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Abstract

We examine the statistical properties of multiplicative GARCH models. First, we

show that in multiplicative models, returns have higher kurtosis and squared re-

turns have a more persistent autocorrelation function than in the nested GARCH

model. Second, we extend the results of Andersen and Bollerslev (1998) on the

upper bound of the R2 in a Mincer-Zarnowitz regression to the case of a mul-

tiplicative GARCH model, using squared returns as a proxy for the true but

unobservable conditional variance. Our theoretical results imply that multiplica-

tive GARCH models provide an explanation for stylized facts that cannot be

captured by classical GARCH modeling.
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1 Introduction

We analyze the fourth moment structure, the autocorrelation function (ACF) and the
forecast evaluation properties of multiplicative GARCH models. We consider a mul-
tiplicative GARCH specification that consists of a short-term component, which is
modeled as a standard GARCH(1,1), and a long-term component that varies smoothly
over time. Hence, our model is closely related to the GARCH-MIDAS class of models
that recently attracted considerable attention (see, e.g., Engle et al., 2013, Conrad and
Loch, 2015, and Wang and Ghysels, 2015).1 However, in our specification the short-
and the long-term component are assumed to vary at the same frequency.

Assuming the long-term component to be covariance stationary, we show that the
kurtosis of the returns is higher and that the ACF of the squared returns is more
persistent in the multiplicative model than in the nested GARCH specification. The
first result only requires a non-constant long-term component; the second one depends
on the persistence of the long-term component. Both findings suggest a multiplicative
volatility component structure as an explanation for the common failure of GARCH(1,1)
models in adequately capturing the leptokurticity and extreme volatility persistence
in observed returns. Our results are remarkably similar to the recent findings of Han
(2015) on GARCH-X models, even though Han (2015) considers models with an additive
explanatory variable in the conditional variance and focuses on the asymptotic limit of
the sample kurtosis and the sample ACF.

Last, we show that the result of Andersen and Bollerslev (1998) on the upper bound
of the R2 in a Mincer-Zarnowitz regression, which is obtained when using squared
returns as a proxy for the true but unobservable conditional variance, can directly be
extended to the case of a multiplicative GARCH model. Again, the upper bound is
given by one divided by the fourth moment of the innovation and will be reached as
the variance of the long-term component tends to infinity.

The paper is organized as follows. In Section 2, the model and the properties of the
kurtosis and the ACF are presented. In Section 3, we discuss forecast evaluation by
means of Mincer-Zarnowitz regressions. All proofs are deferred to the Appendix.

1See also Han and Kristensen (2015) for a semiparametric multiplicative component model with an
exogenous covariate.
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2 The Multiplicative GARCH Model

Let the sequence of (demeaned) returns be denoted by (rt)t, with t ∈ T being the time
index and let Ft denote the information set up to time t. We define

rt = σtZt, (1)

where (Zt)t is an i.i.d. innovation process with mean zero and variance one. We assume
that σ2

t is measurable with respect to Ft−1 and, hence, represents the conditional vari-
ance of returns, i.e. Var[rt|Ft−1] = σ2

t . Further, we assume that the conditional variance
can be multiplicatively decomposed into two components:

σ2
t = gtτt. (2)

We will refer to gt as the short-term component and assume it to follow a GARCH(1,1)
process:

gt = ω + α
r2

t−1
τt−1

+ βgt−1 = ω + (αZ2
t−1 + β)gt−1. (3)

Therefore, gt describes the well known day-to-day clustering of volatility.2

We make two assumptions regarding the innovation Zt and the GARCH component.

Assumption 1. Let Zt be i.i.d. with E[Zt] = 0 and E[Z2
t ] = 1. Further, Z2

t has a
nondegenerate distribution and κ = E[Z4

t ] < ∞.

Assumption 2. We assume that ω > 0, α > 0, β ≥ 0 and α + β < 1. Moreover, we
assume that α2κ + 2αβ + β2 < 1.

Note that Assumption 1 implies that κ > 1. Assumptions 1 and 2 imply that
√

gtZt is a covariance stationary GARCH(1,1) process. Furthermore, we have that the
first- and second-order moment of the GARCH component exist, which are given by
E[gt] = ω/(1 − α − β) and

E[g2
t ] = ω2(1 + α + β)

(1 − κα2 − β2 − 2αβ)(1 − α − β) , (4)

as well as that the fourth moment of √
gtZt is finite.

The second component, τt, should be thought of as describing smooth movements
in the conditional variance. Instead of explicitly specifying τt, we will simply assume
that it follows a covariance stationary process.

2For simplicity we focus on a symmetric GARCH(1,1). However, our results can be easily extended
to an asymmetric GARCH model.
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Assumption 3. We assume that the long-term component (τt)t is covariance stationary
with E[τt] = 1 and that τt is measurable with respect to Ft−1. Moreover, τt and Zs are
independent for all t and s.

For example, τt could be driven by the lagged values of an exogenous explanatory
variable as in the GARCH-MIDAS model of Engle et al. (2013). In this case, τt may
be written as τt = f(Xt−1, Xt−2, . . . , Xt−K) with f(·) > 0, where Xt is some exogenous
driver of the long-term component (see Conrad and Schienle, 2015).3

Assumptions 1, 2 and 3 imply that the returns rt have mean zero, are uncorrelated
and that their unconditional variance is given by Var(rt) = E[gt], which follows from
the assumption that E[τt] = E[Z2

t ] = 1. Moreover, the unconditional variance of the
squared returns is well-defined, Var(r2

t ) = κE[τ 2
t ]E[g2

t ] − E[gt]2.
While the long-term component does not affect the unconditional variance of rt,

it does have an influence on the kurtosis and the ACF of the multiplicative process.
Clearly, the model reduces to a GARCH(1,1) when τt = 1.

2.1 Kurtosis

Financial returns are often found to be leptokurtic. As usual, we measure leptokurticity
by means of the kurtosis coefficient. Under Assumptions 1, 2 and 3, the kurtosis of the
returns defined in equation (1) is given by

KMG = E[r4
t ]

(E[r2
t ])2 = E[σ4

t ]
(E[σ2

t ])2 κ > κ.

Thus, the kurtosis of the multiplicative GARCH process is larger than the kurtosis
of the innovations Zt. This is a well known feature of GARCH-type processes. The
following proposition relates the kurtosis KMG of the multiplicative GARCH to the
kurtosis KGA of the nested GARCH(1,1).

Proposition 1. The kurtosis KMG of a multiplicative GARCH process is given by

KMG = E[τ 2
t ] · KGA > KGA,

where KGA = κ · E[g2
t ]/E[gt]2 is the kurtosis of the nested GARCH process.

3Han and Park (2014) and Han (2015) analyze the properties of a GARCH-X specification with an
explanatory variable entering additively into the conditional variance equation. Obviously, this is an
alternative approach for achieving that the volatility dynamics depend on exogenous information.
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Hence, the kurtosis KMG is the product of KGA and the long-term component’s
second moment. When τt is constant (and equal to one), Proposition 1 nests the
kurtosis of the standard GARCH model. In sharp contrast, for nearly integrated long-
term components the kurtosis of a multiplicative GARCH process is much larger than
the kurtosis of the nested GARCH model.4 Moreover, when estimating a GARCH
model, it is often assumed that Zt is standard normal so that κ = 3. Our result may
explain why in empirical applications the volatility-adjusted residuals rt/

√
gt often still

exhibit ‘excess’ kurtosis. In the multiplicative model the kurtosis of rt/
√

gt is given by
3 · E[τ 2

t ] > 3.

2.2 Autocorrelation Function

Empirically, the ACF of squared returns is often found to decay more slowly than the
exponentially decaying ACF implied by the simple GARCH(1,1) model. In literature on
GARCH models, this is often interpreted as evidence for long-memory (see, e.g., Baillie,
1996), structural breaks (see, e.g., Hillebrand, 2005) or an omitted persistent covariate
(see Han and Park, 2014) in the conditional variance. The following proposition shows
that the theoretical ACF of the multiplicative GARCH process has a much slower
decay than the ACF of the nested GARCH component if the long-term component
is sufficiently persistent. Hence, the multiplicative structure provides an alternative
explanation for the empirical observation of highly persistent ACF’s of squared returns.

Proposition 2. The ACF ρMG
k of a multiplicative GARCH process is given by

ρMG
k = ρτ

k · Var(τt)E[gt]2
Var(r2

t ) + ρGA
k · (ρτ

k Var(τt) + 1) Var(gt)
Var(r2

t ) (5)

where ρτ
k = Corr(τt, τt−k) and

ρGA
k = Corr(gtZ

2
t , gt−kZ2

t−k) = (α + β)k−1 α(1 − αβ − β2)
1 − 2αβ − β2

is the ACF of the nested GARCH component (see Karanasos, 1999).

The ACF of multiplicative GARCH models is given by the sum of two components:
The first term is given by the ACF of the long-term component ρτ

k times a constant,
4Han (2015) obtains a similar result for the sample kurtosis of the returns from a GARCH-X model

with a covariate that can be either stationary or non-stationary.

4



0.00

0.05

0.10

0 25 50 75 100

lag k

a
cf
(k
)

Figure 1: We depict the ACF of a multiplicative GARCH model (solid line), the first and second term
in equation (5) (dotted and dot-dashed line), as well as the ACF of the nested GARCH(1,1) model
(dashed line). The long-term component is defined as τt = exp

(
Xt−1 − σ2

ε

2(1−φ2)

)
with exogenous

covariate Xt = φXt−1 + εt, εt
i.i.d.∼ N (0, σ2

ε), where φ = 0.98 and σ2
ε = 0.052. The GARCH(1,1)

parameters are ω = 0.02, α = 0.06 and β = 0.86. Moreover, we set κ = 3.

whereas the second term equals the exponentially decaying ACF of the nested GARCH
model ρGA

k times a ratio that depends again on ρτ
k. Hence, if τt is sufficiently persistent,

ρMG
k will essentially behave as ρτ

k for k large.5 For τt = 1 constant, the first term in
equation (5) is equal to zero and the second term reduces to the ACF of a GARCH(1,1).

The implications of Proposition 2 are depicted in Figure 1. Due to the additive
structure of the correlation function, a highly persistent exogenous covariate causes the
ACF of the multiplicative GARCH model to have a clearly distinct decay pattern in
comparison to the ACF of its nested GARCH component. The ACF of the multiplica-
tive GARCH behaves like the ACF typically observed for squared returns, i.e. it is below
the ACF of the nested GARCH component for low lags but above for large lags. Fig-
ure 1 shows that the second term in equation (5) determines the decay behavior of ρMG

k

when k is small, while the first term dominates when k is large. As for the kurtosis, our
result may explain why in empirical applications the squared volatility-adjusted resid-
uals r2

t /gt are still substantially autocorrelated. For the multiplicative GARCH model,
the ACF of these residuals is given by ρτ

k · Var(τt)/(κE[τ 2
t ] − 1), which follows the rate

5Again, Han (2015) also obtains a two component structure for the sample ACF of the square
returns from a GARCH-X model with a fractionally integrated covariate.
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of decay of the long-term component. However, innovations with excess kurtosis reduce
this effect. This may be a second explanation for why the volatility-adjusted residuals
are often found to be leptokurtic when estimating a simple GARCH(1,1).

3 Forecast Evaluation and Mincer-Zarnowitz Re-

gression

In this section, we assess the forecast evaluation of multiplicative GARCH models. We
denote the one-step ahead volatility forecast coming from a certain volatility model
by ht|t−1 and compare it to a proxy σ̂2

t for the true but unobservable volatility σ2
t .

As a proxy, we use the squared returns, σ̂2
t = r2

t , which are conditionally unbiased,
i.e. E[r2

t |Ft−1] = σ2
t . As shown in Patton (2011), the mean squared error (MSE) loss

function which is given by the quadratic loss, MSE(r2
t , ht|t−1) = (r2

t − ht|t−1)2, is robust
to using a noisy but unbiased proxy for forecast evaluation. Therefore, the expected
MSE leads to the same ranking of two competing forecasts whether the two are evalu-
ated against the latent volatility or the unbiased proxy.

We will first show that – although the MSE is robust – using a noisy proxy for
forecast evaluation can lead to a substantial overestimation of the true expected MSE
(that would be based on the latent volatility). We then use this result to determine the
R2 in a Mincer-Zarnowitz regression.

Consider the model given by equation (1) and the corresponding expected MSE from
evaluating a variance forecast ht|t−1 against the noisy proxy r2

t . It is straightforward to
show that

E[MSE(r2
t , ht|t−1)] = E[MSE(σ2

t , ht|t−1)] + (κ − 1)E[σ4
t ].

That is, the expected MSE based on the noisy proxy equals the expected MSE based
on the latent volatility plus a term that depends on the fourth moment of Zt and
the expected value of the squared conditional variance. Thus, even if the conditional
variance forecast is correctly specified, i.e. ht|t−1 = σ2

t and so E[MSE(σ2
t , ht|t−1)] = 0,

we have that
E[MSE(r2

t , ht|t−1)] = (κ − 1)E[σ4
t ], (6)

i.e. the expected MSE can be large when Zt is leptokurtic or E[σ4
t ] is large.
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Next, we illustrate the consequences of this result for evaluating the volatility fore-
cast by means of the R2 of a Mincer-Zarnowitz regression of the form

r2
t = δ0 + δ1ht|t−1 + ηt. (7)

Again, the dependent variable r2
t is used as a noisy proxy for the latent conditional

variance σ2
t . When ht|t−1 = σ2

t , the population parameters of the Mincer-Zarnowitz
regression are given by δ0 = 0 and δ1 = 1 and, hence, the population R2 can be written
as:

R2 = 1 −
E[MSE(r2

t , ht|t−1)]
Var[r2

t ] = 1 − (κ − 1)E[σ4
t ]

κE[σ4
t ] − (E[σ2

t ])2 =
1 − (E[σ2

t ])2

E[σ4
t ]

κ − (E[σ2
t ])2

E[σ4
t ]

<
1
κ

.

The bound of 1/κ arises because the squared return is a noisy proxy for the latent
volatility. This result nicely illustrates that a low R2 is not necessarily evidence for
model misspecification but can simply be due to using a noisy proxy. This point has
been made before by Andersen and Bollerslev (1998), but for the special case that the
true data generating process is a GARCH(1,1). Next, we derive an explicit expres-
sion for the Mincer-Zarnowitz R2 when the data generating process is a multiplicative
GARCH model.

Proposition 3. If σ2
t follows a multiplicative GARCH, Assumptions 1, 2 and 3 are

satisfied and ht|t−1 = σ2
t , the population R2 of the Mincer-Zarnowitz regression is given

by
R2 = (1 − (α + β)2)E[τ 2

t ] − (1 − α2κ − 2αβ − β2)
(1 − (α + β)2)E[τ 2

t ]κ − (1 − α2κ − 2αβ − β2) . (8)

Moreover, the R2 increases monotonically in E[τ 2
t ] with

lim
E[τ2

t ]→∞
R2 = 1/κ.

For τt = 1 constant, equation (8) reduces to the expression in Andersen and Boller-
slev (1998, p. 892), i.e. R2 = α2/(1 − 2αβ − β2). Proposition 3 shows that the R2

reaches the upper bound when τt is getting more volatile. At first, the result that the
R2 increases when τt gets more volatile may be puzzling because the expected MSE,
E[MSE(r2

t , gtτt)] = (κ − 1)E[g2
t ]E[τ 2

t ], increases in such a situation. Although this ob-
servation is correct, the variance of the squared returns, Var(r2

t ) = κE[τ 2
t ]E[g2

t ] − E[gt]2,
is increasing even faster, which leads to an overall increase in the R2.
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Figure 2: We depict the population R2 of a Mincer-Zarnowitz regression as a function of E[τ2
t ]. In the

left plot, β equals 0.92. In the right plot, we choose α = 0.05. In all cases, we set κ = 3.

The effect of the long-term component on the Mincer-Zarnowitz R2 is depicted in
Figure 2 which shows the population R2 as a function of E[τ 2

t ] for different values of
α and β. For τt = 1 being constant, the multiplicative GARCH model reduces to a
GARCH(1,1). As can be seen, even a small increase in E[τ 2

t ] can cause a steep increase
in the population R2. Also, for a given level of E[τ 2

t ], the population R2 is the higher
the more persistent (as measured by α + β) the GARCH component is.

4 Discussion

We show that a multiplicative GARCH model leads to returns with higher kurtosis than
in its nested GARCH specification. Similarly, the ACF of the squared returns can be
much more persistent in the multiplicative model than in the nested GARCH model,
provided that the long-term component is itself sufficiently persistent. Two empiri-
cally observed shortcomings of the GARCH model are that the squared standardized
residuals still exhibit excess kurtosis and that the implied ACF decays too quickly in
comparison with the empirical ACF of squared returns. Our results suggest that these
shortcomings may be due to an omitted multiplicative long-term component. Also,
note that both findings directly extend to a situation in which the GARCH(1,1) short-
term component is replaced by a covariance stationary GARCH(p, q). Last, we show
that the Mincer-Zarnowitz R2 is bounded by one divided by the fourth moment of the
innovation term. This finding generalizes the result presented in Andersen and Boller-
slev (1998) for the GARCH(1,1) model to the setting of a multiplicative conditionally
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heteroscedastic process.
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A Proofs

Proof of Proposition 1. The proof follows directly by applying the mutual independence
of gt, τt and Zt and by noting that Assumption 3 implies that E[τ 2

t ] > 1.

Proof of Proposition 2. First, note that under Assumptions 1, 2 and 3 the covariance
Cov(r2

t , r2
t−k) exists for every k ∈ N and is time-invariant. In the proof we use that τt and

gt are independent covariance stationary processes and that Zt are i.i.d. innovations.

ρMG
k = Cov(r2

t , r2
t−k)√

Var(r2
t )

√
Var(r2

t−k)

= E[τtτt−k]E[gtZ
2
t gt−kZ2

t−k] − E[gt]E[gt−k]
Var(r2

t )

= (E[τtτt−k] − 1)E[gt]2
Var(r2

t ) + (E[gtZ
2
t gt−kZ2

t−k] − E[gt]E[gt−k])E[τtτt−k]
Var(r2

t )

= Cov(τt, τt−k)E[gt]2
Var(r2

t ) + Cov(gt, gt−k)(Cov(τt, τt−k) + 1)
Var(r2

t )

Proof of Proposition 3. Using equation (4), we obtain

R2 = Var(gtτt)
Var(r2

t ) = E[g2
t ]E[τ 2

t ] − E[gt]2
E[g2

t ]E[τ 2
t ]κ − E[gt]2

= (1 − (α + β)2)E[τ 2
t ] − (1 − α2κ − 2αβ − β2)

(1 − (α + β)2)E[τ 2
t ]κ − (1 − α2κ − 2αβ − β2) .

When considering R2 as a function of E[τ 2
t ], the monotonicity and the limit follow from

rewriting R2 as:

R2 = 1 − (κ − 1)E[g2
t ]E[τ 2

t ]
κE[τ 2

t ]E[g2
t ] − E[gt]2

= 1 − κ − 1
κ − E[gt]2

E[g2
t ]E[τ2

t ]
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