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1 Introduction

1.1 Motivation

In general, one can distinguish between two sources of uncertainty in games: The first

source can be termed strategic or endogenous uncertainty and refers to the uncertainty

of a player about the strategy choice of other players. This source is inherent in the

strategic situation. The second source, environmental or exogenous uncertainty, arises

from uncertainty about the ”environment” or the ”rules” of a game. For instance, a

player may be uncertain about other players’ or her own payoffs, strategies, et cetera.

Games with environmental uncertainty are games with incomplete information.

Harsanyi (1967-68) showed in his seminal work that incomplete information games can

be transformed into game-theoretically equivalent games with complete, but imperfect

information, commonly known as Bayesian games. One key assumption of Harsanyi’s

approach is that players are Bayesian expected utility maximizers and share a common

prior distribution over the state space. However, experiments demonstrate that in some

situations individuals consistently violate the EU (expected utility) hypothesis. In par-

ticular, Ellsberg (1961) exemplified that in situations under ambiguity, i.e. situations

where probabilities are imperfectly known, many individuals display behavior which is

inconsistent with EU theory.

In reality, incomplete information games and imperfectly known probabilities are

prevalent. Therefore, a model, which captures these aspects, is desirable. Such a model

should accomplish two goals: Firstly, a descriptive or empirical goal, which can be ex-

pressed by the question: Can the model be used to represent and explain economic be-

havior? Secondly, a theoretical goal: Does the model offer new theoretical insights, i.e. do

the predictions of the model or its endogenous processes differ from that of the standard

model? From a game-theoretical point of view, this question can be phrased as follows:

Does the strategic behavior of non-EU players differ from that of EU players? There

are several papers on economic applications of models with non-EU players, see Section

1.3. The next subsection gives two examples in an economic context. Consequently, the
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first question can be answered in the affirmative for these models. The answer to the

theoretical question depends on the particular model. To my knowledge, this important

question has not been systematically investigated yet.

This article contributes to the growing literature on models of incomplete information

games with non-EU players by answering the theoretical question in the context of an

increasingly used model. The key assumption of this model is that players have non-EU

preferences regarding environmental uncertainty, but EU preferences regarding strategic

uncertainty. Comparable models were firstly introduced by Azrieli and Teper (2011) and

Bade (2011a). Therefore, I shall occasionally refer to this model as BAT(Bade-Azrieli-

Teper)-model. The applied papers described in Section 1.3 use BAT-type models.

The present paper extends the existing literature in three ways: (1) It is shown that

the strategic behavior of uncertainty-averse non-EU players can differ substantially from

that of EU players in two ways: The use of mixed strategies and the response to it. (2)

I identify two properties of a player’s best response correspondence, which are relevant

for models with non-EU players. These properties are also important for experimental

research. The first main theorem shows that it is impossible to infer a player’s preferences

from her equilibrium actions, whenever one of these properties fails. The second main

theorem shows that non-EU players behave as if they were EU players if and only if their

best response correspondences do not have both properties. (3) Necessary and sufficient

conditions are provided for the existence of behavioral differences between EU and non-

EU players in terms of the primitives of the model. In this context, games are analyzed,

which are of special interest for experimental research and design, namely two-player

two-strategies games played by players with MEU (maxmin expected utility) preferences

axiomatized by Gilboa and Schmeidler (1989).

The paper is organized as follows. The following subsection gives two examples in order

to illustrate the model. Afterwards, I review the related literature. Section 2 introduces

the basic concepts and notation. Section 3 provides the results. The subsequent section

discusses the underlying model. Section 5 concludes with a summary of the main results.

2



1.2 Two examples

This section provides two examples to illustrate the BAT-model and the two types of

behavioral differences between EU and non-EU players.1 In addition, the examples show

potential economic applications of the model.

Example 1 (Discrete Cournot duopoly with uncertain demand). There are two firms,

i ∈ {1, 2}, which produce a homogeneous product. The firms compete in quantities, and

decide simultaneously whether to produce a low quantity normalized to one, ql = 1, or

a high quantity, qh = 2. Marginal costs of production are constant and normalized to

one. The market price, p, depends on the total quantity in the industry, Q, and on an

uncertain state of the world, ω ∈ {ω1, ω2}: p = A(ω)− b(ω) ·Q, where (A, b)(ω1) = (6, 3
2
)

and (A, b)(ω2) = (2, 0). When choosing whether to produce ql or qh, both firms do not

know the state of the world. Firms’ state-dependent profits are:

ql qh

ql 2, 2 1
2
, 1

qh 1, 1
2

−2,−2

ω1

ql qh

ql 1, 1 1, 2

qh 2, 1 2, 2

ω2

Since firms’ profits depend on a state of nature, every pure strategy profile induces a

state-contingent vector of profits for both firms. For instance, the strategy profile (ql, ql)

induces the vector f1(ql, ql) = (fω1
1 (ql, ql), f

ω2
1 (ql, ql)) = (2, 1) for firm 1 (row). Every mixed

strategy profile generates a probability distribution over pure strategy profiles. In a given

state ω, each firm’s payoff equals its expected profit with respect to this distribution.

Therefore, every mixed profile induces state-contingent vectors of expected profits.

Suppose each firm i ∈ {1, 2} has the following non-EU preferences over state-

contingent (expected) profits: Vi(fi) = min{fω1
i , fω2

i }. Then, firm i’s best response

correspondence, BRi, takes the form illustrated in Figure 1, where σj(ql) denotes the

probability with which the other firm, j = 3− i, produces ql, and, at the same time, the

1The equilibria for the games in the examples and the formal derivation of players’ best response
correspondences are contained in the Appendix.
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mixed strategy of firm j. Since σj(ql) = 1 − σj(qh), in this section, mixed strategies are

denoted by their first component, σj(ql) = (σj(ql), σj(qh)).

-

6

σj(ql)

BRi(σj(ql))

1

1

1/3

1/2

Figure 1

As Figure 1 shows, firm i has a unique best response to all strategies of firm j. Fur-

thermore, its unique best response is a mixed strategy if j plays ql with more than 1/3

probability. EU players would never show this type of strategic behavior. They use

mixed strategies to make the other players indifferent between playing their pure strate-

gies, for instance, like in matching pennies-type games, to avoid exploitation by their

opponents. However, for an EU player, mixed strategies are always weakly optimal: If a

mixed strategy is a best response to some strategy profile of the other players, then, at the

same time, all pure strategies to which it assigns positive probability are best responses.

Consequently, mixed strategies are never unique best responses.

Why are non-EU players able to behave differently? The reason is that they randomize

over their pure strategies not only for strategic purposes, but also as a kind of ”hedging”

against environmental uncertainty. In Example 1, ql is a strictly dominant strategy in

ω1 and qh in ω2 for both firms. If firm j chooses a strategy σj(ql) ≤ 1/3, then, firm i’s

expected profit in state ω1 is lower than in ω2, regardless of its strategy choice. Therefore,

firm i will play its strictly dominant strategy in ω1, σi(ql) = 1. Otherwise, if σj(ql) > 1/3,

firm i seeks to smooth its expected profits across states by playing a mixed strategy. For

instance, given σj(ql) = 1, firm i will play ql (and qh) with 1/2 probability, which induces

the vector fi
(

1
2
, 1
)

=
(

3
2
, 3

2

)
.
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This is not new from a decision-theoretical perspective. In an early reply to Ellsberg

(1961), Raiffa (1961) claimed that ambiguous uncertainty can be eliminated by randomiz-

ing. Furthermore, the pioneering paper by Schmeidler (1989) defines uncertainty aversion

as a weak preference for randomization.2 More recently, Battigalli et al. (2013) study

a framework of mixed extensions of decision problems under uncertainty that involves

preference for randomization as an expression of uncertainty aversion. They and other

authors, e.g. Gilboa and Schmeidler (1989) and Saito (2013), use the term ”hedging” to

refer to situations, where decision-makers prefer randomized choices. This Article follows

this terminology by calling a preference for mixed strategies hedging behavior.3 However,

note that this term can be misleading, since it could be associated with hedging in finance,

which refers to activities that reduce portfolio risk.

In the game theory literature, only a few authors, e.g. Klibanoff (1996) and Lo (1996),

explicitly discuss a preference for randomized strategies in the context of their models,

which involve strategic ambiguity, but no environmental uncertainty.

Example 2 (Uncertain investment). There is an investor, I, with initial wealth 1 and

a fund manager, M . The investor decides whether to invest her money in the fund, In,

or keep it at the bank, Bk, with a guaranteed payoff of 1. The fund manager chooses

an investment strategy: He can either speculate on falling or rising share prices. For

simplicity, suppose he can either buy one stock, S, or a put option on the stock, P .

Initially, stock and put are worth 1. The future stock value qs(ω) depends on an uncertain

state of the world, ω ∈ {ω1, ω2}, where qs(ω1) = 6 and qs(ω2) = 0. The strike price of

the put is 6, hence, its future value is qp(ω) = 6 − qs(ω). The fee for the fund manager

is performance-based: He gets 1 if the investment is successful, otherwise 0. Players’

state-dependent payoffs are:

2Schmeidler’s axiom states that a preference relation % reveals uncertainty aversion, if for any two
acts f, g, and α ∈ [0, 1]: If f % g, then αf + (1− α)g % g.

3Klibanoff (2001) suggests the term ”objectifying behavior”. In my opinion, another suitable alter-
native is ”Raiffa behavior”, since he was was the first who pointed to this effect.
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S P

Bk 2, 0 2, 0

In 5, 1 0, 0

ω1

S P

Bk 2, 0 2, 0

In 0, 0 5, 1

ω2

Again, suppose each player i ∈ {I,M} has the following non-EU preferences over

state-contingent (expected) payoffs: Vi(fi) = min{fω1
i , fω2

i }. Then, players’ best response

correspondences, BRi, are:

-

6

σI(Bk)

BRM(σI(Bk))

1

1

1/2

-

6

σM(S)

BRI(σM(S))

1

1

2/5 3/5

Figure 2

The fund manager (left graph) has a weakly dominant mixed strategy: Buying the stock

and the put with 1/2 probability. The investor (right graph) has no preference for mixed

strategies. However, she shows the second type of strategic behavior which differs from

that of EU players: She prefers to keep her money at the bank if the investor buys the

stock or the put with high probability. Otherwise, if his action is sufficiently uncertain

for her, she will invest in the fund. In other words, her preference for strategy Bk over

In, given S or P , reverses for some mixtures of S and P . Therefore, I will refer to this

type of behavior as reversal behavior. By contrast, if an EU player in a two-player game

prefers to play a particular strategy in response to two strategies of his opponent, he will

not change this preference for any mixture of the two combinations. More formally, the

preimage of each of his best responses is convex under his best response correspondence.4

4Note that this holds only for two-player games. For the general case, see Definition 3.
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In Example 2, the reason for reversal behavior is that, no matter what the investor

chooses, her expected profit in ω1 is lower than in ω2 if σM(S) > 1/2 and higher if

σM(S) < 1/2. According to her objective function VI = min{fω1
I , fω2

I }, she will maximize

fω1
I if σM(S) > 1/2, and, otherwise, fω2

I . Hence, given σM(S) > 1/2, the investor’s

best response correspondence equals her best responses in ω1, and, otherwise, her best

responses in ω2.

To summarize, non-EU players behave differently to EU players in that they may

prefer randomized strategies and/or change their preferences for strategies due to mixture

operations of one of their opponents. In both cases, the matrix-form is an unsatisfactory

representation of the game.

1.3 Related Literature

The majority of the literature on games played by non-EU players has focused on

games with complete information, where players face only strategic uncertainty. In an

early paper, Dekel et al. (1991) examine Nash equilibrium where players have probabilis-

tic beliefs, but not necessarily EU preferences because they may violate the reduction of

compound lotteries axiom. The subsequent papers on strategic ambiguity can be roughly

divided into two groups: Firstly, Klibanoff (1996), Lo (1996) and Lehrer (2012), who as-

sume that players explicitly randomize. They provide equilibrium concepts with weaker

requirements regarding the consistency between beliefs and strategies than Nash equilib-

rium. In contrast, the approach of the second group, which includes Dow and Werlang

(1994), Eichberger and Kelsey (2000, 2014), and Marinacci (2000), is based on the in-

terpretation of a mixed strategy as a player’s belief about the pure strategy choices of

his opponents. The equilibrium definitions of these papers require consistency conditions

between the beliefs that players hold.

The first approach has the drawback that, typically, players’ beliefs will not coincide

with the strategies of their opponents. A criticism concerning the second approach is that

it has limited abilities to predict behavior, since it does usually not specify the strategies

that are played. The model studied in this paper does not have these drawbacks.
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There is relatively small, but growing, literature on incomplete information played by

non-EU players. Epstein and Wang (1996) offer a general framework, which provides a

foundation for a ”type-space” approach à la Harsanyi with non-EU players. Eichberger

and Kelsey (2004) generalize perfect Bayesian equilibrium for the case of two-player games

with ambiguity. Players’ beliefs are represented by capacities, i.e. normalized and mono-

tone, but not necessarily additive set functions. In their Dempster-Shafer equilibrium,

players maximize CEU (Choquet expected utility) introduced by Schmeidler (1989). Ka-

jii and Ui (2005) investigate a model where all players have MEU preferences. Their model

differs from Bayesian games in that it does not assume a common prior over the states.

Instead, there is a set of priors for each player, which may vary among players. Bade

(2011a) and Azrieli and Teper (2011) consider more general preferences. Their models

assume that players choose mixtures as their strategies, and there is no ambiguity about

the probabilities of mixed strategies, i.e. no strategic ambiguity. However, players face

ambiguity about the environment. The papers differ in that Bade (2011a) requires payoffs

to be state-independent, and in that Azrieli and Teper (2011) do not rule out correlation

devices and diverging beliefs.

There is an increasing number of papers on applications of incomplete information

games which use BAT-type models. These papers examine games with payoff ambiguity,

but without private information. For instance, Bade (2011b) studies electoral competition

between two parties in a two-stage game by assuming that parties are uncertain about

voters’ marginal rates of substitution between issues. Król (2012) investigates ambiguous

demand in the context of a two-stage product-type-then-price competition game. Aflaki

(2013) examines the tragedy of the commons where players face ambiguity concerning

the size of the resource endowment. Bade (2011a) and Król (2012) use MEU preferences.

Aflaki (2013) additionally considers CEU, and smooth ambiguity preferences introduced

in Klibanoff et al. (2005).

8



2 Preliminaries

2.1 The model

A basic normal-form game with incomplete information (henceforth, basic game) is

an ordered set G =
〈
I,Ω, {Ai, ui}i∈I

〉
which consists of

(1) a finite set I = {1, . . . , n} (the players);

(2) a finite set Ω = {ω1, . . . , ωm} (the states of the world);

(3) for each i ∈ I, a finite set Ai (the actions of i);

(4) for each i ∈ I, a function ui : A×Ω→ R (the payoff function of i), where A =×
i∈I
Ai

denotes the Cartesian product of players’ action sets.

The sets (1), (2) and (3) do not require further explanation. Players’ payoffs (4) depend

not only on an action profile, a ∈ A, but also on an uncertain state of the world (2). Note

that (4) is a commonly used simplification. Technically, for each i ∈ I, there exists an

outcome function ψi : A×Ω→ X which maps from action profiles and states into physical

outcomes, or consequences, X.5 Furthermore, for each i ∈ I, there is a utility function

vi : X → R which assigns a real number to each consequence. Player i’s payoff function (4)

can be considered as the composition ui := vi◦ψi : A×Ω→ R. According to (4), an action

profile a ∈ A induces payoff fωi (a) = ui(a, ω) in state ω ∈ Ω for each i ∈ I. Hence, every

action profile induces a payoff vector, or an act, fi(a) =
(
ui(a, ω1), . . . , ui(a, ωm)

)
∈ Rm

for each i ∈ I. The basic game description does not include private information. I shall

restrict attention to this case in order to avoid cumbersome notation. However, all the

results of this paper hold also for the case of private information.6

Of particular interest in this paper are mixed actions. The mixed extension of a basic

game involves, in addition to the elements of the description above, players’ mixed action

sets. A mixed action of player i is a function σi : Ai → [0, 1] where
∑
ai∈Ai

σi(si) = 1.

The set of all mixed actions of i (i.e. the set of all probability distributions over Ai) is

5The sets (1) to (3) together with the mappings ψi(·) are called normal game-form with incomplete
information. Thus, a fixed basic game is a fixed game-form together with fixed payoffs.

6Private information can be introduced in the game by defining a partition Pi of Ω for each i ∈ I
which specifies players’ strategy sets. A pure strategy of player i is a Pi-measurable function si : Ω→ Ai,
cf. Bade (2011a) and Azrieli and Teper (2011). If i has no private information, the partition Pi is trivial.
In this case, i’s strategies correspond to i’s actions.
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denoted by Σi, and the set of all mixed action profiles (i.e. product measures which can

be generated by players’ mixed actions) is Σ =×
i∈I

Σi. Henceforth, σi(ai) denotes the

probability which σi ∈ Σi assigns to the action ai ∈ Ai. The model does not involve

strategic ambiguity. This means that the probabilities σi(ai) are ”objective”, or at least,

known among players. It is assumed that, in any given state ω ∈ Ω, players’ preferences

w.r.t. (with respect to) a mixed profile σ ∈ Σ have an EU representation, formally,

Assumption 1. Fix a state ω ∈ Ω, then player i’s payoff from a mixed profile σ ∈ Σ is

fωi (σ) =
∑
a∈A

( ∏
j∈I

σj(aj)ui(a, ω)

)
for each i ∈ I.

By Assumption 1, every mixed action profile σ ∈ Σ induces a vector of expected payoffs,

fi(σ) =
∑
a∈A

( ∏
j∈I

σj(aj)fi(a)

)
, which is a convex combination of player i’s payoff vectors

induced by pure strategy profiles fi(a). Given the actions of the other players, any

degenerate mixed action is payoff equivalent to a pure action. Therefore, we may associate

the set of player i’s pure actions, Ai, with the subset of Σi that contains i’s degenerate

mixed actions. Henceforth, depending on the context, the symbols ai and Ai may also

stand for (the set of) i’s degenerate mixed actions. Furthermore, Γ denotes the set of all

basic games and -i the set of all players, except player i.

2.2 Preferences over acts and equilibrium points

The basic game description is not sufficient to characterize a game in terms of its

solution. In order to obtain a solvable game from a basic game G ∈ Γ, we need to specify

each player i’s preferences, %i, over m-dimensional payoff vectors, as in the examples in

Section 1.2. That is, for each i ∈ I, there exists a function Vi : Rm → R such that

f %i g ⇔ Vi(f) ≥ Vi(g) for all f, g ∈ Rm.

The preference ordering %i of each player i induces, through the associated payoff vec-

tors, a preference ordering on action profiles and hence on actions for any given action

combination of the other players. Let %= {%i}i∈I denote players’ preferences over acts. I

shall refer to the set
〈
G,%

〉
as G played by, or, with % players, or simply as game. The

analysis in this paper focuses on the representation function Vi(·) of player i’s preferences.

Throughout the paper, it is assumed,
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Assumption 2. For each i ∈ I, function Vi is continuous and quasiconcave on Rm, and

monotonic, i.e. for all f, g ∈ Rm, f(ω) ≥ (>)g(ω) for all ω ∈ Ω implies Vi(f) ≥ (>)Vi(g).

According to Assumption 2, the underlying preference relation %i of each player i is

complete, transitive, and monotonic. Furthermore, it satisfies uncertainty aversion in

the sense of Schmeidler (1989), which relates to quasiconcavity of the representation

function.7 There is a huge variety of preferences which are consistent with Assumption

1. For instance, MEU preferences, CEU preferences if the capacity is convex, and smooth

ambiguity-averse preferences. For more details, compare Cerreira-Vioglio et al. (2011),

who identify the representation of preferences that satisfy the properties mentioned above.

The following examples illustrate two possible representation functions. Let ∆(Ω) be

the set of all probability measures on Ω, and C be the collection of all nonempty, closed

and convex subsets of ∆(Ω). An element of ∆(Ω) (i.e. a probability vector or prior) is

denoted by π = (π(ω1), . . . , π(ωm)) where π(ω) is the probability of ω ∈ Ω.

Example 3 (Expected utility). The belief of an EU player i is represented by a unique

prior πi ∈ ∆(Ω). An EU decision-maker i evaluates a state-contingent vector f ∈ Rm by

the expected utility w.r.t. her prior:

EUπi(f) = f · π>i where f is a row vector and π>i a column vector.

Hence, for all f, g ∈ Rm, it holds that, f %EUi g ⇔ f · π>i ≥ g · π>i .

Consequently, a game played by EU players is a game
〈
G,%EU

〉
where each player i has

EU preferences, %EUi , i.e. i’s preferences are represented by an EU function, Vi = EUπi .

Example 4 (Maxmin expected utility). The key idea of the MEU approach is that, in

case of ambiguous uncertainty, an individual i has to little information to form a unique

prior probability distribution πi ∈ ∆(Ω). For this reason, she considers a set of priors

Ci ∈ C as possible. A MEU decision-maker i evaluates an act f ∈ Rm by the minimal

expected utility over all priors in her prior set:

MEUCi
(f) = min

π∈Ci

{
EUπ(f)

}
.

Hence, for all f, g ∈ Rm, it holds that, f %MEU
i g ⇔ min

π∈Ci

{
EUπ(f)

}
≥ min

π∈Ci

{
EUπ(g)

}
.

7Uncertainty aversion is necessary for equilibrium existence, see Azrieli and Teper (2011).
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Finally, we turn to the solution of a game
〈
G,%

〉
. From now on, occasionally, I

abuse notation and write Vi(σ) instead of Vi(fi(σ)). An (ex-ante) equilibrium point of

(the mixed extension of) a normal-form game with incomplete information is defined as

follows:

Definition 1. An equilibrium for a game
〈
G,%

〉
is a profile (σ∗i , σ

∗
−i) ∈ Σ such that

σ∗i ∈ arg max
σi∈Σi

Vi (σi, σ
∗
−i) for each player i.

Under Assumption 1 and 2, there exists an equilibrium in every game
〈
G,%

〉
, see

Theorem 1 in Azrieli and Teper (2011).

2.3 Hedging behavior and reversal behavior

The best response correspondence of player i is a multivalued mapping BRi : Σ−i ⇒ Σi

defined by BRi(σ−i) = {σ′i |σ′i ∈ arg max
σi∈Σi

Vi (σi, σ−i)}. Furthermore, a pure action ai ∈ Ai

is said to be contained in the support of a mixed action σi ∈ Σi if σi assigns a strictly

positive probability to ai, formally supp(σi) = {ai ∈ Ai | σi(ai) > 0}.

Definition 2. Player i with preferences %i represented by function Vi exhibits hedging

behavior in G ∈ Γ if she has a mixed action σ′i ∈ Σi which is a best response to an action

profile of i’s opponents σ′−i ∈ Σ−i and Vi(σ
′
i, σ
′
−i) > Vi(a

′
i, σ
′
−i) for some a′i ∈ supp(σ′i).

Definition 2 restricts the notion of hedging behavior to actions that are contained in

player i’s best response correspondence. If this is not the case, even EU players may

prefer a mixed action over particular pure actions from its support. This is, however, not

possible if the mixed action is a best response due to the linearity of the EU functional.8

Furthermore, non-EU players may strictly prefer mixed actions. This is the case when

property (ii) holds for all a′i ∈ supp(σ′i). As a consequence, mixed actions can be unique

best responses.

The second type of strategic behavior refers to players’ behavior regarding randomizing

operations of other players.

8This property can be easily shown, see, for instance, Dekel et al. (1991, p. 236).
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Definition 3. Fix a σ−j and let (σ′j, σ−j), (σ
′′
j , σ−j) ∈ Σ−i. Player i with preferences %i

exhibits reversal behavior in G ∈ Γ if there exists a′i, a
′′
i ∈ Ai such that

(i) a′i is a best response to (σ′j, σ−j), (σ
′′
j , σ−j), but not to (ασ′j+(1−α)σ′′j , σ

′
−j) for some

α ∈ (0, 1) and/or

(ii) a′i is a best response to (σ′j, σ−j), (σ
′′
j , σ−j) and a′′i is not a best response to at least

one of the strategy combinations, but to (ασ′j + (1−α)σ′′j , σ−j)) for some α ∈ (0, 1).

Definition 3 is more technical in nature. Condition (i) refers to a situation like in Example

2, where an action is a best response to some action profiles, but not to all convex

combinations of the profiles. (ii) describes the case, where a pure action is a best response

to a convex combination of two action profiles, but not to both profiles, and, at the same

time, there exists another action which is a best response to both profiles. Due to the

linearity of the EU function, (ii) is also not possible if i is an EU player.

3 Results

The proofs of the results are contained in the Appendix.

3.1 Deducing players’ preferences

This section analyzes whether EU players can be distinguished from non-EU players by

observing their behavior. It turns out that if non-EU players do neither exhibit hedging

nor reversal behavior in a game, they are quasi-expected utility players. That is, they

behave as if if they were EU players. In this case, we cannot distinguish the players on

the basis of their strategic behavior.

In general, it is difficult to infer players’ preferences from their equilibrium actions.

Bade (2011a) shows that the sets of equilibria of a two-player game and its ambiguous

act extension are ”observationally equivalent” in the sense that their supports coincide.

My first main theorem is similar in nature, but holds also for n-player games with state-

dependent payoffs:
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Theorem 1. Fix a basic game Ḡ ∈ Γ. Consider players with preferences %′. If no player

exhibits hedging behavior in Ḡ, then, under Assumption 1 and 2, for any equilibrium

σ∗ ∈ Σ of
〈
Ḡ,%′

〉
, there exist priors {πi}i∈I such that σ∗ is an equilibrium of

〈
Ḡ,%EU

〉
.

The theorem illustrates that one cannot identify non-EU players by observing equilibrium

actions, whenever the players do not show hedging behavior in the game. Consequently, we

need to consider players’ beliefs regarding nature or their best response correspondences.

However, by considering players’ beliefs, we can only identify non-EU players who are

not probabilistically sophisticated in the sense of Machina and Schmeidler (1992, 1995).

In addition, from an experimental point of view, it might be difficult to measure play-

ers’ beliefs: In complete information games, eliciting players’ ex-ante beliefs about their

opponents’ strategy choice may affect their decisions in the game. Furthermore, there is

evidence that players’ ex-post beliefs are biased, see Rubinstein and Salant (2016). These

problems could also limit the ability to measure players’ beliefs about nature.

The second main theorem shows that, in any two-player game, non-EU players behave

strategically as if they were EU players if and only if they do not exhibit hedging and

reversal behavior. In other words, hedging and reversal behavior are the sole behavioral

differences between EU and non-EU players. The theorem relies on the following notion

of best response equivalence: Two games
〈
G,%

〉
,
〈
G′,%′

〉
with the same number of

players and, for each player, the same set of pure actions are said to be best response

equivalent if player i’s best response correspondences coincide in G and G′ for all i ∈ I.

More formally, let BRG
i and BRG′

i be the best response correspondences of player i with

preferences %i in G and with preferences %′i in G′. Then,
〈
G,%

〉
and

〈
G′,%′

〉
are best

response equivalent if BRG
i = BRG′

i for all i ∈ I.

Theorem 2. Consider a two-player game
〈
G,%

〉
, then, under Assumption 1 and 2, the

following statements are equivalent:

(i) Each player i ∈ I exhibits neither hedging behavior nor reversal behavior in G.

(ii) There exists a game
〈
G′,%EU

〉
which is best response equivalent to

〈
G,%

〉
.

Taken together, players who do not exhibit hedging and reversal behavior in a basic

game G cannot be distinguished from EU players by observing equilibrium actions due to

14



Theorem 1, and behave structurally as if they were EU players by Theorem 2. Therefore,

these players may be termed quasi-expected utility players. Regarding Theorem 2, one

may ask under which conditions the game is best response equivalent to a game with

the same basic game structure and EU players. In this case, it is impossible to identify

non-EU players, without knowing players’ beliefs. Often, there exist priors such that〈
G,%

〉
is best response equivalent to

〈
G,%EU

〉
. The following proposition gives sufficient

conditions for this to be true in terms of the games, which will be treated in the sequel.

Proposition 1. Fix a two-player two-actions game Ḡ ∈ Γ where player i’s actions are

Ai = {a′i, a′′i }. Consider players with preferences %. If both players exhibit neither hedging

nor reversal behavior in Ḡ and, for each player i, it holds that

(i) i has a strictly dominant strategy and/or

(ii) there exist ω′, ω′′ ∈ Ω such that

[fω
′
(a′i, a

′
−i)− fω

′
(a′′i , a

′
−i)] < 0 and [fω

′
(a′i, a

′′
−i)− fω

′
(a′′i , a

′′
−i)] > 0, and

[fω
′′
(a′i, a

′
−i)− fω

′′
(a′′i , a

′
−i)] > 0 and [fω

′′
(a′i, a

′′
−i)− fω

′′
(a′′i , a

′′
−i)] < 0,

then there exist priors such that
〈
Ḡ,%EU

〉
is best response equivalent to

〈
Ḡ,%

〉
.

The results of this section refer to players’ best response correspondences. This raises

the question under which conditions players exhibit hedging or reversal behavior in terms

of the primitives of the game, i. e. in particular the payoff structure. This is the topic of

the next section.

3.2 Existence of hedging behavior and reversal behavior

General preferences

It is difficult to obtain useful results for general games. Therefore, we consider

games where players are strictly uncertainty-averse players. Player i is said to be strictly

uncertainty-averse in Ḡ ∈ Γ if her objective function Vi is strictly quasiconcave on the

convex hull of i’s payoff vectors induced by pure action profiles, conv{fi(a) | a ∈ A}.

In this case, the existence of hedging behavior is closely tied to the existence of strictly

dominant strategies, as the following proposition demonstrates.
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Proposition 2. Fix a basic game Ḡ ∈ Γ where, for each i ∈ I, fi(a
′
i, σ−i) 6= fi(a

′′
i , σ−i)

for all a′i, a
′′
i ∈ Ai, a

′
i 6= a′′i and any given σ−i ∈ Σ−i. Consider players with strictly

uncertainty-averse preferences, %UA, in Ḡ. The following statements are equivalent:

(i) Some players have no strictly dominant pure strategies.

(ii) Some players exhibit hedging behavior in Ḡ.

Proof. The proof of the proposition is straightforward.

Although Proposition 2 is simple from a mathematical point of view, it has two in-

teresting implications. Firstly, if we observe a mixed equilibrium in a basic game like the

one in the proposition and we know that the players are strictly uncertainty-averse, then

we can conclude that some players show hedging behavior:

Corollary 1. If there exists a mixed equilibrium for the game
〈
Ḡ,%UA

〉
of Proposition

2, then some players exhibit hedging behavior.

Secondly, suppose that it is known that player i is strictly uncertainty-averse, but his

particular objective function Vi is unknown. Then, we can exclude that i exhibits hedging

behavior if and only if i has a pure action that gives a strictly higher payoff in each state

of the world than any other action for every fixed strategy combination of i’s opponents:

Corollary 2. Player i shows no hedging behavior in Ḡ of Proposition 2 for all strictly

quasiconcave functions Vi iff there exists a pure action a′i ∈ Ai such that, fωi (a′i, a−i) >

fωi (ai, a−i) for all ω ∈ Ω and all ai ∈ Ai, ai 6= a′i and any given a−i ∈ A−i.

Maxmin expected utility

This section considers two-player two-strategies games played by MEU players, since

these games are of special interest for experimental research.9 It is worth noting that

the results of this section hold also for uncertainty-averse players with CEU preferences.

This follows from the fact that uncertainty-averse CEU preferences, i.e. CEU with a

convex capacity, correspond to MEU preferences where the prior set equals the set of

9Experiments on ambiguity usually assume MEU subjects and experiments on game theory are often
designed with two-player two-strategies games.
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probabilities in the core of the capacity, see Schmeidler (1986). Hence, preferences that

can be represented by CEU can also be represented by MEU.10

The focus of this section lies on hedging behavior due to Theorem 1. All results,

except Proposition 3, provide conditions under which we can exclude hedging respectively

reversal behavior for all possible prior sets. One can think of a similar situation as in the

context of Corollary 2: Suppose that we know that player i has MEU preferences, but his

particular prior set Ci is unknown. The negations of the results give existence conditions.

Regarding hedging behavior, Ghirardato et al. (1998) and Klibanoff (2001) provide

useful results. They examine additivity respectively preference for mixtures in the context

of single-person decision problems and MEU preferences. A natural starting point to

answer the question ”when is the MEU functional additive” is comonotonicity.11 However,

comonotonicity does not ensure additivity as an example in Klibanoff (1996) illustrates.

Ghirardato et al. (1998) show that we need a stronger condition called affine-relatedness:

Definition 4. Two vectors f, g ∈ Rm are affinely related if there exist a ≥ 0 and b ∈ R

such that fω = agω + b and/or gω = afω + b for all ω ∈ Ω.

Definition 4 means that f and g are affinely related if either f or g is constant or there

exist a > 0 and b ∈ R such that fω = agω + b. We say that two vectors f, g ∈ Rm

are negatively affinely related if f is affinely related to −g. In general, affine-relatedness

implies comonotonicity, but not vice versa. For the special case of two states of nature,

affine-relatedness is equivalent to comonotonicity. According to Theorem 1 in Ghirardato

et al. (1998), affine-relatedness guarantees additivity: Let f, g ∈ Rm, then MEUCi
(f +

g) = MEUCi
(f) +MEUCi

(g) for all Ci ∈ C if and only if f and g are affinely related.

Another condition, which is important in this section, is dominance-relatedness. This

condition refers to a situation where one payoff vector (weakly) dominates another w.r.t.

the state-dependent payoffs:

Definition 5. Two vectors f, g ∈ Rm are dominance related if fω ≥ gω and/or gω ≥ fω

for all ω ∈ Ω.

10Under uncertainty aversion, MEU is even a strict generalization of CEU, see Klibanoff (2001).
11Two vectors f, g ∈ Rm are comonotonic if (fω − fω′

)(gω − gω′
) ≥ 0 for all ω, ω′ ∈ Ω.
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Two vectors f, g ∈ Rm are said to be strictly dominance related if fω > gω or gω > fω for

all ω ∈ Ω. Furthermore, a vector f is constant if fω = fω
′

for all ω, ω′ ∈ Ω. In the sequel,

as in Proposition 1, Ai = {a′i, a′′i } denote player i’s pure actions.

By using negative affine-relatedness, we obtain a strong existence result for hedging

behavior. Fix an action of the other player, if player i’s pure actions induce negatively

affinely related payoff vectors, then i will show hedging behavior for all prior sets contained

in a particular subset of C . The following proposition makes this precise.

Proposition 3. Fix a σ−i ∈ Σ−i. Let C ∗ be the collection of all closed, convex and

nonempty subsets of ∆(Ω) which contain some π′, π′′ such that f(a′i, σ−i)π
′ > f(a′′i , σ−i)π

′,

f(a′i, σ−i)π
′′ < f(a′′i , σ−i)π

′′ and f(a′i, σ−i)π
′ 6= f(a′i, σ−i)π

′′, f(a′′i , σ−i)π
′ 6= f(a′′i , σ−i)π

′′.

If f(a′i, σ−i) and f(a′′i , σ−i) are negatively affinely related, then, a MEUCi
player shows

hedging behavior for all Ci ∈ C ∗.

In general the set C ∗ can vary strongly across different payoff vectors. Apparently, the

set does not contain singletons, but it can be empty. For instance, C ∗ is empty when

f(a′i, σ−i) and f(a′′i , σ−i) are dominance related. For the special case of two states of

nature, there are only two possibilities: Either C ∗ is empty or it contains all prior sets

Ci ∈ C that are not singletons.

The first lemma illustrates that, given an action of the opponent, player i does not

show hedging behavior for all prior sets if and only if i’s pure actions induce payoff vectors

that are strictly dominance related and/or affinely related.

Lemma 1. Fix a σ−i ∈ Σ−i. The following statements are equivalent:

(i) f(a′i, σ−i), f(a′′i , σ−i) are (a) strictly dominance related and/or (b) affinely related.

(ii) Given σ−i, a MEUCi
player i shows no hedging behavior for all Ci ∈ C .

Proof. The lemma is a variant of Theorem 2 in Klibanoff (2001). Therefore, the proof

is omitted.

The next proposition is the most important in this section. It states that, in many

games, player i shows no hedging and reversal behavior for all prior sets if and only if

i’s payoff vectors which are induced by pure action profiles are pairwise affinely related.
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That is, for any prior set Ci ∈ C , the function MEUCi
is additive on the set of i’s payoff

vectors. Hence, for every prior set Ci, there exist a prior π′i ∈ ∆(Ω) such that a MEUCi

player and a EUπ′i behave identically.

Proposition 4. Fix a two-player two-strategies basic game Ḡ ∈ Γ where f(a′i, σ−i) and

f(a′′i , σ−i) are not strictly dominance related for any given σ−i ∈ Σ−i and f(a′i, a−i) 6=

f(a′′i , a−i) for any given a−i ∈ A−i. If at most one of the vectors from the set {f(a)|a ∈ A}

is constant, the following statements are equivalent:

(i) Player i’s payoff vectors induced by pure action profiles are pairwise affinely related.

(ii) A MEUCi
player i shows no hedging and reversal behavior in Ḡ for all Ci ∈ C .

The importance of Proposition 4 is due to the fact that its strongest restriction is that,

given any action of the other player, the induced vectors of i’s actions are not strictly

dominance related. In most games, there exists a subset of actions, Σ̃−i ⊆ Σ−i, where this

is the case.12 The proposition can be applied to those games analogously: Player i shows

no hedging and reversal behavior for all prior sets only if MEUCi
is additive on the set

of all vectors which are induced by the profiles which involve elements of Σ̃−i.

The last two propositions discuss the existence of hedging behavior for the cases where

the other two restrictions of Proposition 4 are not met. At first, we consider the case where

more than one of player i’s payoff vectors induced by pure action profiles is constant. Then,

i shows no hedging behavior if and only if MEUCi
is additive for all induced vectors of the

game and/or the vectors of one of her actions are constant for any action of the opponent:

Proposition 5. Fix a two-player two-strategies basic game Ḡ ∈ Γ where there exists a

σ−i ∈ Σ−i such that f(a′i, σ−i), f(a′′i , σ−i) are not strictly dominance related. If at least two

of the vectors from {f(a) | a ∈ A} are constant, the following statements are equivalent:

(i) (a) Player i’s payoff vectors induced by pure action profiles are pairwise affinely

related and/or (b) the vectors f(a′i, a
′
−i) and f(a′i, a

′′
−i) are constant.

(ii) A MEUCi
player i shows no hedging behavior in Ḡ for all Ci ∈ C .

12Exceptions are games where, for any given action of the opponent, one action induces a payoff vector
which strictly dominates the vector induced by the other action.
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Finally, we turn to games where player i’s pure actions can induce equal payoff vectors,

given an action of the other player. In this case, player i shows no hedging behavior if

and only if MEUCi
is additive and/or i’s pure actions induce equal vectors, given any

pure action of the opponent:13

Proposition 6. Fix a two-player two-strategies basic game Ḡ ∈ Γ where f(a′i, σ−i) and

f(a′′i , σ−i) are not strictly dominance related for any σ−i ∈ A−i and some non-degenerate

σ−i ∈ Σ−i. Furthermore, f(a′i, a−i) = f(a′′i , a−i) for some a−i ∈ A−i. If at most one of

the vectors from {f(a) | a ∈ A} is constant, the following statements are equivalent:

(i) (a) Player i’s payoff vectors induced by pure action profiles are pairwise affinely

related and/or (b) f(a′i, a−i) = f(a′′i , a−i) for any given a−i ∈ A−i.

(ii) A MEUCi
player i shows no hedging behavior in Ḡ for all Ci ∈ C .

4 Discussion

4.1 Preference for randomization

One may wonder whether there is evidence for a preference for randomization. There

is little experimental literature on this topic. One study by Dominiak and Schnedler

(2011) finds no evidence for a mixture preference. However, the study is about single-

person decisions and does not explicitly test ex-ante respectively ex-post randomization

attitudes, which I will elaborate on in the next subsection.

A further question is whether a preference for randomization leads to an infinite se-

quence of randomization operations: Suppose a player strictly prefers a 1/2-mixture of

two pure actions a1 and a2 over either alone, say, he prefers to flip a coin to determine

his strategy choice. After flipping the coin, it turns out to be a1. Due to his preferences

before the coin flip, one may think that he would strictly prefer to flip the coin again and

again...ad infinitum. Following Machina (1989), an argument against this view is dynamic

consistency. Furthermore, the question is invalid when mixed actions are generated by

13Note that this is not necessarily equivalent to the case where all payoff vectors induced by pure
action profiles are equal, since it is still possible that f(a′i, a

′
−i) 6= f(a′i, a

′′
−i).
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some kind of exogenous random device and players accept binding commitments to play

a pure action based on the outcome of this device.

4.2 The model

The crucial assumption of the model regarding hedging and reversal behavior is As-

sumption 1. Recall that Assumption 1 states that a mixed action profile induces an

expected utility value in each state of the world. There is no compelling reason for this

assumption. Alternatively, we could have assumed that players’ payoff from a mixed

profile equals the expected objective function values w.r.t. the mixed profile, formally:

Assumption 1′. Player i’s payoff from a mixed profile σ ∈ Σ is

Ui(σ) =
∑
a∈A

( ∏
j∈I

σj(aj)Vi
(
fi(a)

))
.

To see the difference between Assumption 1 and 1′, suppose that player i has MEU

preferences. According to Assumption 1, we need to take two expectations to determine

i’s payoff from a mixed profile σ: At first, we take the expectation of the payoffs of pure

action profiles w.r.t. the probability measure given by the mixed profile. This generates

a vector of expected payoffs. Afterwards, expectations of this vector are taken w.r.t. each

prior in a given prior set Ci. The minimum of this set of expectations corresponds to i’s

MEU of σ. Let EUπ(σ) be the expectation of the expected payoff vector w.r.t. π, then:

MEUCi
(σ) = min

π∈Ci

{
EUπ(σ)

}
,

In contrast, under Assumption 1′, i’s payoff from σ equals the expectation of i’s MEU of

all pure action profiles w.r.t. the probability measure given by σ:

MEU ′Ci
(σ) =

∑
a∈A

( ∏
j∈I

σj(aj)MEUCi
(a)

)
.

This implies that i’s objective function is linear. Hence, under Assumption 1′, players

do neither exhibit hedging behavior nor reversal behavior. That means, they are quasi-

expected utility players.

Now, one may ask which is the ”correct” assumption. In a game with exogenous

ambiguity, there are two sources of uncertainty: There is strategic risk and ambiguous

uncertainty, which arises from exogenous random events. From a decision-theoretic per-

spective, this situation can be considered as a two-stage lottery which involves
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1. An ambiguous lottery which represents Nature’s move and

2. A risky lottery which is given by the product measure of players’ mixed strategies.

In my view, the underlying assumption of the model depends on how players evaluate the

two-stage lottery above. This is closely tied to the distinction between ex-ante and ex-post

randomization. That is, how do players perceive the sequence of lottery 1. and 2., i.e.

whether Nature’s move takes place before or after the randomization by mixed strategies.

In a recent paper, Eichberger et al. (2014) show that dynamically consistent individuals

will be indifferent to ex-ante randomizations, but may exhibit a strict preference for

ex-post randomizations. Following this result, Assumption 1 is associated with ex-post

randomization and Assumption 1′ with ex-ante randomization.

Finally, the model avoids the drawbacks of strategic ambiguity models described in

Section 1.3 by excluding strategic ambiguity. From my point of view, it would be desirable

to get an appropriate generalization of the model with a richer state space which allows

for strategic ambiguity.

5 Conclusion

The paper shows that strategic behavior among expected and uncertainty-averse non-

expected utility players can differ substantially. The second contribution is that these

behavioral differences are characterized by two properties of a player’s best response cor-

respondence. The main results show that it is not possible to identify a non-expected

utility player by observing her equilibrium actions, whenever her best response corre-

spondence violates one of these properties. If it violates both properties, a non-expected

utility player behaves as if she were an expected utility player. The paper provides condi-

tions, in terms of the payoff structure of a game, for the existence of the two properties.

In this context, games are considered that are usually used in laboratory experiments.

The analysis gives a starting point for applications of incomplete information games

with non-expected utility players and further experimental research. For instance, an

interesting question is whether uncertainty-averse non-expected utility who exhibit the

special behavior identified in this article can be exploited by expected utility players.
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Appendix

Example 1 and 2 (Best response correspondences and equilibria).

Example 1. Given a strategy profile (σ1, σ2) =
(
σ1(ql), σ2(ql)

)
, firm 1’s state-dependent

expected profits are

fω1
1 (σ1, σ2) =

(
1
2
σ1[5− 3σ2] + 3σ2 − 2

)
and fω2

1 (σ1, σ2) =
(
2− σ1

)
.

If σ2 ≤ 1/3, then fω1
1 (σ1, σ2) ≤ fω2

1 (σ1, σ2) for all σ1 ∈ [0, 1]. In this case, firm

1 will maximize fω1
1 (σ1, σ2) by playing σ1 = 1. Otherwise, for any given σ2 >

1/3, there exists a mixed strategy σ′1 such that fω1
1 (σ′1, σ2) = fω2

1 (σ′1, σ2), which

maximizes V1

(
f(σ1, σ2)

)
= min

{
fω1

1 (σ1, σ2), fω2
1 (σ1, σ2)

}
. By setting fω1

1 (σ1, σ2) =

fω2
1 (σ1, σ2), we obtain σ′1 =

(
8− 6σ2

)
/
(
7− 3σ2

)
. Due to the symmetry of the game,

the same argumentation applies to firm 2. Consequently, firm i’s best response

correspondence is:

BRi(σj(ql)) =


1, if σj(ql) ≤ 1/3(
8− 6σj(ql)

)
/
(
7− 3σj(ql)

)
, if σj(ql) > 1/3

The game has only one equilibrium:
(
σ∗1(ql), σ

∗
2(ql)

)
≈ (0.74, 0.74).

Example 2. Given a strategy profile (σM , σI) =
(
σM(S), σI(Bk)

)
, players’ state-

dependent expected profits are

fω1
M (σM , σI) =

(
σM [1− σI ]

)
and fω2

M (σM , σI) =
(
σM [σI − 1] + 1− σI

)
, and

fω1
I (σM , σI) =

(
σI [2− 5σM ] + 5σM

)
and fω2

I (σM , σI) =
(
σI [5σM − 3] + 5− 5σM

)
.

If σI = 1, M is indifferent between all of his strategies, since fω1
1 (σM , 1) = 0 =

fω2
1 (σM , 1) for all σM ∈ [0, 1]. Otherwise, M’s unique best response is σM = 1/2,

where fω1
1 (1/2, σI) = fω2

1 (1/2, σI) for all σI ∈ [0, 1]. Hence,

BRM(σI(Bk)) =


1/2, if σI(Bk) ∈ [0, 1)

[0, 1], if σI(BK) = 1
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Let BRI(σM(S)| ω) be the investor’s best response correspondence in state ω ∈

{ω1, ω2}. Since fω1
I (σM , σI) ≤ (≥)fω2

I (σM , σI) for σM ≤ (≥)1/2 and all σI ∈ [0, 1],

I’s best response correspondence is

BRI(σM(S)) =


BRI(σM(S)| ω1), if σM(S) ≤ 1/2

BRI(σM(S)| ω2), if σM(S) ≥ 1/2

The game has one equilibrium where the investor buys the stock:(
σ∗M(S), σ∗I (Bk)

)
= (0.5, 0), and infinitely many equilibria where she keeps

her money: {
(
σ∗M(S), σ∗I (Bk)

)
| σ∗M(S) ∈ [0, 2

5
] ∪ [3

5
, 1] and σ∗I (Bk) = 1}.

Notation 1. From now on, f, g, h, k ∈ Rm denote row payoff vectors and π ∈ ∆(Ω)

column probability vectors. A zero vector of proper dimension is denoted by 0. The

following convention for ordering relations will be used. For real numbers, the relations

=, >,≥ are defined as usual. If x, y ∈ Rn, n > 1, then

x = y ⇔ xi = yi for i = 1, . . . , n.

x = y ⇔ xi = yi for i = 1, . . . , n.

x ≥ y ⇔ x = y and x 6= y.

x > y ⇔ xi > yi for i = 1, . . . , n.

Furthermore, for any set S, ∂S denotes the boundary of S, int(S) the interior of S, and

cl(S) the closure of S. Matrix operations, e.g. matrix multiplication, inner product,

and scalar multiplication, et cetera, are defined as usual. The same holds true for set

operations such as intersection, union, set difference, et cetera.

Proof of Theorem 1. Fix a basic game Ḡ ∈ Γ and consider players with preferences

%′. Suppose (σ∗i , σ
∗
−i) ∈ Σ is an equilibrium for the game 〈Ḡ,%′〉. Consider an arbitrary

player i. Let V ′i be a function which represents i’s preferences %′i and satisfies Assumption

2. We prove the theorem by showing that if σ∗i ∈ arg max
σi∈Σi

V ′i (σi, σ
∗
−i), then there exists

a πi ∈ ∆(Ω) such that σ∗i ∈ arg max
σi∈Σi

EUπi (σi, σ
∗
−i), whenever player i with preferences

%′i shows no hedging behavior in Ḡ. In other words, if player i’s best response to σ∗−i is

σ∗i , given that her preferences are %′i, then there exists a prior such that σ∗i is also a best
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response to σ∗−i if i’s preferences are %EUi . This proves the theorem, since we consider

an arbitrary player i. The proof for general finite strategy spaces is a bit tedious and

confusing. For this reason, the proof is given for four actions, Ai = {a1, a2, a3, a4}, the

generalization is straightforward. Given σ∗−i, let f, g, h, k ∈ Rm be the payoff vectors

induced by i’s pure actions, i.e. f = fi(a1, σ
∗
−i), g = fi(a2, σ

∗
−i), et cetera. Hence, i’s

payoffs are

σ∗−i

a1 f

a2 g

a3 h

a4 k

We distinguish two cases: Player i’s equilibrium strategy σ∗i in 〈Ḡ,%′〉 is 1. a degen-

erate mixed action (resp. a pure action) or 2. a proper mixed action.

Case 1. W.l.o.g. (without loss of generality), we may assume that σ∗i = a1 is i’s equi-

librium action in 〈Ḡ,%′〉. Given that i exhibits no hedging behavior, we need to

show that there exists a prior πi ∈ ∆(Ω) such that EUπi(a1, σ
∗
−i) ≥ EUπi(ai, σ

∗
−i)

for ai ∈ {a1, a2, a3, a4}. Note that this is equivalent to

∃πi ∈ ∆(Ω) : (f − g)πi ≥ 0, (f − h)πi ≥ 0, and (f − k)πi ≥ 0 (1)

Let I be a m×m identity matrix and define

x =

πi
γ

 ∈ R(m+1), B =


0

I
...

0

 ∈ Rm×(m+1), C =


f − g 0

f − h 0

f − k 0

 ∈ R3×(m+1), and

D =

(
1 . . . 1 −1

)
∈ R1×(m+1).

Then, condition (1) is equivalent to the system:

Bx ≥ 0, Cx = 0, andDx = 0 (2)
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Bx ≥ 0 ensures nonnegativity of the probabilities and Dx = 0 translates into∑
ω∈Ω

πi(ω) = γ, which can be normalized to
∑
ω∈Ω

πi(ω) = 1. Cx = 0 is the condition

that a1 is a best response to σ∗−i.

Claim. System (2) has a solution x ∈ R(m+1).

Proof. By Tucker’s theorem of the alternative, cf. Mangasarian (1969, p. 29),

either (2) has a solution x ∈ R(m+1) or the equation B>y2 + C>y3 +D>y4 = 0 has

a solution (y2, y3, y4) ∈ Rm × R3 × R with y2 > 0 and y3 = 0, which equals




y2

1

...

y2
m

+ (f − g)y3
1 + (f − h)y3

2 + (f − k)y3
3 +


y4

...

y4


−y4


= 0 (3)

Since y4 = 0 and y2 > 0, (3) has a solution iff (if and only if) there exists y3
1, y

3
2, y

3
3 ≥

0 such that (f − g)y3
1 + (f − h)y3

2 + (f − k)y3
3 < 0. This condition is equivalent to

the existence of α, β ∈ [0, 1] such that f < αg + βh+ (1− α− β)k. Given σ∗−i, the

right-hand side of this inequality corresponds to the induced payoff vector of the

following mixed action of player i: σ′i =
(
σ′i(a1), σ′i(a2), σ′i(a3), σ′i(a4)

)
=
(
0, α, β, 1−

α − β
)
. Hence, fω(a1, σ

∗
−i) < fω(σ′i, σ

∗
−i) for all ω ∈ Ω. Then, by Assumption 2

(monotonicity), Vi(a1, σ
∗
−i) < Vi(σ

′
i, σ
∗
−i) - a contradiction to the starting assumption

that a1 is the equilibrium strategy σ∗i of player i in 〈Ḡ,%′〉. Consequently, (3) has

no solution, which proves that (2) has a solution.

Case 2. The proof of the second case follows the same line as the proof of the first case.

W.l.o.g. assume that player i’s equilibrium strategy, σ∗i , is a proper mixed action

with supp(σ∗i ) = {a1, a2}. We need to show that there exists a prior πi ∈ ∆(Ω)

such that such that EUπi(σ
∗
i , σ

∗
−i) ≥ EUπi(ai, σ

∗
−i) for ai ∈ {a1, a2, a3, a4}. This is

equivalent to the condition ∃πi ∈ ∆(Ω) : (f − g)πi = 0, (f − h)πi ≥ 0, (f − k)πi ≥
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0 , (g − h)πi ≥ 0, (g − k)πi ≥ 0 which can be expressed as

Bx ≥ 0, Cx = 0, andDx = 0, (4)

where x =

πi
γ

 ∈ R(m+1), B =


0

I
...

0

 ∈ Rm×(m+1), C =

f − h 0

f − k 0

 ∈ R2×(m+1),

and

D =

1 . . . 1 −1

f − g 0

 ∈ R2×(m+1).

Claim. System (4) has a solution x ∈ R(m+1).

Proof. According to Tucker’s theorem, the alternative to the claim is that




y2

1

...

y2
m

+ (f − h)y3
1 + (f − k)y3

2 + (f − g)y4
2 +


y4

1

...

y4
1


−y4

1


= 0 (5)

has a solution (y2, y3, y4) ∈ Rm × R2 × R2 with y2 > 0 and y3 = 0.

Equation (5) has a solution iff (f−h)y3
1 +(f−k)y3

2 +(f−g)y4
2 < 0 for some y3

1, y
3
2 ≥ 0

and y4
2 ∈ R. For y4

2 ≥ 0, one obtains the same contradiction as before. If y4
2 < 0,

then there are α, β ∈ [0, 1] such that (α+β)f+(1−α−β)g < αh+βk+(1−α−β)f .

Given σ∗−i, let σ′i be the mixed action of i that induces the vector on the left-hand

side of the inequality and σ′′i the action that induces the vector on the right-hand

side. By Assumption 2 (monotonicity), Vi(σ
′
i, σ
∗
−i) < Vi(σ

′′
i , σ

∗
−i). Furthermore, since

i shows no hedging behavior, it holds that Vi(σ
′
i, σ
∗
−i) = (α+β)Vi(a1, σ

∗
−i)+(1−α−

β)(a2, σ
∗
−i) = Vi(σ

∗
i , σ

∗
−i). Consequently, Vi(σ

∗
i , σ

∗
−i) < Vi(σ

′′
i , σ

∗
−i), a contradiction to

the starting assumption that σ∗i is i’s equilibrium strategy. This proves that (5) has

no solution which implies that (4) has a solution.
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Since player i was chosen arbitrarily, for any given equilibrium point σ∗ of 〈Ḡ,%′〉,

there exists a prior πi for each i ∈ I, such that σ∗ is an equilibrium point of 〈Ḡ,%EU〉,

which proves the theorem.

In order to prove Theorem 2, we need the following lemma:

Lemma 2. Let ∆d be the d-dimensional unit simplex, d < ∞, and let B be a finite

collection of closed, convex and nonempty sets . If

(i)
⋃
B∈B

B = ∆d and

(ii) int(B′) ∩ int(B′′) = ∅ for all B′, B′′ ∈ B,

then each B in B is a polyhedron.

Proof. If B is a singleton, then the statement is trivial by (i). Assume that B is not a

singleton. Since each B in B is closed (i.e. ∂B ⊆ B), (ii) implies that B′∩B′′ = ∂B′∩∂B′′

for all B′, B′′ ∈ B. Furthermore, by (i), if x ∈ ∂B′, then x ∈ ∂B′′ for some B′′ ∈ B

and/or x ∈ ∂∆d, formally ∂B′ =

[ ⋃
B′′∈B\B′

(B′ ∩B′′)
]
∪ (∂B′ ∩∆d).

It holds that ∂B′ = cl(∂B′), because ∂B′ is closed. Hence, ∂B′ = int(∂B′)
.
∪ ∂∂B′.

Due to ∂∂B′ = ∂B′, it follows that int(∂B′) = ∅. Therefore, int(B′ ∩B′′) = ∅. Further-

more, (∂B′ ∩ ∂B′′) is closed and convex, since it is an intersection of closed and convex

sets (recall that B′ ∩ B′′ = ∂B′ ∩ ∂B′′). Taken together, (∂B′ ∩ ∂B′′) is a closed and

convex set with empty interior, which implies that (∂B′ ∩ ∂B′′) is contained in a hyper-

plane. In addition, (∂B′ ∩ ∂∆d) is contained in a hyperplane, since ∂∆d is contained in

a hyperplane. Thus, (∂B′ ∩ ∂B′′) is contained in a hyperplane for all B′′ ∈ B \ B′ and

(∂B′ ∩ ∂∆d) is contained in a hyperplane. Therefore, ∂B′ is contained in the union of

finitely many hyperplanes, formally ∂B′ ⊆
⋃
n∈N

Hn, where Hn is a hyperplane and N an

index set. Let Hn be a half-space, which is associated with hyperplane n. Then, there

exists n half-spaces such that B′ ⊆
⋂
n∈N

Hn, since B′ is a convex set. Furthermore, it holds

that B′ ⊇
⋂
n∈N

Hn, since the boundary of B′ is contained in the hyperplanes associated

with the half-spaces. Consequently, B′ equals the intersection of finitely many half-spaces.

That is, B′ is a polyhedron, which proves the claim, since B′ was chosen arbitrarily.
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Proof of Theorem 2. ”(i) =⇒ (ii)”. The proof relies on the following fact: Consider

a finite two-player normal-form game with complete information or with incomplete in-

formation and EU players. Let i ∈ {1, 2} and j = 3 − i denote the players. Then, for

each player i, it holds that the preimages of i’s pure actions under her best response

correspondence are either empty or polyhedral subsets of the set of j’s mixed strategies,

Σj, which corresponds to the |Aj|-dimensional unit simplex. For instance, the preimages

of player i’s pure strategies in the well-known Rock-paper-scissors-game are:14

σj(scissors)

σj(rock)1

1

1/3

1/3

σj(paper)

paper

scissors

rock

Figure 3

Consequently, if, for each player i, the preimages of i’s pure actions under her best response

correspondence in a two-player game 〈G,%〉 satsify

(*) the union of all preimages equal Σj and

(**) the preimage of every pure action is either empty or a polyhedron,

then there exists a two-player game 〈G′,%EU〉 which is best response equivalent to 〈G,%〉.

In other words, (*) and (**) imply statement (ii) of the theorem. Therefore, if statement

(i) implies (*) and (**), then (i) implies (ii).

Consider player i and suppose she has K pure actions: Ai = {a1
i , . . . , a

K
i }. Let Bk

be the preimage of action aki ∈ Ai under i’s best response correspondence, formally

Bk = {σj ∈ Σj | σj ∈ BRi(a
k
i )}.

14Figure 3 shows the two-dimensional projection of Σj .
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Claim. (i) implies (*).

Proof. By statement (i) of the theorem, i exhibits no hedging behavior in G. This

implies that for every σj ∈ Σj, there exists a pure action ai ∈ Ai which is a best response

to σj, i.e.
K⋃
i=1

Bk ⊇ Σj. Furthermore, by the definition of a best response correspondence,

K⋃
i=1

Bk ⊆ Σj. Hence,

K⋃
i=1

Bk = Σj, (6)

which means that (i) implies (*).

Claim. (i) implies (**).

Proof. Due to (i), i shows no reversal behavior in G. The negation of condition (ii) in

Definition 3 implies:

int(Bk) ∩ int(B′k) = ∅ (7)

for all k, k′ ∈ {1, . . . , K}, k 6= k′.

W.l.o.g., we may assume that Bk 6= ∅ and Bk 6= Bk′ for all k, k′ ∈ {1, . . . , K}, k 6=

k′. According to Assumption 2, the function Vi(·), which represents i’s preferences, is

continuous. Therefore, each Bk is closed. Furthermore, the negation of condition (i) in

Definition 3 implies that each Bk is convex. Considering these properties together with

equation (6) and (7) and using Lemma 2, we see that each Bk is a polyhedron.

To sum up, (i)⇒ (*) and (**) ⇒ (ii).

”(i) ⇐= (ii)”. The examples in Section 1.2 illustrate that ¬(i) ⇒ ¬(ii), which is

logically equivalent to (i) ⇐ (ii).

Notation 2. From now on, f, g, h, k ∈ Rm denote player i’s payoff vectors which are

induced by pure actions profiles in a given two-player two strategies basic game, i.e. i’s

payoff matrix is:

a′−i a′′−i

a′i f g

a′′i h k
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Proof of Proposition 1. In some parts of the proof, the argumentation is based on

theorems of the alternative like in the proof of Theorem 1. These parts of the proof will

be only sketched.

(i) Consider player i and suppose she has a strictly dominant strategy in 〈Ḡ,%〉.

W.l.o.g. assume that a′i is strictly dominant. If

∃πi ∈ ∆(Ω) : (f − h)πi > 0 and (g − k)πi > 0, (8)

then a′i is also a strictly dominant strategy for i in case she has prior πi and EU

preferences. By applying Motzkin’s theorem, cf. Mangasarian (1969, p. 28-29),

we obtain an alternative to the condition (8). This alternative has a solution iff

αf + (1 − α)g 5 αh + (1 − α)k for some α ∈ [0, 1]. Then, by Assumption 2

(monotonicity), there exists a σ−i ∈ Σ−i such that Vi(a
′
i, σ−i) ≤ Vi(a

′′
i , σ−i). This

contradicts the assumption that a′i is a strictly dominant strategy. Consequently,

(8) has a solution.

(ii) Suppose i has no strictly dominant strategy. By Theorem 2, 〈Ḡ,%〉 is best response

equivalent to some 〈G′,%EU〉. Let f ′, g′, h′, k′ ∈ Rm be i’s payoff vectors induced

by pure action profiles in G′. Note that 〈G′,%EU〉 is best response equivalent to a

two-player complete information game with identical action sets, where player i’s

payoffs equal the expected utility values: Uf ′ = EUπi(f
′), Ug′ = EUπi(g

′), et cetera,

see matrix (a) below. Furthermore, it is well-known that player i’s best response

sets are unaffected if we transform her payoff matrix (a) into matrix (b) where z > 0

and ε, δ ∈ R, see e.g. Weibull (1995).

(a)

a′−i a′′−i

a′i Uf ′ Ug′

a′′i Uh′ Uk′

(b)

a′−i a′′−i

a′i zUf ′ + ε zUg′ + δ

a′′i zUh′ + ε zUk′ + δ

Since 〈Ḡ,%〉 is best response equivalent to 〈G′,%EU〉 and 〈G′,%EU〉 is best response

equivalent to a complete information game where player i’s payoff matrix is matrix
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(b) above. Therefore, the second part of the proposition is proven if

∃πi ∈ ∆(Ω), z > 0, ε, δ ∈ R :

fπi = zUf ′ + ε, hπi = zUh′ + ε, gπi = zUg′ + δ and kπi = zUk′ + δ.

(9)

By using Motzkin’s theorem again, we obtain an alternative to (9) which has a

solution iff (f − h)y4
1 + (g − k)y4

3 5 0 and (Uf ′ − Uh′)y
4
1 + (Ug′ − Uk′)y

4
3 > 0 for

some y4
1, y

4
3 ∈ R. For y4

1 = 0, y4
3 = 0, y4

1, y
4
3 > 0 and y4

1, y
4
3 < 0, we get a similar

contradiction as in case of a strictly dominant strategy. If y4
1 > 0 and y4

3 < 0, the

first part of the alternative condition equals (f − h)a 5 (g − k) for some a > 0.

However, by (ii) of the proposition, there exists a ω′′ ∈ Ω such that (fω
′′ − hω′′) > 0

and (gω
′′ − kω′′) < 0 which contradicts this condition. Similarly, (ii) contradicts the

first part of the alternative if y4
1 < 0 and y4

3 > 0. Therefore, (9) has a solution,

which completes the proof.

Proof of Proposition 3. Consider a two-players two-strategies game and fix a σ̄−i ∈

Σ−i. Let f(a′i, σ̄−i) = f and f(a′′i , σ̄−i) = g denote player i’s payoff vectors induced

by her pure actions. Note that every vector induces, through expectation, an ordering

on probabilities. The proof is based on the fact that affine-relatedness implies that the

induced orderings of two vectors are identical, see Ghirardato et al. (1998). That is, if f

and −g are affinely related, then f and g induce opposite orderings on the probabilities.

Assume that the set C ∗ is nonempty, which implies that f and g are not dominance

related and non-constant. Take an arbitrary Ci ∈ C ∗. Since there are π′, π′′ ∈ Ci such

that fπ′ 6= fπ′′ and gπ′ 6= gπ′′, it holds that arg min
π∈Ci

{
EUπ(f)

}
∩ arg max

π∈Ci

{
EUπ(f)

}
= ∅

and arg min
π∈Ci

{
EUπ(g)

}
∩ arg max

π∈Ci

{
EUπ(g)

}
= ∅. Furthermore, if f and g are negatively

affinely related, it holds that arg min
π∈Ci

{
EUπ(f)

}
∩ arg min

π∈Ci

{
EUπ(g)

}
= ∅. Then, by

Lemma 1 in Ghirardato et al. (1998), MEUCi
(f + g) 6= MEUCi

(f) +MEUCi
(g). Hence,

we are done if MEUCi
(f) = MEUCi

(g). W.l.o.g. assume that MEUCi
(f) > MEUCi

(g).

Let MEUCi
(f) = fπ̃. Since there is a π′′ ∈ Ci such that fπ′′ < gπ′′, we have that
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fπ̃ ≤ fπ′′ < gπ′′. Moreover, it holds that gπ′′ ≤ gπ̃ because f is negatively affinely related

to g. Hence, fπ̃ < gπ̃. Then, for sufficiently high α ∈ [0, 1] : MEUCi
(αf + (1 − α)g) =

αfπ̃ + (1 − α)gπ̃ > fπ̃ = MEUCi
(f). This means that there exists a mixed action,

(σi(a
′
i), σi(a

′′
i )) = (α, 1 − α), which is a strictly better response to σ̄−i than a′i. Since we

assumed that a′i is a strictly better response to σ̄−i than a′′i , player i exhibits hedging

behavior, which proves the proposition.

Before proving Proposition 4, we need a couple of lemmas.

Lemma 3. Fix a two-player two-strategies basic game Ḡ ∈ Γ where at most one of

f, g, h, k ∈ Rm is constant and f, h and g, k are not strictly dominance related. If a

MEUCi
player i exhibits no hedging behavior in Ḡ for all Ci ∈ C , then one of the following

statements is true:

(i) f, h and g, k are affinely related, there is no ω′ ∈ Ω such that fω
′
= hω

′
and gω

′
= kω

′
,

and h is weakly dominated by f and k by g or vice versa.

(ii) f, h and g, k are affinely related and f = h and/or g = k.

(iii) f, g, h, k are pairwise affinely related.

(iv) f,−g, h,−k are pairwise affinely related.

Proof. Since f, h and g, k are not strictly dominance related, by Lemma 1, if a MEUCi

player i shows no hedging behavior in Ḡ for all Ci ∈ C , then f, h and g, k are affinely

related. Hence, for all ω ∈ Ω, it holds that,

(*) hω = a′fω + b′ for some a′ ≥ 0, b′ ∈ R and

(**) kω = a′′gω + b′′ for some a′′ ≥ 0, b′′ ∈ R.

Furthermore, either

(***) αf + (1−α)g and αh+ (1−α)k are strictly dominance related for all α ∈ (0, 1)

or not. In the latter case, i shows no hedging behavior in Ḡ for all Ci ∈ C only if

α′f+(1−α′) is affinely related to α′h+(1−α′)k, whenever α′f+(1−α′) and α′h+(1−α′)k

are not strictly dominance related. Hence, there exist α′ ∈ (0, 1) such that, for all ω ∈ Ω,

(****) α′fω + (1− α′)gω = a′′′[α′hω + (1− α′)kω] + b′′′ for some a′′′ ≥ 0, b′′′ ∈ R.
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Suppose (***) is true.

(i) Since f, h and g, k are not strictly dominance related (***) is true iff there is no

ω′ ∈ Ω such that fω
′
= hω

′
and gω

′
= kω

′
, and h is weakly dominated by f and k by

g or vice versa.

Now, suppose (***) is not true. Then, there exist α′ ∈ (0, 1) such that α′f + (1 − α′)g

and α′h+ (1− α′)k are not dominance related and non-constant.

(ii) If f = h, then (**) implies (****). Similarly, (*) implies (****), whenever g = k.

W.l.o.g. assume that f and g are non-constant and let f 6= h and g 6= k.

(iii) If f is affinely related to g, then (*) and (**) imply that h and k are affinely related,

either because one of the vectors is constant or by transitivity. Hence, all vectors

are pairwise affinely related.

(iv) If f and g are not affinely related, then (*),(**), (****) imply that fω = b̃gω + b̂ for

all ω ∈ Ω and some b̃, b̂ ∈ R where b̃ 6= 0, otherwise f is constant. Since f and g

are not affinely related, it holds that b̃ < 0, which means that f is affinely related

to −g. Then, h and −k are affinely related by transitivity or because one of the

vectors is constant.

Lemma 4. Let at most one of the payoff vectors f, g, h, k be constant and f,−g, h,−k

be pairwise affinely related. If there exist π′, π′′ ∈ ∆(Ω) such that fπ′−fπ′′
gπ′′−gπ′ 6=

hπ′−hπ′′
kπ′′−kπ′ , then

αf + (1− α)g is not affinely related to αh+ (1− α)k for some α ∈ (0, 1).

Proof. W.l.o.g. assume that fπ′−fπ′′
gπ′′−gπ′ >

hπ′−hπ′′
kπ′′−kπ′ and fπ′ > fπ′′. The latter implies that

hπ′ > hπ′′, gπ′ < gπ′′, and kπ′ < kπ′′, since f,−g, h,−k are pairwise affinely related.

Therefore, it holds that αfπ′+(1−α)gπ′ ≥ αfπ′′+(1−α)gπ′′ for all α ≥ gπ′′−gπ′
gπ′′−gπ′+fπ′−fπ′′

and αhπ′ + (1 − α)kπ′ ≥ αhπ′′ + (1 − α)kπ′′ for all α ≥ kπ′′−kπ′
kπ′′−kπ′+hπ′−hπ′′ . Furthermore,

fπ′−fπ′′
gπ′′−gπ′ >

hπ′−hπ′′
kπ′′−kπ′ implies that gπ′′−gπ′

gπ′′−gπ′+fπ′−fπ′′ <
kπ′′−kπ′

kπ′′−kπ′+hπ′−hπ′′ . Consequently, αfπ′ +

(1− α)gπ′ > αfπ′′ + (1− α)gπ′′ and αhπ′ + (1− α)kπ′ < αhπ′′ + (1− α)kπ′′ for all α ∈(
gπ′′−gπ′

gπ′′−gπ′+fπ′−fπ′′ ,
kπ′′−kπ′

kπ′′−kπ′+hπ′−hπ′′
)
. That is, there exist α ∈ (0, 1) such that αf + (1− α)g

and αh + (1 − α)k induce different orderings on probabilities, which means that these

payoff vectors are not affinely related.
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Lemma 5. Let e(ω) = (kω−gω)
(kω−gω+fω−hω)

for ω ∈ Ω and define the sets:

E− =
{
e(ω) | (kω − gω + fω − hω) < 0

}
and E+ =

{
e(ω) | (kω − gω + fω − hω) > 0

}
.

The following statements are equivalent.

(i) αf + (1− α)g strictly dominates αh+ (1− α)k for some α ∈ [0, 1].

(ii) (a) For each ω ∈ Ω: fω > hω and/or gω > kω and (b) max{E+} < min{E−}.

Proof. Statement (i) says that there exist α ∈ [0, 1] which solves the following system of

linear inequalities:

αfω1 + (1− α)gω1 > αhω1 + (1− α)kω1

...

αfωm + (1− α)gωm > αhωm + (1− α)kωm

This system is solvable iff each inequality has a nonempty solution set, which corresponds

to condition (ii)(a), and the solutions sets of all inequalities have a nonempty intersection,

which is equivalent to condition (ii)(b).

Proof of Proposition 4. The proof of ”(i) =⇒ (ii)” is trivial. ”(i) ⇐= (ii)”. Under

the assumptions of the proposition, Lemma 3 shows that statement (ii) implies either (i)

or f,−g, h,−k are pairwise affinely related. Suppose that (ii) implies the latter. By the

assumptions of the proposition, it holds that @ α ∈ [0, 1] : αf + (1− α)g > αh+ (1− α)k

or vice versa. The negation of Lemma 5 implies that

fω
′ ≤ hω

′
and gω

′ ≤ kω
′

for some ω′ ∈ Ω and/or max{E+} ≥ min{E−} and (10)

hω
′′ ≤ fω

′′
and kω

′′ ≤ gω
′′

for some ω′′ ∈ Ω and/or max{E−} ≥ min{E+}. (11)

At first, consider the case where the first condition of (10) and/or (11) is violated.

W.l.o.g. assume that the first condition of (10) is violated. That is, for each ω ∈ Ω:

fω > hω and/or gω > kω. Furthermore, max{E+} ≥ min{E−}, otherwise αf +(1−α)g >

αh + (1 − α)k for some α ∈ [0, 1]. If fω > hω for all ω ∈ Ω and/or gω > kω for all

ω ∈ Ω, then f strictly dominates h and/or g strictly dominates k, which contradicts the

assumptions of the proposition. Therefore, suppose that there are ω′, ω′′ ∈ Ω such that
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fω
′ ≤ hω

′
and gω

′′ ≤ kω
′′
. Let e(ω+) ∈ max{E+} and e(ω−) ∈ min{E−}. Due to fω− >

hω− and/or gω− > kω− , it holds that e(ω−) > 0. If gω+ ≥ kω+ , then e(ω+) ≤ 0 < e(ω−)

- a contradiction. Therefore, gω+ < kω+ and fω+ > hω+ , which implies that e(ω+) < 1.

If fω− ≥ hω− , then e(ω−) ≥ 1 > e(ω+) - a contradiction. Therefore, fω− < hω− and

gω− > kω− . Taken together, we have that,

(*) gω+ < kω+ and fω+ > hω+ ; fω− < hω− and gω− > kω− .

W.l.o.g. we may assume that fω+ ≤ fω− . Then, since f is affinely related to h and

negatively affinely related to g and k,

(**) hω+ < hω− , gω+ ≥ gω− and kω+ > kω− .

Now, consider the prior set C̄i = {βδω+ + (1 − β)δω− | β ∈ [0, 1]} where δω denotes the

measure concentrated on ω ∈ Ω. Then, by (*) and (**), MEUC̄i
(f) = fω+ > hω+ =

MEUC̄i
(h) and MEUC̄i

(g) = gω− > kω− = MEUC̄i
(k). This means that action a′i is the

unique best response of a MEUC̄i
player i to a′−i and a′′−i. Consequently, it needs to hold

that a′−i is the unique best response to αa′−i+(1−α)a′′−i for all α ∈ [0, 1]. Otherwise, player

i exhibits reversal behavior, which contradicts statement (ii). Let α = kω+−gω+

kω+−gω++fω+−hω+ ∈

(0, 1) and α = gω−−kω−
gω−−kω−+hω−−fω− ∈ (0, 1). Then, αfω+ + (1− α)gω+ ≤ αhω+ + (1− α)kω+

for all α ∈ [0, α] and αfω− + (1− α)gω− ≤ αhω− + (1− α)kω− for all α ∈ [α, 1]. Player i

exhibits no reversal behavior only if α < gω+−gω−
gω+−gω−+fω−−fω+ < α, which is equivalent to

(***) kω+−gω+

fω+−hω+ < gω+−gω−
fω−−fω+ and kω−−gω−

fω−−hω− >
gω+−gω−
fω−−fω+ .

However, (*), (**), (***), and the affine-relatedness condition from Lemma 4, fω−−fω+

gω+−gω− =

hω−−hω+

kω+−kω− , lead to a contradiction, see the Mathematica code at the end of this proof. That

is, either a MEUC̄i
player exhibits reversal behavior or there exists a Ci ∈ C such that a

MEUCi
player exhibits hedging behavior.

Consequently, the first condition of (10) and (11) need to be both fulfilled. This

implies that there are ω′, ω′′ ∈ Ω such that

(****) fω
′′ − fω′ ≥ hω

′′ − hω′ and gω
′ − gω′′ ≤ kω

′ − kω′′ .

Define the prior set C̃i = {βδω′ + (1− β)δω′′ | β ∈ [0, 1]}. If the inequalities in (****) are

strict, it holds that fω
′′−fω′

gω′−gω′′ >
hω
′′−hω′

kω′−kω′′ , which means that a MEUC̃i
player i shows hedging

behavior due to Lemma 4. At least one of the inequalities in (****) is not strict iff
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(*****) (fω
′
= hω

′
and fω

′′
= hω

′′
) and/or (gω

′
= kω

′
and gω

′′
= kω

′′
).

Consider (*****) with ”and”. Then, fω
′

= hω
′

and gω
′

= kω
′
. By the proposition, at

most one of the acts is constant. Suppose that f is constant, which implies that g, h, k

are not constant. Since f 6= h and g 6= k, there exists a π′ ∈ ∆(Ω) such that hω
′ 6= hπ′,

which implies that fπ′ 6= hπ′, and gω
′ 6= gπ′, kω

′ 6= kπ′ and gπ′ 6= hπ′. Define the prior

set Ĉi = {βδω′ + (1 − β)π′ | β ∈ [0, 1]}. Since f,−g, h,−k are pairwise affinely related

either MEUĈi
(f) = fω

′
and MEUĈi

(h) = hω
′

or MEUĈi
(g) = gω

′
and MEUĈi

(k) = kω
′
,

but not both. W.l.o.g. assume that MEUĈi
(f) = fω

′
and MEUĈi

(h) = hω
′
. Given

αa′−i+(1−α)a′′−i, a MEUĈi
player is indifferent between her actions for all α ∈ [0, α′] and

strictly prefer one of her pure actions for α ∈ [α′′, 1], where α′ is sufficiently low and α′′ is

sufficiently large. That is, a MEUĈi
shows reversal behavior - a contradiction. Similarly,

one can show that (*****) with ”or” yields a contradiction.

To sum up, if (ii) implies that f,−g, h,−k are pairwise affinely related, we obtain a

contradiction to the assumptions of the proposition, which proves that (ii) implies (i).
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Proof of Proposition 5. The proof of ”(i)(a) =⇒ (ii)” and of ”(i)(b) =⇒ (ii)” is

straightforward. We prove ”(i) ⇐= (ii)” by its contrapositive ”¬(i) ⇒ ¬(ii)”. Suppose

that ¬(i)(a) and ¬(i)(b) is true. Then, it holds that f, g, h, k are not pairwise affinely

related and if f (resp. h) is constant, then g (resp. k) is not constant and vice versa.

There are two cases to consider:

Case 1. Let f and h be constant and g and k be non-constant. Since f, g, h, k are not

pairwise affinely related, it needs to hold that g is not affinely related to k. By the

proposition, there exists α′ ∈ [0, 1] such that α′f + (1−α′)g and α′h+ (1−α′)k are

not strictly dominance related. By Lemma 1, a MEUCi
player i exhibits no hedging

behavior for all Ci ∈ C only if α′f+(1−α′)g is affinely related to α′h+(1−α′)k, i.e.

(*) α′fω + (1−α′)gω = a[α′hω + (1−α′)kω] + b for all ω ∈ Ω and some a > 0, b ∈ R.

Since f and h are constant, (*) is equivalent to gω = akω + b̃ for all ω ∈ Ω and

some a > 0, b̃ ∈ R, which means that g is affinely related to k - a contradiction.

Therefore, a MEUCi
player i shows hedging behavior, whenever ¬(i)(a) is true.

Case 2. Let f and k be constant and g and h be non-constant. This case can be proven

similarly to the previous one.

Therefore, ”¬(i)⇒ ¬(ii)” ⇔ ”(i) ⇐ (ii)”.

Proof of Proposition 6. The proof of ”(i)(a) =⇒ (ii)” and of ”(i)(b) =⇒ (ii)” is

straightforward. As in the previous proof, we prove ”(i) ⇐= (ii)” by its contrapositive.

Let ¬(i) be true. Then, f, g, h, k are not pairwise affinely related and if f = h (resp.

g = k), then g 6= k (resp. f 6= h). W.l.o.g. assume that f = h and g 6= k. Since g and

k are not strictly dominance related, αf + (1 − α)g and αh + (1 − α)k are not strictly

dominance related for all α ∈ [0, 1]. Due to Lemma 1, if there exists a α′ ∈ [0, 1] such

that α′f + (1− α′)g is not affinely related α′h+ (1− α′)k, then a MEUCi
player i shows

hedging behavior for some Ci ∈ C , i.e. ¬(ii) is true. If g is affinely related to k, then (*)

gω = a′kω + b′ for all ω ∈ Ω and some a′ > 0, b′ ∈ R. Let α′ ∈ (0, 1). If α′f + (1− α′)g is

affinely related to α′h+ (1− α′)k, then (**) α′fω + (1− α′)gω = a[α′hω + (1− α′)kω] + b

for all ω ∈ Ω and some a > 0, b ∈ R. If f, g, h, k are not pairwise affinely related, (*) and

(**) cannot be true at the same time. Hence, ”¬(i)⇒ ¬(ii)” ⇔ ”(i) ⇐ (ii)”.
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