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Oechssler, Stefan Trautmann and Christoph Vanberg for fruitful discussions and helpful comments
and references. We would also like to extend our gratitude to the participants of the 8th HeiKaMaX
experimental economics workshop, and the ESA European Meeting 2014.

‡University of Heidelberg, Departement of Economics, Bergheimer Strasse 58, 69115 Heidelberg.
Email: cbrunner@uni-hd.de, florian.kauffeldt@awi.uni-heidelberg.de, hannes rau@gmx.net.



1 Introduction

Applied game theory often relies on the standard Nash equilibrium (Nash 1950,

1951). At the same time, it remains largely unclear which conditions are crucial to

ensure that the Nash prediction is accurate. Empirically identifying these conditions is

essential to understand in which environments the Nash equilibrium is an appropriate

prediction concept. Furthermore, it provides a starting point to develop reasonable

alternative concepts for situations where Nash equilibrium fails to accurately predict

behavior.

This study is a first attempt to assess the importance of the assumption that

agents’ preferences are mutually known. We examine this assumption in dominance-

solvable normal-form 2×2 games. Previous research suggests that preferences cannot

always be assumed to be mutually known. For example, Healy (2011) finds that sub-

jects fail to accurately predict other subjects’ preferences over possible outcomes in

normal-form 2 × 2 games. In our experiment, we find that subjects are indeed sig-

nificantly more likely to play a Nash equilibrium strategy when they are informed

about their opponents’ preferences over the possible outcomes of the game. More-

over, when preferences are not mutually known, the frequency of equilibrium play is

very low in our experiment. Whenever it is unlikely that players know each others’

preferences, it might therefore be advisable to use a more general equilibrium concept

such as Bayesian Nash equilibrium (Harsanyi, 1967-1968) rather than the standard

Nash equilibrium (Nash 1950, 1951).

The experiment consists of two treatments, called “baseline” and “info”. Both

treatments have two stages. In stage 1, we let subjects rank eight monetary payoff

pairs (they will be referred to as “payment pairs”). The first element of such a

payment pair corresponds to the amount of money paid to the decision maker. The
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second element is the payment that some other subject receives. The same payment

pairs are then used to construct four different 2 × 2 games, or more precisely four

different game-forms. In stage 2, each subject plays each of these games exactly once.

The two treatments differ in that the preferences elicited in stage 1 are only revealed

in stage 2 of treatment info.

This design allows us to avoid the assumption that subjects only care about their

own monetary payments. Instead, we can use the preferences elicited in stage 1 to

describe the game that our subjects play.1 This is illustrated in Example 1 below,

which corresponds to one of the games played in the experiment.

Example 1. Consider the prisoner’s-dilemma-type game-form in Figure 1. The num-

bers in the matrix correspond to the amount of money paid to the players, where the

first number is the row player’s payment and the second number is the column player’s

payment. Suppose that the two players, i ∈ {r, c}, where r stands for row and c for

column,

(a) are selfish payment maximizers and only care about their own payments. That is,

each player’s preferences over payment pairs (xr, xc) ∈ R2 are represented by a

strictly monotone increasing utility function vi(xi) that depends only on his own

payment or

(b) have other-regarding preferences represented by a function ṽi : R2 → R,

then the games that result in cases (a) and (b) are depicted in Figure 2.

In Example 1, the game that results if players are selfish (a) is a prisoner’s-dilemma-

type game. For all strictly monotone increasing utility functions, vi, the game has

only one Nash equilibrium (U,L), i.e., everyone defects. That is not necessarily true

1We maintain the assumption that preferences depend only on players’ monetary payments. That
is, the specific game-form, other subjects’ preferences, or any other factors have no effect on subjects’
ordinal ranking of payment pairs. We will discuss evidence suggesting that such considerations do
not play an important role in the games used in this study (see Section 3.3).
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L R

U 4, 4 8, 3

D 3, 8 7, 7

Figure 1: Prisoner’s-dilemma-type game-form

for the induced game (b), where players have social preferences. For example, if

ṽr(7, 7) > ṽr(8, 3) and ṽc(7, 7) > ṽc(3, 8), then mutual cooperation, (D,R), is a Nash

equilibrium in (b).

L R

U vr(4), vc(4) vr(8), vc(3)

D vr(3), vc(8) vr(7), vc(7)

(a) Players with selfish preferences

L R

U ṽr(4, 4), ṽc(4, 4) ṽr(8, 3), ṽc(8, 3)

D ṽr(3, 8), ṽc(3, 8) ṽr(7, 7), ṽc(7, 7)

(b) Players with social preferences

Figure 2: Induced games in Example 1

In our experiment, we only ask subjects to rank payment pairs ordinally.2 As

a result, we cannot compute Nash equilibria in mixed strategies for the induced

game (b). In this paper, whenever we refer to a “Nash equilibrium”, we refer to the

Nash equilibrium of the induced game using the preferences elicited in stage 1 of the

experiment. We focus on those situations where the induced game is dominance-

solvable. Theoretically, in such 2 × 2 games, mutual knowledge of payoff functions

along with mutual knowledge of rationality suffices to ensure that agents will play a

Nash equilibrium strategy.3 To see this, suppose one player (called ”D”) has a strictly

2Eliciting a cardinal ranking of payment pairs would require a more complicated procedure that
some subjects might fail to understand. Moreover, it is not obvious that subjects can reliably assign
a cardinal utility to each payment pair.

3More generally, Aumann and Brandenburger (1995) show that in normal-form 2 × 2 games,
mutual knowledge of payoff functions, rationality, and conjectures is sufficient to ensure that these
conjectures constitute a Nash equilibrium. Conjectures are beliefs about the pure strategy that the
other player plays.
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dominant strategy. Given that D is assumed to know his own payoff function and is

rational, D will play his dominant strategy. The other player (called ”ND”) knows

that D is rational and that he has a strictly dominant strategy. Therefore, ND knows

that D will play his dominant strategy. Since ND is himself assumed to be rational

and to know his own payoff function, ND must play a best response, and therefore,

both agents play a Nash equilibrium strategy.

Furthermore, we focus on situations where the decision maker has a unique pure

Nash equilibrium strategy in the induced game. We can only distinguish subjects who

play an equilibrium strategy from those who do not in those situations. Moreover,

we will also exclude the decisions of subjects who have a strictly or weakly dominant

strategy in the induced game. Information about their opponent’s preferences is not

necessary for those subjects to compute a best response and as a result, information

about the other player’s preferences should not be expected to have an effect on

behavior.

Whenever one player has a unique equilibrium strategy that is not dominant, the

other player must have a dominant strategy. In treatment baseline, subjects cannot

be certain that this is indeed the case. For example, suppose the row player in the

induced game above (b) is selfish. His pure strategy U is then strictly dominant.

A column player who prefers (7, 7) to (8, 3) and (4, 4) to (3, 8) then has a unique

equilibrium strategy that is not dominant: L. In treatment baseline, such a column

player may not be sure whether row is selfish or not and might therefore occasionally

play R rather than L. In treatment info, the column player can see that row has a

strictly dominant strategy and might therefore play the unique equilibrium strategy

L more often. Intuitively, this logic can explain our main result that subjects are

much more likely to play a Nash equilibrium strategy in treatment info compared

to treatment baseline. We therefore show that subjects not only fail to accurately

4



predict other players’ preferences as previous evidence already suggests, the lack of

such information also significantly affects their behavior.

If players do not know each other’s preferences, concepts that are more general

than Nash equilibrium might provide a more reliable prediction. In our experiment,

we find that a strategy is more likely to be played when it cannot lead to the lowest

ranked payment pair (maxmin strategy) or when it can result in the realization of the

highest ranked one (maxmax strategy). Intuitively, if a subject is uncertain about the

strategy choice of his opponent, then, depending on his attitude towards uncertainty,

he will try to avoid the lowest ranked payment pair, or, to reach the highest ranked

one. We show that the strategic ambiguity model of Eichberger and Kelsey (2014)

can rationalize such strategy choices.4 This model allows for optimistic responses

to strategic ambiguity. Most other strategic ambiguity models such as those of Lo

(1996), Eichberger and Kelsey (2000), and Lehrer (2012) assume ambiguity-averse

behavior. While these models can explain maxmin strategy choices, they cannot

rationalize maxmax behavior.

Another possibility is to take a Bayesian approach by modeling a situation where

preferences are not mutually known as a game of incomplete information and to

transform it into a Bayesian game (Harsanyi, 1967-1968). Players with different

preferences can be thought of as different types and it is then assumed that the prior

distribution of types is commonly known. This approach has been used in various

fields.5 We show that the behavior observed in our baseline treatment is consistent

with a noisy version of Bayesian Nash Equilibrium, which we call Quasi-Bayesian

4“Ambiguity” refers to a situation where probabilities are imperfectly known. Ellsberg (1961)
exemplified that individuals frequently display preferences which are not consistent with probabilistic
beliefs when facing ambiguity.

5In auction theory, for example, the assumption that all bidders are risk neutral and that this is
commonly known has been relaxed. Instead, the prior distribution of risk preferences rather than
other bidders’ actual risk preferences are assumed to be commonly known (see, e.g., Hu and Zou,
2015).
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Nash Equilibrium (QBNE).

The papers closest to ours are Healy (2011) and a recent working paper by Wolff

(2014). Healy examines whether the sufficient conditions for Nash equilibrium identi-

fied by Aumann and Brandenburger (1995) are satisfied when subjects play normal-

form 2× 2 games in the laboratory. For that purpose, subjects first chose a strategy

and then state their beliefs about behavior and preferences of their opponent. Sub-

jects’ own preferences and rationality are also measured. Healy finds that there are

only very few instances where all conditions are satisfied. Focusing on mutual knowl-

edge of preferences, he finds that both players correctly predict how their opponent

ordinally ranked the payment pairs in only 64% of games played. Healy concludes

that “The failure of Nash equilibrium stems in a large part from the failure of sub-

jects to agree on the game they are playing.” Since mutual knowledge of preferences

is one of three conditions that are together sufficient for Nash equilibrium and since

the other two are also not fully satisfied in Healy’s experiment, it is difficult to assess

the impact of the failure of mutual knowledge of preferences on equilibrium play in

isolation. By introducing a treatment in which information about the opponent’s

preferences is directly revealed, we can identify the impact of mutual knowledge on

equilibrium play by holding all other factors constant.

Wolff (2014) studies behavior in three-person sequential public good games. In

contrast to our experiment, he does not reveal subjects’ preferences over the material

outcomes. Instead, he elicits subjects’ best-response correspondences to the contribu-

tions of the other players. In one of his treatments, these are then revealed to all group

members. This information has a much smaller effect on the frequency of equilibrium

play compared to the treatment effect in our experiment. Revealing best-response cor-

respondences is apparently not sufficient for subjects to be able to predict how much

their opponents will contribute: Wolff measures beliefs about others’ contributions to
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the public good and finds that subjects tend to overestimate these. As a result, they

often fail to play an equilibrium strategy even though their contributions tend to be

consistent with their beliefs and their own elicited best-response correspondences.

As opposed to the dominance-solvable 2 × 2 games that we study, several iter-

ations of alternating best responses are required in Wolff’s experiment to compute

the Nash equilibrium. Some subjects might not be able to do so. Wolff therefore

also runs a treatment in which he provides the Nash equilibrium prediction but this

additional information does not lead to significantly more equilibrium play. A subject

who cannot compute the Nash equilibrium independently might also not understand

why he should play a Nash equilibrium strategy. Others might not be confident that

other players play the equilibrium strategy. Compared to our experiment, it therefore

seems more difficult for subjects to predict how other subjects behave. When it is

unclear how other agents behave, information about their preferences is less useful for

the purpose of predicting what strategy they will play, which could explain why in-

formation about others’ best responses has a relatively small impact on the frequency

of equilibrium play in Wolff’s experiment.

This paper is organized as follows. The next section describes the experimental

design. We then present our results and discuss possible explanations for the observed

behavior. In particular, we introduce the Quasi-Bayesian Nash Equilibrium model,

and show that the behavior observed in our baseline treatment is consistent with

it. Section 4 concludes with a summary. In the Appendix, we prove one of the

propositions stated in Section 3.4. Furthermore, we describe the strategic ambiguity

model of Eichberger and Kelsey (2014) in detail, and show that playing the maxmin

or the maxmax strategy is consistent with the model.
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2 Experimental design

Our experiment consists of two treatments with two stages each. In the first stage

of both treatments, we elicit subjects’ preferences over eight different payment pairs.

These payment pairs are then used to construct four different 2×2 games. In stage 2

of each treatment, subjects play each one of these games exactly once. In treatment

“info”, subjects can see their opponent’s ordinal ranking of of the four payment pairs

used in the current game, whereas in treatment “baseline”, this information is not

disclosed.

We will now describe stage 1 in more detail, which is identical in both treatments.

Subjects are asked to create an ordinal ranking over the following set X of eight

payment pairs (xr, xc):

X = {(8, 3), (7, 7), (5, 8), (4, 4), (6, 2), (3, 8), (3, 3), (2, 2)} ⊂ R2 (1)

The first number, xr, corresponds to the amount of money (in Euros) paid to the

decision-maker in the role of a row player. The second number, xc, is paid to some

other subject in the role of a column player (the “recipient”).6 Subjects are informed

that they will not interact with the recipient in any other way in either stage of the

experiment.

The order in which the payment pairs appear on the screen was randomly deter-

mined beforehand and remains constant in all sessions. Subjects rank the payment

pairs by assigning a number between one and eight to each pair, where lower numbers

indicate a higher preference. The same number can be assigned to multiple payment

6Subjects who were assigned the role of a column player ranked the same payment pairs but the
first number corresponds to the other player’s payoff. Rewriting X for column players such that the
first number corresponds to the column player’s payment and the second to the row player’s, we
obtain Xcolumn = {(8, 3), (7, 7), (8, 5), (4, 4), (2, 6), (3, 8), (3, 3), (2, 2)} ⊂ R2.
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pairs, thus allowing for indifference. In treatment info, subjects are told that their

rankings would be disclosed to other participants at a later stage of the experiment.7

In treatment baseline, we made it clear that this information would not be revealed.

We will explain at the end of this section how the elicitation of preferences was incen-

tivized. After subjects confirm their ranking, they proceed to stage 2, in which they

play the four one-shot 2× 2 games in Figure 3 (all numbers are payments in Euro).

Game 1

L R

U 4, 4 8, 3

D 3, 8 7, 7

Game 2

L R

U 5, 8 7, 7

D 6, 2 3, 3

Game 3

L R

U 4, 4 8, 3

D 3, 3 7, 7

Game 4

L R

U 8, 3 2, 2

D 7, 7 3, 8

Figure 3: Games in the experiment

These games were selected because we conjectured that social preferences might

play some role here. Moreover, they could be constructed using only a few payment

pairs and exhibit some diversity with respect to the number of pure strategy Nash

equilibria under the assumption that subjects are selfish payment maximizers. At

least in some of these games, it also appeared likely that only one subject would have

a strictly dominant strategy according to the preferences elicited in stage 1 (which

turned out to be the case).

In both treatments, subjects can see how they ranked the four payment pairs of the

currently played game. This information is displayed by assigning 1-4 stars to each

outcome, where more stars indicate a better outcome. In treatment info, subjects

7We will discuss the possibility that subjects might strategically misrepresent their preferences
in the results section.
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are shown both their own and their opponent’s ranking in matrix-form (see Figure

4). Just like in the payment matrix, the first entry corresponds to the subject’s own

ranking while the second entry reveals the opponent’s ranking. In treatment baseline,

subjects are shown the same rankings matrix but this matrix only contains their own

rankings.

Figure 4: Information screen

All subjects play each game exactly once, each time against a different anonymous

opponent. Games are played one after another and feedback about the outcome is

only provided at the end of the experiment when subjects are paid, but not while

subjects still make decisions.

In both treatments, each subject is paid for exactly one of his decisions, which is

randomly selected at the end of the experiment. If a decision from stage 1 is chosen,

10



two of the eight payment pairs from (1) are randomly selected. The row subject is

then paid the first number, xr, of the payment pair that he ranked more highly in

stage 1. The second number, xc, is paid to some other column subject. Column

subjects are paid in a similar manner. The probability that stage 1 is paid is 7
8

while stage 2 is paid with a probability of 1
8
. These probabilities are consistent with

selecting each of the
(

8
2

)
possible pairs of payment pairs and each of the four decisions

made in stage 2 with equal probability. Paying stage 1 with a substantially higher

probability also reduces the odds that subjects might misrepresent their preferences.

This issue will be discussed in more detail in Section 3.3.

Subjects were given printed instructions and could only participate after suc-

cessfully answering several test questions. Test questions as well as the rest of the

experiment were programmed using Z-Tree (Fischbacher, 2007). All sessions were

conducted between August and October 2014 at the AWI-Lab of the University of

Heidelberg. Subjects from all fields of study were recruited using Orsee (Greiner,

2004). Fewer than half of the subjects were economics students. Sessions lasted

about 40-50 minutes on average. The following table summarizes the number of par-

ticipants per session as well as average payments:

Table 1: Summary of treatment information

Treatment Sessions Subjects Average payment

baseline 8 84 e 12.36

info 7 80 e 12.59
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3 Results

In this section, we first characterize subjects’ preferences as measured in stage 1 of

the experiment. We then present the main treatment effect: subjects are significantly

more likely to play their unique equilibrium strategy in treatment info than in treat-

ment baseline. This effect can be observed in each of the four games, but it is not

significant for every game when we only use the data from one single game at a time.

We then discuss the possibility that subjects misrepresent their true preferences and

that preferences change when subjects are shown their opponents’ preferences and

find no evidence for either of these effects. The section concludes with a discussion of

two possible ways to analyze a situation in which preferences are not mutually known:

A noisy version of Bayesian Nash equilibrium and models of strategic ambiguity.

3.1 Characterization of measured preferences

In stage 1 of the experiment, we elicit subjects’ preferences over the payment pairs

(xr, xc) ∈ X ⊂ R2 defined in equation (1). Tables 2 and 3 show the ordinal rankings

stated by at least two subjects who were assigned the role of a row and column

player respectively. Payment pairs that are assigned a lower number are preferred to

payment pairs with a higher number. A full list of these rankings can be found in the

appendix (tables 9 and 10).
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Table 2: Preferences stated by at least two subjects who were assigned the role of a row player,
both treatments. Smaller numbers are assigned to better ranked payment pairs.

(8,3) (7,7) (5,8) (4,4) (6,2) (3,8) (3,3) (2,2) n

1 2 4 5 3 6 7 8 28

1 2 4 5 3 7 6 8 10

1 2 4 5 3 6 6 7 6

2 1 4 5 3 6 7 8 6

1 2 3 5 4 6 7 8 4

2 1 3 5 4 6 7 8 4

2 1 3 4 5 6 7 8 2

1 2 3 4 3 5 6 7 2

2 1 3 6 4 5 7 8 2

1 2 3 4 5 6 7 8 2

1 2 4 6 3 5 7 8 2

Table 3: Preferences stated by at least two subjects who were assigned the role of a column
player, both treatments. Smaller numbers are assigned to better ranked payment pairs.

(8,3) (7,7) (8,5) (4,4) (2,6) (3,8) (3,3) (2,2) n

2 3 1 4 7 5 6 8 35

3 2 1 4 7 5 6 8 6

3 2 1 5 7 4 6 8 4

3 2 1 5 6 4 7 8 3

3 1 2 4 7 5 6 8 3

3 1 2 4 8 6 5 7 2

1 2 1 3 6 4 5 7 2

1 3 2 4 8 6 5 7 2
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To characterize subjects’ preferences, we introduce four properties: pareto-efficiency,

strict pareto efficiency, maximization of own payoff, and maximization of total payoff.

These properties are defined as follows:

Definition 1 (Pareto efficiency). A subject’s preferences % on X are said to satisfy

pareto-efficiency if, for all x, y ∈ X, x � y whenever x1 ≥ y1 and x2 ≥ y2 with at

least one inequality strict.

Definition 2 (Strict pareto efficiency). A subject’s preferences % on X are said to

satisfy strict pareto-efficiency if, for all x, y ∈ X, x � y whenever x1 > y1 and x2 > y2.

Definition 3 (Maximization of own payoff). A subject is said to maximize his own

payoff if, for all x, y ∈ X, x � y whenever x1 > y1.

Definition 4 (Maximization of total payoff). A subject is said to maximize total

payoff if, for all x, y ∈ X, x � y whenever x1 + x2 > y1 + y2.

Table 4 shows the fraction of subjects whose preferences are consistent with the

properties defined above.

Table 4: Measured preferences

Pareto
efficiency

Strict pareto
efficiency

Maximization
of own payoff

Maximization
of total payoff

n

Percentage consistent
(pooled)

69.5% 92.1% 54.9% 1.8% 164

Percentage in baseline 67.9% 91.7% 50.0% 2.4% 84

Percentage in info 71.3% 92.5% 60.0% 1.3% 80
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3.2 Main result

Our main hypothesis is that subject behavior is more consistent with the Nash

equilibrium when preferences are mutually known. We test this hypothesis by using

two different subsets of our data. Recall that each subject played four games. Since

there are a total of 164 subjects who participated in the experiment, we have data

on 656 individual decisions, 336 in treatment baseline and 320 in treatment info.

We exclude those decisions where both strategies are played with strictly positive

probability in some Nash equilibrium, which leaves us with 425 decisions (213 in

treatment baseline and 212 in treatment info). We also exclude those decisions where

one pure strategy is weakly or strictly dominant. In such a situation, the best response

does not depend on the other player’s strategy and therefore, it should not matter

whether or not the other players’ preferences are known. This leaves us with 147

individual decisions, 75 in treatment baseline and 72 in treatment info. In all of

these 147 games, the subject whose decision we study has a unique pure equilibrium

strategy and that subject’s opponent has a strictly dominant strategy. We test our

main hypothesis using these 147 observations and will refer to the according subset of

our data as “all subjects”. Figure 5 shows that subjects play an equilibrium strategy

more often in treatment info than in treatment baseline.

To test whether these differences are significant, we run a logit regression. The

dependent variable “equilibrium strategy played” assumes a value of 1 if a subject

plays the unique equilibrium strategy and 0 otherwise. We include an intercept as

well as a dummy variable, which assumes a value of 1 if the observation is generated in

treatment info and 0 otherwise. These results are shown in Table 5. The treatment

effect is highly significant. Informing subjects about their opponents’ preferences

leads to a significantly higher frequency of equilibrium play.
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0
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.4
.6

All Subjects Consistent Subjects Only

Baseline Info

Figure 5: Frequencies of played unique equilibrium strategies

Table 5: Logit regression “equilibrium strategy played”, robust standard errors clustered by
subject

Dependent variable: All Subjects Consistent subjects only
equilibrium strategy played Coefficient SE Coefficient SE

info 0.93∗∗∗ 0.36 1.37∗∗∗ 0.43
constant −0.88∗∗∗ 0.26 −1.15∗∗∗ 0.32

n 147 108
Clusters 109 76
Pseudo R2 0.038 0.079

∗∗∗ significant at 1% level
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We run the same test a second time with a smaller subset of our data which

no longer includes the decisions made by subjects who played a strictly dominated

strategy in at least one of the four games. Either the preferences that these subjects

stated in stage 1 do not reflect their true preferences or they are not rational in the

sense that their choice in stage 2 is inconsistent with their stated preferences. Table 6

shows that approximately one third of our subjects violate strict dominance at least

once.

Table 6: Violations of strict dominance

Treatment Subjects Games
played

Games
with dom-
inated
strategy

Dominated
strategy
played

Subjects who played
dominated strategy at
least once

Baseline 84 336 136 23.53% 32.14%
Info 80 320 140 25.71% 33.75%

Just like in subset “all subjects” we also only use games where the subject has a

unique equilibrium strategy that is not dominant. Removing the choices made by

inconsistent subjects therefore further reduces the number of observations to 108

individual decisions, 54 in treatment baseline and 54 in treatment info. We will refer

to this subset of our data as “consistent subjects only”. The treatment effect is even

stronger when we use these consistent subjects only. We also test whether there is

a significant treatment effect using a two-tailed two-sample Wilcoxon rank-sum test.

The dependent variable is the frequency with which a subject played an equilibrium

strategy. Each subject who plays at least one game where the subject has a unique

equilibrium strategy that is not weakly dominant counts as one observation. We run
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the same test for all subjects and for consistent subjects only. When using all (only

consistent) subjects, we have 54 (38) observations in treatment baseline and 55 (38)

in treatment info. We can reject the null hypothesis that the distribution of the

frequency of equilibrium play is the same in both treatments regardless of which data

set we use (p=0.038 using all subjects, p=0.008 using consistent subjects only).

Result 1. Subjects are more likely to play their unique Nash equilibrium strategy

when preferences are mutually known.

As a robustness check, we also compute the frequency of equilibrium play for

each game separately. These results are shown in Figure 6 for all subjects and in

Figure 7 for consistent subjects only. Regardless of which subset of our data we

use, the frequency of equilibrium play is higher in treatment info than in treatment

baseline for every single game. However, using a Fisher exact test, this difference is

only significant at the 5% level for game 3, regardless of whether we use all subjects

or consistent subjects only. We have more observations for game 3 than for any

other game. In game 3, it occurred particularly often that one subject had a strictly

dominant strategy while the other subject did not have a strictly or weakly dominant

strategy. Details of these tests can be found in the appendix (tables 12 and 13).
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Figure 6: Frequency of equilibrium play by game, all subjects

0
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Game 1 Game 2 Game 3 Game 4

Baseline Info

Figure 7: Frequency of equilibrium play by game, consistent subjects only
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3.3 Did we manage to elicit subjects’ true preferences?

When preferences are elicited in stage 1 of the experiment, subjects in treatment

info are aware that these preferences will be revealed to other subjects. However, they

are not informed about the specific games that are played in stage 2. Hence, subjects

did not have the information necessary to figure out what kind of misrepresentation

might be most advantageous: in some 2 × 2 games, it could be beneficial to be

perceived as having social preferences whereas in other games, the contrary is more

likely (e.g., in the chicken game). Moreover, recall that a decision made in stage 2

affects a subject’s payment with a probability of only 1/8. Therefore, it does not

seem plausible that a rational subject would misrepresent his preferences in stage 1.

We test the claim that subjects truthfully state their preferences in stage 1 of

treatment info by using the frequency with which subjects play strictly dominated

strategies in stage 2 of the experiment. To identify strategies that are strictly dom-

inated, we use the preferences elicited in stage 1. If these reflect a subject’s true

preferences, a rational subject should never play such a strictly dominated strategy.

In contrast, if subjects strategically misrepresent their preferences in stage 1, a strat-

egy that we classify as strictly dominated may in fact not be dominated according

to the subjects’ true preferences. Since preferences in treatment baseline are not

revealed to other subjects, it is clear that subjects in treatment baseline have no

reason to misrepresent their preferences. Therefore, we can compare the frequency

with which subjects play a strictly dominated strategy in the two treatments to test

the claim that preferences are truthfully revealed in stage 1 of treatment info. If that

claim is true, no difference should be observed. Otherwise, subjects should be more

likely to play a strictly dominated strategy in treatment info than in baseline.

Table 6 shows how often subjects play a strictly dominated strategy using the
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preferences stated in stage 1 to define the according games. Each subject played

4 games, thus resulting in 336 games played in treatment baseline and 320 in info.

In 136 of these games in treatment baseline and 140 in info, one of the strategies

was strictly dominated. In roughly a quarter of these cases, the strictly dominated

strategy was played.

In order to check the assumption that subjects do not misrepresent their prefer-

ences in both treatments, we run a logit regression using the 136 games in treatment

baseline as well as the 140 games in treatment info as observations. The dependent

variable “dominated strategy played” is a dummy variable that assumes a value of 1

if the strictly dominated strategy was played. The only explanatory variable other

than the intercept is a treatment dummy (“info”) (see Table 7).

Table 7: Logit regression “dominated strategy played”, robust standard errors clustered by
subject

Dependent variable:
dominated strategy played Coefficient SE

Info 0.12 0.30
Constant −1.18∗∗∗ 0.22

n 276
Clusters 160
Pseudo R2 0.0006

∗∗∗ significant at 1% level

The coefficient estimate for the treatment dummy is not significantly different from

0. Hence, the null hypothesis cannot be rejected. We also test the same assumption

using a two-tailed two-sample Wilcoxon rank-sum test. The dependent variable is

then the frequency with which a subject plays a dominated strategy. Each subject

who had a strictly dominant strategy in at least one of the four games corresponds

to an observation. There are 81 such observations in treatment baseline and 79
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in treatment info. We cannot reject the null hypothesis that the frequency with

which strictly dominated strategies are played follows the same distribution in the

two treatments (p=0.93).

Result 2. Subjects are equally likely to play a strictly dominated strategy in both

treatments.

Moreover, the fraction of subjects whose reported preferences are consistent with own

payoff maximization is even slightly larger in treatment info compared to treatment

baseline, though the difference is not significant (p= 0.21 using a Fisher exact test).

We therefore maintain the assumption that subjects truthfully state their preferences

in stage 1 of the experiment in both treatments.

In psychological game theory, Rabin (1993) and Dufwenberg and Kirchsteiger

(2004) introduced models of reciprocity in which players reward kind actions and

punish unkind ones. Reciprocity could lead to a problem equivalent to the misrep-

resentation of preferences discussed in this section. For instance, consider game 1 in

stage 2 of treatment info. Suppose an own-payoff maximizer (row) is matched with

a total-payoff maximizer (column). The row player might then believe that column

will cooperate (play R), even though column expects row to defect (play U). This

expected kindness on the part of column might then induce row to also cooperate,

thus violating our assumption that only outcomes matter. In other words, subjects’

preferences might change once they are shown their opponents’ ranking of payment

pairs in stage 2 of treatment info. If so, the preferences over outcomes we use in

our analysis would no longer correspond to subjects’ true preferences, or at least not

govern subjects’ strategic behavior. Since such preference adjustments are only pos-

sible in treatment info but not in treatment baseline, we can use Result 2 to argue

that such effects probably do not matter much in our experiment. If they did, one
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would expect to observe that subjects play strictly dominated strategies more often

in treatment info compared to treatment baseline.

3.4 Possible explanations for observed subject behavior

Our main results show that making sure that payoffs are mutually known has a sig-

nificant effect on behavior. Moreover, subjects rarely play their unique non-dominant

equilibrium strategy when other player’s preferences are not revealed. Whenever pay-

offs are unlikely to be mutually known, it might therefore be advisable to use a more

general model than the standard Nash equilibrium. In this section, we will first dis-

cuss a noisy version of the Bayesian Nash Equilibrium, which we call Quasi-Bayesian

Nash Equilibrium (QBNE). Subsequently, we describe the strategic ambiguity model

of Eichberger and Kelsey (2014), and show that this concept can rationalize the

maxmin and maxmax strategy choices that we frequently observe in our experiment.

3.4.1 A quasi Bayesian approach

As described in the introduction, the games played in the baseline treatment

can also be considered as Bayesian games in which players with different preferences

represent different types. It is then assumed that the prior distribution of types is

commonly known. In what follows, we first introduce our concept of a Quasi-Bayesian

Nash equilibrium (QBNE). Subsequently, we describe in detail how to model the

situation in the baseline treatment of our experiment as a Bayesian game. Finally,

we show that the predictions of the Quasi-Bayesian Nash Equilibrium model are not

trivially consistent with our data and could thus be falsified. It is therefore interesting

to observe that the data collected in the baseline treatment is indeed consistent with

such a model. However, it should be noted that the predictions of QBNE are not
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precise, particularly given that we elicit an ordinal rather than a cardinal ranking of

payment pairs in stage 1 of the experiment.

In a Bayesian game, a strategy σi of player i prescribes a mixed action for each

possible type of player i, formally σi : Θi → ∆(Ai), where Θi denotes player i’s type

space and ∆(Ai) the set of mixed actions of player i (i.e., the set of all probability

distributions over player i’s set of pure actions Ai). Denote by Σi the set of all

strategies of player i and let Σ =×
i∈I

Σi. The interim expected utility of player i with

type θi ∈ Θi given a mixed strategy profile σ ∈ Σ is formed by taking the expectation

with respect to the mixed strategy profile σ and the expectation with respect to the

conditional type distribution, formally,

EUi(σ | θi) =
∑

θ−i∈Θ−i

π(θ−i|θi)
( ∑
a∈A

( ∏
j∈I

σj(aj | θj)
)
ui(a, θi, θ−i)

)
,

where π(θ−i|θi) denotes the probability of θ−i under the condition that i knows he is

of type θi, and σj(aj | θj) is the probability of action aj that strategy σj prescribes for

θj. As usual “−i” stands for “all players except player i”.

Recall that a substantial fraction of subjects played strategies that are strictly

dominated and thus inconsistent with the preferences stated in the first stage (see

Table 6). To account for such irrational behavior, we add a noisy type θ̃i to each

player’s type space that randomly selects a pure strategy. In a QBNE all types other

than this noisy type play a best response given the commonly known distribution of

types, while the noisy type plays an arbitrary proper mixed action.

Definition 5. A Quasi-Bayesian Nash equilibrium (QBNE) for a Bayesian game is

a strategy profile (σ∗i , σ
∗
−i) ∈ Σ such that, for each player i ∈ I,

(i) σ∗i (θi) ∈ arg max
σi∈Σi

EUi(σi, σ
∗
−i | θi) for all non-noisy types θi ∈ Θi \ {θ̃i}, and
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(ii) σ∗i (θ̃i) ∈ int(∆(Ai)) for the noisy type θ̃i ∈ Θi, where int(∆(Ai)) denotes the

interior of the set of player i’s mixed actions.

Obviously, a QBNE is weaker than a Bayesian Nash equilibrium since it only requires

that non-noisy types play mutual best responses. The existence of a QBNE follows

from the standard fixed-point argument by Nash (1950, 1951).

Modeling the situation in the baseline treatment of our experiment as a

Bayesian game

In order to show that each game in stage 2 of the baseline treatment can be

considered as a Bayesian game, we make the following conceptual distinction:

• A subject is an individual who took part in the baseline treatment of our ex-

periment. Hence, in total, there are 84 subjects. We denote one subject by

k ∈ {1, . . . , 84}.

• Player is the role or the position of a subject in one of the four 2 × 2 games

in the baseline treatment. There are two types of players: row and column.

Henceforth, given one of the four games, the subject who is the row player is

denoted by r and the column player by c. We denote one player by i ∈ {r, c}.

• Row and column types characterize potential characteristics of row and column

players. Non-noisy types play a best response given their preferences and the

commonly known distribution of types. Each non-noisy type is characterized

by an ordinal preference ordering over the eight payment pairs from equation

(1). In addition, there is a noisy type that randomly selects a pure strategy.

We will use the observed fraction of row (column) subjects who played a strictly

dominated action at least once (see Table 6) as an estimator for the probability that
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a row (column) player is of the noisy type.8

Assumption 1. The fraction of row and column subjects who played a strictly dom-

inated action at least once corresponds to the probability of noisy types of row and

column players.

At the first stage of treatment baseline, we elicit each subject k′s ordinal prefer-

ences %k over eight payment pairs.

Definition 6. Subject k′s ordinal preference ordering %k on the set X defined in

equation (1) is a function fk : X → {1, . . . , 8}.

We do not know subjects k′s utility function vk(·) exactly, but we know that vk(·) is a

representation of the ordinal ordering %k, i.e., for all x, y ∈ X and all k, vk(x) ≥ vk(y)

if and only if x %k y. Since each non-noisy type corresponds to a specific ordinal

ranking, we shall assume that the utility functions of all non-noisy subjects who

stated the same ordinal ranking are identical:

Assumption 2. For any two subjects k and k′, who are either both row or both

column players and who never played a strictly dominated action, if %k=%k′, then

vk(·) = vk′(·).

Again, we take the observed relative frequencies as estimators for the probabilities of

a non-noisy type. For instance, the probability of the non-noisy row type θ%
′

r that is

characterized by the ordinal ranking %′ equals

π[θ%r ] =
# non-noisy row subjects with ordinal ranking %′

# row subjects
. (2)

Following Harsanyi (1967-1968), we assume that the types and the prior distribu-

tion of types, i.e., the probabilities, are commonly known.

8Note that this is a biased estimator since noisy subjects may accidentally behave consistently.
That is, the estimator systematically underestimates the probability of the noisy type.
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Assumption 3. Row and column players’ beliefs over types, πr and πc, correspond

to the relative frequencies of types in the experiment.

Assumption 3 implies that a strictly positive probability is assigned to all types that

we observed in the baseline treatment, whereas all other types occur with zero prob-

ability.

Consistency between observed behavior and Quasi-Bayesian Nash equilib-

rium

This section provides two propositions. The first one shows that the predictions

of Quasi-Bayesian Nash equilibrium are falsifiable using our data. In the second

proposition, we show that the behavior observed in the baseline treatment is consistent

with a QBNE. Both propositions are based on the following notion of consistency

between action choices and QBNE: we say that a QBNE is consistent with an action

set combination if the action set combination lies in the support of the QBNE. The

support of a QBNE is the set of all action profiles that are played with strictly positive

probability.

In the following, we will formally define this consistency notion. In order to do

so, we first introduce some notation and definitions that will be used throughout

this section. Suppose that in each of the four interactive situations in stage 2, the

subjects played a Bayesian game according to Assumptions 1, 2, and 3. Let Θi be the

set of types of player i ∈ {r, c} that have non-zero probability. From now on, when

speaking of “types”, we refer to types that have non-zero probability. An action set

combination aG in game G ∈ {1, 2, 3, 4} is an ordered set that assigns at least one

action from Ar = {U,D} to each row type and at least one action from Ac = {L,R}

to each column type.
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Definition 7. An action set combination aG in game G ∈ {1, 2, 3, 4} is a set

aG ⊆ {U,D}|Θr| × {L,R}|Θc|,

where |Θr| and |Θc| denote the number of different row types and column types.

Let σi(θi) be the mixed action that strategy σi prescribes for type θi. Denote by

σi(ai | θi) the probability with which θi plays action ai according to σi(θi). Given a

row or column type θi, an action ai ∈ Ai is said to be contained in the support of

σi(θi) if type θi plays ai with strictly positive probability, formally supp
(
σi(θi)

)
=

{ai ∈ Ai |σi(ai | θi) > 0}. The support of a type-contingent strategy of row or column,

σi, equals the Cartesian product of the supports of the strategy for all given types:

supp(σi) = ×
θi∈Θi

supp
(
σi(θi)

)
.

Finally, the support of a type-contingent strategy profile (σr, σc) ∈ Σr × Σc is the

Cartesian product of the supports of the type-contingent strategies σr and σc.

Definition 8. The support of a strategy profile (σr, σc) ∈ Σr × Σc is the set

supp(σr, σc) = supp(σr)× supp(σc) ⊆ {U,D}|Θr| × {L,R}|Θc|.

Now, we are ready to formally define our notion of consistency between an action

set combination and a Quasi-Bayesian Nash equilibrium.

Definition 9. An action set combination aG in game G is said to be consistent with

a QBNE σ∗ ∈ Σr × Σc of the Bayesian game that results from G if aG ⊆ supp(σ∗).

Our first proposition shows that the predictions of QBNE can be falsified using

our data and Definition 9. The reason is that some of the eight payment pairs appear

in more than one of the four games in the second stage of the experiment. This can

lead to a contradiction as the proof of the proposition illustrates.
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Proposition 1. Under Assumption 1, 2, and 3, there exist action set combinations

a1, a3 ⊆ {U,D}|Θr| × {L,R}|Θc| such that, if a1 is consistent with a QBNE of the

Bayesian game that results from game 1, then a3 is not consistent with any QBNE of

the Bayesian game that results from game 3, and vice versa.

Proof. Consider games 1 and 3 and the column types θ7 and θ8 (see Table 10).

Suppose that both types have the action set {L,R} in both games. Action set com-

binations that involve this action set for θ7 and θ8 are consistent with Quasi-Bayesian

Nash equilibria for the Bayesian games that result from game 1 and 3 only if the

types θ7 and θ8 are indifferent between the actions L and R in both games, given the

equilibrium strategy of row. Let v7, v8 be utility functions that represent the ordinal

rankings of θ7 and θ8. Then, type θ7 is indifferent between his actions in game 1 if he

expects row to play U with probability

v7(7, 7)− v7(3, 8)

(v7(4, 4)− v7(8, 3) + v7(7, 7)− v7(3, 8))
(3)

and in game 3 if he expects row to play U with probability

v7(7, 7)− v7(3, 3)

(v7(4, 4)− v7(8, 3) + v7(7, 7)− v7(3, 3))
. (4)

Similarly, type θ8 is indifferent between his actions in games 1 and 3 if he expects row

to play U with probabilities

v8(7, 7)− v8(3, 8)

(v8(4, 4)− v8(8, 3) + v8(7, 7)− v8(3, 8))
and (5)

v8(7, 7)− v8(3, 3)

(v8(4, 4)− v8(8, 3) + v8(7, 7)− v8(3, 3))
. (6)

Furthermore, θ7 and θ8 have to have the same expectation about the probability
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with which row plays U . The reason is that, under Assumptions 1, 2, and 3, given a

strategy σ′r of row, each column type expects his opponent to play U with probability:

β[U | σ′r] =
∑

θr∈Θr

π[θr] · σ′r(U | θr).

where π[θr] denotes the probability of the row type θr (i.e., according to Assumption

3, the relative frequency of θr types), and σ′r(U | θr) the probability with which type

θr plays action U according to σ′r.

Consequently, action set combinations in game 1 and 3, where the action set of θ7

and θ8 equals {L,R}, are simultaneously consistent with some QBNE in the Bayesian

games 1 and 3 only if

(i) θ7’s expectation about the probability with which row plays U equals expression

(3) in game 1 and (4) in game 3, and, θ8’s expectation equals (5) in game 1 and

expression (6) in game 3.

(ii) θ7 and θ8 have the same expectations in both games, i.e., it holds that (3)=(5),

and, (4)=(6).

According to the ordinal ranking that characterizes θ7, it holds that v7(8, 3) >

v7(3, 3). This implies that (3)<(4), i.e.,

v7(7,7)−v7(3,8)
(v7(4,4)−v7(8,3)+v7(7,7)−v7(3,8))

< v7(7,7)−v7(3,3)
(v7(4,4)−v7(8,3)+v7(7,7)−v7(3,3))

.

Similarly, for θ8, it holds that v8(8, 3) < v8(3, 3), which implies (5)>(6), i.e.,

v8(7,7)−v8(3,8)
(v8(4,4)−v8(8,3)+v8(7,7)−v8(3,8))

> v8(7,7)−v8(3,3)
(v8(4,4)−v8(8,3)+v8(7,7)−v8(3,3))

.

These inequalities taken together contradict the condition that (3)=(5) and, at the

same time, (4)=(6). Hence, if the action set combination in game 1 is consistent with

some QBNE in Bayesian game 1, then the action set combination in game 3 is not

consistent with any QBNE for the Bayesian game 3, and vice versa.
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Our second proposition shows that the action set combinations âG that we ob-

served in the experiment in the games G ∈ {1, 2, 3, 4} are consistent with the Quasi-

Bayesian Nash equilibrium model in the sense of Definition 9. Before we state the

proposition, we need to specify what we mean by observed action sets. Let aGk be the

action played by subject k in game G ∈ {1, 2, 3, 4} in the second stage of the baseline

treatment. The observed actions played in game G that are associated with a given

row or column type θi are denoted by aGθi . These action sets are defined as the union

of all action choices of subjects who are of type θi, formally

aGθi =
⋃

k is of type θi ∈Θi

aGk ⊆ Ai.

Furthermore, the observed action sets in game G that are associated with all types of

row and column respectively Θi, i ∈ {r, c}, are

aGΘi
= ×

θi∈Θi

aGθi ⊆ A
|Θi|
i .

Finally, the observed action set combination âG in game G is

âG = aGΘr
× aGΘc

.

Proposition 2. Under Assumption 1, 2, and 3, there exists a QBNE σ∗ for every

Bayesian game G such that the observed action set combination âG is consistent with

σ∗ for all G ∈ {1, 2, 3, 4}.

Proof. See appendix.

3.4.2 A non-Bayesian approach

While a Bayesian approach requires common knowledge of the distribution of

types, subjects in our experiment might not hold probabilistic beliefs about other
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players’ types or choice of strategy. Depending on subjects’ attitude towards uncer-

tainty, it can then seem reasonable for a pessimistic agent to play a strategy that

cannot lead to the lowest ranked payment pair (maxmin). Lo (1996), Eichberger and

Kelsey (2000), and Lehrer (2012) are examples of models of strategic ambiguity that

are consistent with such behavior. Alternatively, agents might try to reach the highest

ranked payment pair (play a maxmax strategy). In the appendix, we show that the

strategic ambiguity model of Eichberger and Kelsey (2014) is consistent with playing

either a maxmin or a maxmax strategy though that model also does not provide a

precise prediction for the games discussed here.

Playing a maxmin or a maxmax strategy can be a response to uncertainty about

other players’ payoff functions. It can also be a response to uncertainty about whether

the opponent is rational. In treatment baseline, our subjects face both types of

uncertainty while the uncertainty about other players’ payoffs is removed in treatment

info. Since there is some uncertainty in both treatments, we would expect a strategy

to be played more often if it cannot lead to the lowest ranked payment pair (maxmin

strategy) or if it can lead to the highest ranked payment pair (maxmax strategy)

in both treatments. Both effects are expected to be stronger in treatment baseline

compared to treatment info.

We test these conjectures by running a conditional logit regression. An observation

corresponds to a pure strategy. The dependent variable (“played”) assumes a value

of 1 if a strategy is played and 0 otherwise. Three independent variables are used

to characterize each strategy: “equilibrium” indicates whether a strategy is a Nash

equilibrium strategy. “maxmax” assumes a value of 1 if a strategy can lead to a

most highly ranked payment pair. “maxmin” indicates whether a strategy can result

in the realization of a lowest ranked payment pair (maxmin = 0 if that is the case,

maxmin = 1 otherwise). We only use decisions made by subjects who never played a
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strictly dominated strategy. Table 8 shows that whether or not a strategy is a Nash

equilibrium strategy only matters in treatment info when predicting which strategies

subjects will play. In contrast, the coefficients of maxmax and maxmin are significant

in both treatments.

Table 8: Conditional logit regression “played”, robust standard errors clustered by subject

Dependent variable: Baseline Info
played Coefficient SE Coefficient SE

equilibrium −0.25 0.35 1.02∗∗∗ 0.34
maxmax 1.60∗∗∗ 0.31 1.07∗∗∗ 0.22
maxmin 1.53∗∗∗ 0.29 1.30∗∗∗ 0.21

n 456 424
Clusters 57 53
Pseudo R2 0.42 0.42

∗∗∗ significant at 1% level

Result 3. In both treatments, a strategy is more likely to be played when it cannot

lead to the lowest ranked payment pair and when it can lead to the highest ranked

payment pair.

The coefficient estimate for the variable “equilibrium” differs significantly among

the two treatments and is only useful to predict play in treatment info but not in

treatment baseline. In contrast, the highest and lowest ranked payment pair seems

to attract our subjects’ attention in both treatments. As expected, the according

coefficient estimates are higher in treatment baseline than in treatment info. However,

the difference is not signficant.9

9The coefficient estimate of an interaction term of maxmin and the treatment dummy (maxmax
and the treatment dummy) is not significant at the 5% level.
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4 Conclusion

The assumption that payoffs are mutually known is often not satisfied in the lab-

oratory. It seems plausible that similar difficulties exist in many real-world situations

as well. Our experiment shows that it is a relevant assumption: making sure that

payoffs are mutually known leads to significantly more equilibrium play.

When deciding what model to apply to a specific situation, whether or not agents

can reasonably be expected to know other agents’ payoff functions should therefore

play an important role. At least in the simple 2 × 2 games we analyzed, subjects

are very unlikely to play a Nash equilibrium strategy when payoffs are not mutu-

ally known. It might then be worthwhile to apply a more complex model such as

a strategic ambiguity model or the Bayesian Nash equilibrium of Harsanyi (1967-

1968), even though such models tend to provide less precise predictions. Both the

strategic ambiguity concept of Eichberger and Kelsey (2014) and a noisy version of

the Bayesian Nash equilibrium are consistent with the data of our baseline treatment

where preferences are unlikely to be mutually known.
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A Appendix

A.1 Proof of Proposition 2

Proof. Suppose that row subjects’ expectation that their opponent will play L in G

equals βGr ∈ (0, 1) and column players’ expectation that their opponent will play U in

G is βGc ∈ (0, 1). Let %i be the ordinal ranking that is associated with type θi ∈ Θi.

The proof is organized as follows. In Lemma 1, we show that there exists a

utility function vi for all non-noisy types θi ∈ Θi, which represents %i, such that if

âGθi = {U,D} (resp. âGθi = {L,R}), then θi is indifferent between his pure actions,

given the beliefs βGr and βGc respectively. Subsequently, by using Lemma 1, we prove

that there exists a QBNE σ∗G for the Bayesian game of G ∈ {1, 2, 3, 4} such that if

âGθi = {U,D} (resp. âGθi = {L,R}), then σ∗G(θi) prescribes a proper mixed action for

each non-noisy type θi.

Note that we do not have to consider noisy types, and non-noisy types who have a

strictly dominant action. The played actions of both types are always consistent with

a QBNE. Furthermore, the proof is trivial for non-noisy types, who have in only one

of the four games no strictly dominant action. In tables 9 and 10 in the next section,

the remaining types are labeled through a type name. Furthermore, Table 11 shows

which games are relevant and the action sets associated with each of the remaining

types in every game.

Lemma 1. Consider the types θj, j = 1, . . . , 11, defined labeled in tables 9 and 10.

Given game G, let βGr ∈ (0, 1) be a row player’s belief that his opponent will play L

and βGc ∈ (0, 1) be a column player’s belief that his opponent will play U. If β1
r > β3

r

and β1
c > β3

c , there exist utility functions v
j

for all θj, which represent %j, such that

if âGθj = {U,D} and âGθj = {L,R} respectively, then θj is indifferent between his pure
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actions in the Bayesian game that results from G.

Proof. At first, consider the types θ1 to θ3. The action sets of the types θ1 and θ2 in

game 1 are âGθj = {U,D}, j = 1, 2. Given a belief β1
r ∈ (0, 1) in the Bayesian game of

game 1, there exist utility functions, which represent %1 and %2, such that the types

j = 1, 2 are indifferent if

β1
r =

vj(7, 7)− vj(3, 8)

(vj(4, 4)− vj(8, 3) + vj(7, 7)− vj(3, 8))
. (7)

In game 3, the action set of all three types is {U,D}. Hence, given a belief β3
r ∈ (0, 1)

in the Bayesian game 3, there exists utility functions for j = 1, 2, 3 such that the

types are indifferent if

β3
r =

vj(7, 7)− vj(3, 3)

(vj(4, 4)− vj(8, 3) + vj(7, 7)− vj(3, 3))
. (8)

Finally, in game 2, only θ1 is a relevant type. The action set of θ1 in game 2 is {U}.

That means, given a belief β2
r ∈ (0, 1), a utility function v1 that represents %1 needs

to satisfy:

β2
rv1(5, 8) + (1− β2

r )v1(7, 7) ≥ β2
rv1(6, 2) + (1− β2

r )v1(3, 3) (9)

Now, choose vj(7, 7), vj(8, 3), and vj(4, 4) such that the utility values are consistent

with the ordering %j for j = 1, 2, 3. From equation (7) and (8), we obtain

vj(3, 8)− vj(3, 3) =
(vj(7, 7)− vj(8, 3))(β1

r − 1)(β3
r − β1

r )

β1
r q

3
r

.

Since β1
r > β3

r , and for all three types, j = 1, 2, 3, vj(7, 7) > vj(8, 3), we have that

vj(3, 8) > vj(3, 3), which is consistent with the rankings of θ1, θ2 and θ3 given in
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Table 9. Note that we have now shown that the lemma holds for the types θ2 and

θ3 since there are no further restrictions concerning their utility functions. For type

θ1, we may define a utility function v1, which represents %1, such that the distance

v1(6, 2)− v1(5, 8) is arbitrary small. Hence, the lemma is also true for θ1.

Now, consider the types θ4 to θ6. We omit the obvious proof for type θ4, and turn

to the types θ5 and θ6. In game 4, the action set of both types is {U,D}. Given a

belief β4
r ∈ (0, 1), the indifference condition for j = 5, 6 in the Bayesian game 4 is

β4
r =

vj(3, 8)− vj(2, 2)

(vj(3, 8)− vj(2, 2) + vj(8, 3)− vj(7, 7))
. (10)

In game 2, the action set of both types is {U}. Hence, given β2
r ∈ (0, 1), for j = 5, 6,

β2
rvj(5, 8) + (1− β2

r )vj(7, 7) ≥ β2
rvj(6, 2) + (1− β2

r )vj(3, 3). (11)

If there is a strict inequality in equation (11), it is obvious that one can choose

utility values that satisfy (10) and (11) and represent %5 and %6. Suppose that (11)

holds with equality and choose the utility values vj(5, 8), vj(6, 2), vj(8, 3), vj(2, 2),and

vj(3, 8) for j = 5, 6 such that the utility functions represent the ordinal rankings %5

and %6. Then, equation (10) and (11) imply that vj(7, 7) > vj(3, 3). This is consistent

with %5 and %6, which shows that the lemma holds for θ5 and θ6.

For the column types θ7 to θ11, the lemma can be proved similarly to the proof of

the row types θ1 to θ6.

For the Bayesian game of each game G, consider a strategy profile σ∗G such that

(i) σ∗G(θj) is a proper mixed action for non-noisy row types θj where âGθj = {U,D}.

(ii) σ∗G(θj) is a proper mixed action for non-noisy column types θj where âGθj =
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{L,R}.

(iii) β[L | σ∗1] > β[L | σ∗3] and β[U | σ∗1] > β[U | σ∗3].

It is obvious that such a strategy profiles exist. By assumption, noisy types randomly

select a pure action, i.e., they play a proper mixed action. Given any mixed action

of noisy types in the Bayesian game of each game G, define utility functions for all

non-noisy types such that these types have no incentive to deviate from σ∗G in each

game. By Lemma 1, we know that such utility functions always exist. Then, σ∗G is

a QBNE for the Bayesian game of G for G ∈ {1, 2, 3, 4}. One can easily check that

âG ⊆ supp(σ∗G) for all G ∈ {1, 2, 3, 4}, which proves the proposition.

A.2 Additional Data

A.2.1 Preferences, types, and associated action sets

Tables 9 and 10 show how subjects ranked the 8 payment pairs presented to them

in stage 1 of the experiment. Payment pairs that are assigned a lower number are

preferred to payment pairs with a higher number. There were 82 row and 82 column

players and the rightmost column indicates the number of subjects who ordered the

payment pairs in the corresponding way. The types that are relevant for the proof of

Proposition 2 are labeled with names. Table 11 shows in which games the relevant

types have no strictly dominant action and the observed action sets associated with

these types per game.
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Table 9: Preferences of row players, both treatments

Type name (8,3) (7,7) (5,8) (4,4) (6,2) (3,8) (3,3) (2,2) n

θ5 1 2 4 5 3 6 7 8 28
θ6 1 2 4 5 3 7 6 8 10

1 2 4 5 3 6 6 7 6
θ1 2 1 4 5 3 6 7 8 6

1 2 3 5 4 6 7 8 4
θ2 2 1 3 5 4 6 7 8 4
θ3 2 1 3 4 5 6 7 8 2

1 2 3 4 3 5 6 7 2
2 1 3 6 4 5 7 8 2

θ4 1 2 3 4 5 6 7 8 2
1 2 4 6 3 5 7 8 2
2 1 4 5 3 6 6 7 1
2 1 5 3 4 6 7 8 1
1 3 4 4 2 6 5 7 1
1 1 2 3 2 3 4 5 1
3 1 2 4 6 5 7 8 1
3 1 2 4 4 3 5 6 1
5 1 7 2 6 8 3 4 1
1 2 5 4 3 7 6 8 1
6 1 2 3 5 6 7 8 1
1 2 4 5 3 7 7 8 1
1 2 7 4 3 8 5 6 1
3 1 2 5 5 3 7 8 1
1 1 3 4 2 5 6 7 1
1 2 4 5 3 6 6 8 1
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Table 10: Preferences of column players, both treatments

Type name (8,3) (7,7) (8,5) (4,4) (2,6) (3,8) (3,3) (2,2) n

θ9 2 3 1 4 7 5 6 8 35
θ7 3 2 1 4 7 5 6 8 6

3 2 1 5 7 4 6 8 4
3 2 1 5 6 4 7 8 3

θ8 3 1 2 4 7 5 6 8 3
3 1 2 4 8 6 5 7 2

θ11 1 2 1 3 6 4 5 7 2
θ10 1 3 2 4 8 6 5 7 2

2 3 1 4 7 6 5 7 1
3 1 2 5 6 4 7 8 1
4 1 3 2 8 6 5 7 1
1 3 2 4 6 5 7 8 1
3 1 2 4 6 5 7 8 1
4 1 2 3 8 6 5 7 1
2 1 1 3 5 4 4 5 1
2 3 1 4 6 5 7 8 1
2 3 1 4 8 7 5 6 1
1 2 1 3 5 4 4 6 1
5 1 4 2 8 6 3 7 1
2 2 1 3 6 4 5 7 1
3 1 2 4 8 7 5 6 1
2 1 1 3 5 2 4 6 1
2 1 3 4 6 5 7 8 1
1 2 1 3 5 4 4 5 1
3 1 2 4 6 5 5 6 1
4 1 2 3 5 4 6 7 1
1 2 1 3 7 5 4 6 1
3 2 1 4 8 6 5 7 1
2 3 1 4 6 5 5 6 1
1 3 4 5 5 7 7 8 1
1 3 2 4 8 7 5 6 1
4 1 3 2 7 5 6 8 1
2 3 4 5 6 6 7 1 1
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Table 11: Types and associated action sets per game

Type name #Subjects No strictly dominant Observed action sets

action in game

θ1 6 G=1,2,3 â1
θ1

= {U,D}, â2
θ1

= {U}, â3
θ1

= {U,D}
θ2 4 G=1,3 â1

θ2
= {U,D}, â3

θ2
= {U,D}

θ3 2 G=1,3 â1
θ3

= {D}, â3
θ3

= {U,D}
θ4 2 G=1,2,4 â1

θ4
= {U}, â2

θ4
= {U}, â4

θ4
= {D}

θ5 28 G=2,4 â2
θ5

= {U}, â4
θ5

= {U,D},
θ6 10 G=2,4 â2

θ6
= {U}, â4

θ6
= {U,D},

θ7 6 G=1,2,3 â1
θ7

= {L,R}, â2
θ7

= {L,R}, â3
θ7

= {L,R},
θ8 3 G=1,3 â1

θ8
= {L,R}, â3

θ8
= {L,R},

θ9 35 G=2,3,4 â2
θ9

= {L,R}, â3
θ9

= {L,R} â4
θ9

= {L,R},
θ10 2 G=2,3 â2

θ10
= {L,R}, â3

θ10
= {L,R}

θ11 2 G=3,4 â3
θ11

= {R}, â4
θ11

= {L}

A.2.2 Details of the robustness check tests for the main result

Tables 12 and 13 report the results of a two-tailed Fisher exact test of the null

hypothesis that the probability that a subject plays the equilibrium strategy is the

same in both treatments. These tests were run separately for each of the 4 games.

n base is the number of observations in treatment baseline and n info the number of

observations in treatment info. The tests reported in Table 12 include all subjects

while those reported in Table 13 include consistent subjects only.

Table 12: Fisher exact test (two-tailed), all subjects.

Game n base n info p-value

1 19 12 0.452
2 11 17 1.000
3 27 28 0.014
4 18 15 0.296
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Table 13: Fisher exact test (two-tailed), consistent subjects only.

Game n base n info p-value

1 16 10 0.109
2 7 13 0.374
3 21 22 0.045
4 10 9 0.170

A.3 Equilibrium under ambiguity

The concept of Eichberger and Kelsey (2014) is called “equilibrium under ambi-

guity (EUA)”. In their concept, player i’s beliefs about the behavior of other players

is represented by a capacity νi defined on S−i = ×
j∈I\{i}

Sj, where Sj is the set of player

j’s pure strategies. Given his beliefs νi, player i’s payoff from a pure strategy si ∈ Si

corresponds to the Choquet integral of his payoff function ui(si, s−i) with respect to

νi:

Vi(si, νi) =

∫
S−i

ui(si, s−i) dνi

= ui(si, s
1
−i)ν(s1

−i) +
R∑
r=2

ui(si, s
r
−i
[
ν(s1
−i, . . . , s

r
−i)− ν(s1

−i, . . . , s
r−1
−i )

]
,

where the strategy combinations in S−i are numbered so that ui(si, s
1
−i) ≥ ui(si, s

2
−i) ≥

· · · ≥ ui(si, s
R
−i). Player i’s best responses to his belief νi are defined in the usual way

as

Ri(νi) = {si | si ∈ arg max
si∈Si

Vi (si, νi)}.

An essential ingredient of the model is the notion of support for a non-additive

measure. Eichberger and Kelsey define the support of a convex capacity as the inter-
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section of the supports of the probability measures in the core of the capacity:10

Definition 10. The support of a convex capacity µ on S−i is defined as

supp(µ) =
⋂

π∈core(µ)

supp(π).

It is well-known that convex capacities represent ambiguity-aversion. To capture op-

timistic behavior, Eichberger and Kelsey use the class of capacities introduced by

Jaffray and Philippe (1997) (JP-capacities). A JP-capacity has convex and concave

parts. It is defined as a mixture of a convex capacity with its dual capacity.11 Eich-

berger and Kelsey define the support of a JP-capacity ν, suppJP (ν), as the support

of its convex part according to Definition 10. This support definition has a useful

implication for neo-additive capacities introduced by Chateauneuf et al. (2007):

Proposition 3 (Eichberger and Kelsey, 2014). Let ν = δα+(1−δ)π be a neo-additive

capacity on S−i, where α, δ ∈ [0, 1], then suppJP (ν) = supp(π).

We will use neo-additive capacities to discuss the example in this section.

An equilibrium under ambiguity is a belief system in which, for each player i, the

nonempty support of player i’s belief about the opponents’ behavior lies in the Carte-

sian product of the opponents best responses given their beliefs about the behavior

of other players. To put it differently, in an equilibrium under ambiguity, the beliefs

that agents hold are reasonable in the sense that neither player expects other players

to play strategies that are not best responses given their beliefs.

Definition 11. A belief system (ν∗i , ν
∗
−i) is an equilibrium under ambiguity if for all

i ∈ I
10For alternative support definitions and for arguments supporting Definition 10, see Eichberger

and Kelsey (2014).
11The dual capacity of capacity µ is defined by µ̄(E) = 1− µ(Ec). Hence, if µ is convex, then µ̄ is

concave.
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supp(ν∗i ) ⊆ ×
j∈I\{i}

Rj(ν
∗
j ) and supp(ν∗i ) 6= ∅.

In what follows, we show that an equilibrium under ambiguity can explain maxmin

and maxmax strategy choices.

Example 2. Consider game 3 in stage 2 of treatment info. Suppose that the game

is played by two subjects whose utility functions correspond to their own payments.

That is, the game takes the following form:

L R

U 4, 4 8, 3

D 3, 3 7, 7

Obviously, the row player has a strictly dominant strategy (U). If the column player

believes that row will pick U , he will play L. The game has a unique Nash equilibrium

(U,L). Whether or not the Nash equilibrium is played depends on the belief of the

column player about whether the row player behaves rationally, i.e., whether row will

play the strictly dominant strategy.

Denote the players by I = {r, c}, where r stands for row and c for column. If

the column player is not sure whether row behaves rationally, he may try to reach

the highest possible outcome (7) by playing strategy R. To show that this strategy

choice is consistent with an equilibrium under ambiguity, suppose that the beliefs of

the column player about row’s behavior can be represented by a neo-additive capacity

νc with reference prior πc = (πc(U), πc(D)) = (1, 0). This can be viewed as a situation

where column is uncertain about the prior πc, i.e., whether row plays U . Furthermore,

let column be an ambiguity-loving player, for simplicity, assume that αc = 0. We may

interpret the parameter δc as the degree of ambiguity about πc. The higher δc, the

higher the degree of ambiguity. Given this belief, column’s payoff from L equals
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Vc(L, νc) = (1− δc) · 4 + δc ·
(

max{uc(L, sr) | sr ∈ Sr}
)

= 4,

and column’s payoff from R is

Vc(R, νc) = (1− δc) · 3 + δc ·
(

max{uc(R, sr) | sr ∈ Sr}
)

= 3 + 4δc.

Hence, if column is sufficiently uncertain about πc (δc >
1
4
), he will choose strategy

R.

Suppose that the beliefs of the row player about column’s behavior can also be

represented by a neo-additive capacity νr with reference prior πr = (πr(L), πr(R)) =

(0, 1). It is straightforward that the row player will play U given such a belief. Taken

together, for δc >
1
4
, we have that

Rr(νr) = U and Rc(νc) = R,

and, by Proposition 3 it holds that

suppJP (νr) = supp(πr) = R and suppJP (νc) = supp(πc) = U .

Consequently, the system (νr, νc) is an equilibrium under ambiguity in which the

column player plays the maxmax strategy R. Similarly, one can show that the equi-

librium under uncertainty concept can rationalize maxmin behavior if the players are

ambiguity-averse.
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