classes to ISIC Rev. 4 class 06:

2709, 2710, 2711, 2712, 2713. Countries that do not appear explicitly in the

OECD Data are allocated to the balance position ROW.

The internal trade of industries 05 and 06 are constructed as the difference

between a country’s production and its exports as reported by the EIA. The

EIA publishes data about several energy sources for more than 160 countries.

Four of these sources are relevant for us. The output of industry 05 (coal an

lignite) corresponds EIA’s total primary coal. The output of industry 06 (crude

oil and gas) corresponds to three series in the EIA data: (1) total petroleum

and other liquids (nonrefined), (2) natural gas, and (3) liquefied petroleum

gases and ethane.

All 59 countries of our data set appear in the EIA data. The remaining

countries are aggregated into the balance position Rest of the World. For

some countries, the EIA reports zero production and zero exports of liquefied

petroleum gases and ethan in the most recent years in the sample. When the

corresponding exports reported by the Comtrade data are positive, we assume

that these data are missing and project the series using a simple linear forecast.

For the US, for example, the EIA reports zero production and zero exports in

2015 whereas the UN Comtrade data report positive export for 2015.

The EIA data are published in quantity units which we convert into mone-

tary units using the ratio of imports as reported by UN Comtrade and imports

as reported by the EIA as a proxy for the price. In the case of natural gas
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(measured in bcf, billion cubic feet), this ratio equals, for example,

Pi,t

[
$

bcf

]
=

Country i’s imports as reported by UN Comtrade [$]

Country i’s imports as reported by EIA [bcf ]
.

The other three price series are constructed in the same fashion. Since the

4-digit HS (1992) classes do not distinguish between natural gas and liquefied

gas, we use the 6-digit data in this case. HS classes 271121, 271119, 271129

correspond to natural gas and HS classes 271114, 271113, 271112, 271111 to

liquefied gases. Once the series have the same units, we aggregate them. The

internal flows of the countries that do not appear explicitly in the OECD data

set are merged into the balance position ROW.

For the US, constructing the flows of coal, oil and gas from the EIA data

works reasonably well. Total production of 05 and 06 constructed using the

EIA data overestimates the original OECD aggregate 05T06 by between 0.08

and 3.56 percent with an average deviation of 1.87 percent. For the other

OECD countries, the average deviation is larger but still within reasonable

bounds. However, for smaller countries and for countries like Saudi Arabia

where the oil and gas sector dominates the domestic economy, the two magni-

tudes may differ significantly (see table 8). We discuss this point in detail in

Section 5.3.

Gravity Controls and Rest of the World Our main source for the

gravity control variables is the CEPII gravity dataset (Head et al., 2010), see

table 5 for a list of the controls included in the regression. The data on currency

unions are from De Sousa (2012), the data on countries’ internal distances are
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Table 5: Gravity Control Variables

Variable Description

distw weighted distance (pop-wt, km)
comlang off 1 for common official of primary language
comcol 1 for common colonizer post 1945
colony 1 for pair ever in colonial relationship
comcur 1 for common currency
contig 1 for contiguity
comleg pretrans 1 if common legal origins before transition
comleg posttrans 1 if common legal origins after transition

Notes: Gravity control variables used in the regression of the gravity model.

from Mayer and Head (2002).

For the balance position “rest of the world” (ROW) included in the OECD

data, we need to impose a number of assumption regarding the gravity control

variables. We need, for example, the distance between a country and the rest

of the world or whether a country and the rest of the world speak the same

language. These assumptions are for the most part arbitrary, but imposing

some assumption is necessary if we want to keep the balance position in the

data set. Keeping the balance position ROW and imposing assumptions seems

preferable than dropping ROW. In addition, changing these assumptions leaves

the estimates of the export capabilities and the trade costs of the US and its

main trading partners virtually unchanged. The estimation results of more

peripheral countries such as Morocco are only slightly affected.

We set the internal distance of ROW equal to the average internal distance

of the countries in ROW for which internal distances are available. The bilat-

eral distance between ROW and the other countries is calculated as a weighted

distances where the weights are calculated from the trade flows between coun-

tries.9 If a country shares a common border with one of the countries in ROW,

9If the rest of the world contains two countries, A and B, then the distance between
ROW and country C is calculated as wCACA+wCBCB, where CA is the distance between
C and A and the weights correspond to the shares of exports from C to A and B.
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we assume that the country shares a common border with ROW. The other

control variables are treated in the same fashion.
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Table 6: Industry Classes (ISIC Revision 4) Used in the Analysis

Industry Description Industry Linkages Data for USA 2015

In-strength Out-strength Consumption share Industry output Impact of shale

observed predicted by value percent

01T03 Agriculture 11.86 14.00 1.41 448.60 456.00 -7.37 -1.62

05 Coal -1.21 0.99 0.24 80.52 85.20 -4.68 -5.49

06 Crude oil and gas -0.77 -0.12 2.72 765.2 366.60 398.6 108.72

07T08 Non-energy mining 3.05 2.17 0.21 64.76 68.91 -4.15 -6.02

09 Mining services 10.89 1.47 0.27 87.77 90.83 -3.06 -3.37

10T12 Food products 14.08 32.17 3.02 924.20 943.70 -19.49 -2.07

13T15 Textiles 15.72 20.40 0.66 85.16 92.38 -7.22 -7.81

16 Wood products 16.66 14.26 0.34 98.16 100.20 -2.08 -2.07

17T18 Paper & printing 17.10 17.35 0.82 266.30 273.10 -6.75 -2.47

19 Refined petroleum 7.68 2.15 1.46 482.90 436.70 46.20 10.58

20T21 Chemicals 6.76 5.60 2.56 771.80 815.50 -43.77 -5.37

22 Plastic products 14.97 18.18 0.77 226.30 238.80 -12.55 -5.25

23 Metallic minerals 9.87 5.30 0.42 118.90 117.70 1.24 1.05

24 Basic metals 8.44 7.39 0.80 221.10 229.60 -8.49 -3.70

25 Metal products 14.70 22.82 1.21 361.10 375.10 -13.98 -3.73

26 Computers 21.21 9.89 1.24 366.00 404.80 -38.88 -9.60

27 Electrical equipment 18.78 14.85 0.48 119.74 123.80 -4.06 -3.27

28 Machinery 14.28 19.07 1.25 362.22 388.80 -26.58 -6.84

29 Vehicles, trailers 24.04 9.72 2.52 637.80 703.10 -65.30 -9.29

30 Transport equipment 24.31 5.89 0.83 318.54 329.00 -10.46 -3.18

Continued on next page
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Table 6 – Continued from previous page

Industry Description Industry Linkages Data for USA 2015

In-strength Out-strength Consumption share Industry output Impact of shale

observed predicted by value percent

31T43 Construction 16.36 20.87 6.79 2071.38 2081.00 -10.62 -0.51

45T47 Wholesale trade 9.77 32.53 9.25 2934.00 2951.95 -20.26 -0.69

49T53 Transportation 9.72 23.85 3.53 1107.02 1124.97 -17.95 -1.6

55T56 Accommodation & food 12.12 30.49 2.95 905.70 909.60 -3.91 -0.43

58T60 Publishing 13.96 6.81 1.96 648.20 649.70 -1.46 -0.23

61 Telecommunications 4.16 2.96 1.96 634.70 632.30 2.44 0.39

62T63 IT 18.59 6.14 1.94 576.20 593.30 -17.16 -2.89

64T66 Finance & insurance 10.52 6.19 7.03 2291.00 2322.00 -31.13 -1.34

68 Real estate activities 11.65 12.50 9.53 3000.12 3002.51 -2.39 -0.08

69T82 Technical services 10.37 11.11 10.24 3342.78 3366.13 -23.35 -0.69

84T85 Education and government 11.56 3.79 12.08 3807.31 3809.75 2.44 0.06

86T88 Health and social work 11.73 9.80 6.95 2187.01 2187.17 -0.16 -0.01

90T98 Entertainment 10.65 12.98 2.59 819.70 819.99 -0.29 -0.04

Table 6: Industry classes (ISIC Revision 4) used in the analysis, and additional informa-
tion. In-strength and out-strength are respectively the row-sum and column-sum of the
linkage matrix. Predicted output from baseline comparative statics exercise.
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Table 7: List of Countries Included in the Analysis

Exporter ISO 3 Population GDP per Wage Impact of EIA 05T06

(million) capita ($1000) (relative to basket) shale Discrepancy

observed predicted percent percent

Argentina ARG 43.42 10.50 0.49 0.49 0.15 1.60

Australia AUS 23.82 55.10 2.73 2.73 -0.01 5.40

Austria AUT 8.64 47.85 2.95 2.95 0.19 -1.70

Belgium BEL 11.27 45.16 2.65 2.64 0.08 7.50

Bulgaria BGR 7.18 7.61 0.40 0.40 0.02 8.20

Brazil BRA 206 11.35 0.52 0.52 0.01 1.50

Brunei Darussalam* BRN 0.42 32.66 2.50 2.52 -0.79 -1.60

Canada CAN 35.83 50.30 2.24 2.27 -1.43 1.00

Switzerland CHE 8.28 76.55 5.05 5.04 0.27 2.40

Chile CHL 17.76 14.89 0.76 0.76 0.12 3.40

China CHN 1371 6.50 0.36 0.36 0.18 1.30

Colombia COL 48.23 7.46 0.26 0.26 -0.86 8.80

Czech Republic CZE 10.55 21.38 1.34 1.33 0.24 5.70

Germany DEU 81.69 45.52 2.96 2.95 0.24 5.70

Denmark DNK 5.68 60.40 3.69 3.69 0.13 1.40

Spain ESP 46.44 30.60 1.77 1.77 0.11 9.60

Estonia* EST 1.32 17.77 1.00 1.00 0.07 —

Finland FIN 5.48 45.32 2.50 2.49 0.14 9.90

France FRA 66.59 41.77 2.25 2.25 0.18 10.50

United Kingdom GBR 65.13 41.76 2.21 2.21 0.18 1.50

Continued on next page
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Table 7 – Continued from previous page

Exporter ISO 3 Population GDP per Wage Impact of EIA 05T06

(million) capita ($1000) (relative to basket) shale Discrepancy

observed predicted percent percent

Greece GRC 10.82 22.62 1.19 1.19 -0.19 14.00

Hong Kong*, China HKG 7.29 36.26 1.42 1.42 0.22 —

Croatia HRV 4.2 14.11 0.75 0.75 0.06 -4.00

Hungary HUN 9.84 14.65 0.86 0.86 0.21 14.00

Indonesia IDN 258.2 3.83 0.20 0.20 0.05 1.80

India IND 1309 1.75 0.09 0.09 0.11 2.50

Ireland IRL 4.7 67.72 4.29 4.28 0.37 -2.40

Israel ISR 8.38 33.18 1.87 1.86 0.19 3.90

Italy ITA 60.73 33.96 2.05 2.05 0.16 -0.10

Japan JPN 127.1 47.16 2.35 2.34 0.30 10.60

Kazakhstan KAZ 17.54 10.62 0.69 0.69 -0.40 5.10

Korea KOR 51.01 24.87 1.43 1.43 0.23 11.90

Lithuania LTU 2.9 15.38 0.87 0.87 -0.16 9.70

Luxembourg* LUX 0.575 107.24 6.70 6.68 0.30 —

Latvia* LVA 1.98 14.28 0.60 0.60 0.01 —

Morocco MAR 34.80 3.21 0.12 0.12 0.10 -17.00

Mexico MEX 125.9 9.72 0.53 0.54 -1.12 -7.20

Malaysia MYS 30.72 10.75 0.61 0.61 0.06 -0.70

Netherlands NLD 16.94 51.87 3.15 3.15 0.05 -0.70

Norway NOR 5.19 90.13 5.75 5.77 -0.31 1.00

New Zealand NZL 4.606 37.04 1.82 1.82 0.18 0.00
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Peru PER 31.38 5.94 0.27 0.27 -0.10 -0.90

Philippines PHL 101.70 2.62 0.11 0.11 0.23 6.60

Poland POL 37.99 14.64 0.88 0.88 0.17 2.70

Portugal PRT 10.36 22.02 1.20 1.20 0.08 4.90

Romania ROU 19.82 9.71 0.52 0.52 0.10 6.00

Rest of the World ROW 2035.00 n.a. 0.10 0.10 -0.73 0.40

Russian Federation RUS 144.10 11.33 1.08 1.08 -0.37 1.00

Saudi Arabia* SAU 31.56 21.51 1.22 1.23 -0.94 -36.50

Singapore* SGP 5.54 52.79 3.14 3.14 0.01 —

Slovak Republic SVK 5.42 18.74 1.08 1.08 0.20 7.00

Slovenia SVN 2.06 23.73 1.41 1.41 0.12 11.90

Sweden SWE 9.80 55.42 3.40 3.39 0.17 1.10

Thailand THA 68.66 5.74 0.34 0.34 0.16 3.70

Tunisia TUN 11.27 4.27 0.18 0.18 0.03 1.50

Turkey TUR 78.27 13.90 0.68 0.68 0.08 1.00

Chinese Taipei TWN 23.49 46.96 2.08 2.07 0.18 11.30

United States USA 320.7 52.10 2.35 2.33 0.84 1.90

Viet Nam VNM 93.57 1.65 0.09 0.09 0.16 -5.00

South Africa ZAF 55.29 7.58 0.37 0.37 0.04 7.40
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Notes: Countries included in the Analysis. Data for population and per capita income
are 2015 data from the World Bank. Observed wage is equilibrium wage of the model in
2015. Basket is geometric average wage in all countries (unweighted). Predicted wage is
from baseline comparative statics exercise for 2015. Impact of shale is difference between
observed and predicted wage, in percent. EIA 05T06 Discrepancy is percentage difference
between internal trade as reported by the OECD (in monetary units) and internal trade
as reported by the EIA (converted into monetary units using import prices). Discrepancy
not reported when either OECD or EIA data is missing. * Countries not included in the
smaller sample of 53 countries (see section 5.3.2 ).
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Table 8: Robustness Analysis

Industry Equilibrium Comparative Statics

Exercise Trade Elasticity (θ) Number of Countries

06 06 & 09 06 & Cost 3 6 8 60 53

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

01T03 5.62 6.38 6.32 6.38 6.31 6.38 6.86 6.38 5.94

05 10.65 16.27 16.43 16.27 16.10 16.27 21.65 16.27 13.31

06 24.88 5.94 6.38 5.94 5.95 5.94 1.67 5.94 8.19

07T08 0.46 0.66 0.61 0.66 0.66 0.66 0.85 0.66 0.44

09 0.06 0.11 0.02 0.11 0.11 0.11 0.19 0.11 0.10

10T12 3.52 4.26 4.23 4.26 4.21 4.26 4.80 4.26 3.92

13T15 2.13 2.52 2.57 2.52 2.50 2.52 2.8 2.52 2.52

16.00 7.72 8.78 8.91 8.78 8.70 8.78 9.45 8.78 8.00

17T18 16.74 19.51 19.57 19.51 19.33 19.51 21.40 19.51 17.11

19 19.48 14.44 14.55 14.44 14.34 14.44 11.05 14.44 15.45

20T21 14.54 17.54 17.59 17.54 17.39 17.54 19.75 17.54 16.07

22 16 19.94 20.02 19.94 19.77 19.94 22.99 19.94 17.90

23 4.29 4.34 4.45 4.34 4.30 4.34 4.26 4.34 4.28

24 6.13 6.96 6.93 6.96 6.90 6.96 7.49 6.96 6.72

25 18.91 22.29 22.11 22.29 22.12 22.29 24.7 22.29 20.28

26 16.84 22.27 21.42 22.27 22.09 22.27 26.75 22.27 20.75

27 15.01 16.28 15.87 16.28 16.18 16.28 16.97 16.28 15.88

28 25.47 29.35 29.4 29.35 29.2 29.35 32.07 29.35 28.26
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Industry Equilibrium Comparative Statics

Exercise Trade Elasticity (θ) Number of Countries

06 06 & 09 06 & Cost 3 6 8 60 53

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

29 12.38 16.48 16.16 16.48 16.32 16.48 19.93 16.48 15.57

30 25.07 27.54 27.48 27.54 27.35 27.54 28.98 27.54 29.69

31T43 0.85 1.00 0.98 1.00 0.98 1.00 1.10 1.00 0.94

45T47 5.87 6.45 6.49 6.45 6.38 6.45 6.76 6.45 6.68

49T53 8.05 9.02 9.041 9.02 8.94 9.02 9.61 9.02 8.40

55T56 0.31 0.34 0.34 0.34 0.34 0.34 0.36 0.34 0.33

58T60 21.23 22.57 22.65 22.57 22.39 22.57 23.16 22.57 23.32

61 0.41 0.39 0.39 0.39 0.39 0.39 0.37 0.39 0.37

62T63 19.72 23.77 22.38 23.77 23.62 23.77 26.79 23.77 22.13

64T66 2.32 2.89 2.80 2.89 2.86 2.89 3.34 2.89 3.10

68 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01

69T82 0.15 0.17 0.17 0.17 0.17 0.17 0.19 0.17 0.17

84T85 1.45 1.42 1.47 1.42 1.41 1.42 1.36 1.42 1.28

86T88 0.09 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

90T98 0.82 0.87 0.88 0.87 0.86 0.87 0.89 0.87 0.87
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Industry Equilibrium Comparative Statics

Exercise Trade Elasticity (θ) Number of Countries

06 06 & 09 06 & Cost 3 6 8 60 53

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Notes: US market shares in Mexico in 2015 in percent. Column 2: Market
share observed in the data. Columns 3 to 5: Market shares for three compar-
ative statics exercises. Columns 6 to 8: Market shares for different values of
the trade elasticity θ. Columns 9 and 10: Market shares for different sample
of countries. Countries excluded in the smaller sample: Saudi Arabia, Brunei,
Estonia, Hong Kong, Luxembourg, Latvia, Singapore.63
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