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Abstract

We propose an imperfect information model for the expectations of macroeconomic fore-

casters that explains differences in average disagreement levels across forecasters by means

of cross sectional heterogeneity in the variance of private noise signals. We show that the

forecaster-specific signal-to-noise ratios determine both the average individual disagreement

level and an individuals’ forecast performance: forecasters with very noisy signals deviate

strongly from the average forecasts and report forecasts with low accuracy. We take the

model to the data by empirically testing for this implied correlation. Evidence based on

data from the Surveys of Professional Forecasters for the US and for the Euro Area supports

the model for short- and medium-run forecasts but rejects it based on its implications for

long-run forecasts.

JEL classification: E37, D80

Keywords: disagreement, expectations, imperfect information, signal-to-noise ratio.

1 Introduction

The dispersion of forecasts, of individual expectations, or of opinions in general has recently

been in the focus of theoretical and empirical economics (Laster et al., 1999), finance (Harris

and Raviv, 1993), and accounting (Barron et al., 1998). In particular, there is widespread

evidence that macroeconomic forecasts differ widely across professional forecasters (see, e. g.,

Mankiw et al., 2003; Dovern, 2015). Analyzing disagreement in survey expectations may yield

important insights about the expectation formation process. This, in turn, is important because

expectations are key for understanding macroeconomic dynamics.

∗Corresponding author: Bergheimer Str. 58, 69115 Heidelberg, Germany. Phone: +49-6221-54-2958. E-mail:
jonas.dovern@awi.uni-heidelberg.de
†Financial support by the Fritz-Thyssen-Foundation is gratefully acknowledged.
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Different mechanisms have been proposed in the literature to explain disagreement across

forecasters. These include the use of different forecasting models (Branch, 2004), the existence

of long-lasting beliefs due to historical experiences (Malmendier and Nagel, 2011), “sticky”

information structures where agents do update their information sets only infrequently (Mankiw

and Reis, 2002), or “imperfect” information structures where agents either receive (idiosyncratic)

noisy signals about the state of the world or face limited cognitive capacities such that they are

not able to process the full information available to them (Sims, 2003).

Kajal Lahiri has greatly contributed to this literature by suggesting models that incorporate

several distinct explanations for disagreement across forecasters.1 In Lahiri and Sheng (2008) and

Lahiri and Sheng (2010a), disagreement across forecasters arises due to differences in individual

forecasters’ prior beliefs, differences in processing new information, and differences in the relative

importance that forecasters attach to their priors and the new information. This framework is

especially useful to describe situations in which a sequence of forecasts (with shrinking forecast

horizon) is made for one particular random variable, such as an annual growth rate. Such

forecasts are commonly referred to as “fixed event” forecasts.

For forecasts of the “fixed horizon” type which we analyze below, models with imperfect

information structure have emerged as the most promising approach for modelling disagreement

across forecasters (Coibion and Gorodnichenko, 2012; Andrade and Le Bihan, 2013).2 Andrade

et al. (2014) develop a non-stationary model with imperfect information that is able to account

for the fact that forecasters disagree about the distant future. One attractive feature of this type

of approach is that it can straightforwardly be introduced into structural dynamic stochastic

general equilibrium (DSGE) models (see, e. g., Lorenzoni, 2009; Melosi, 2014; Nimark, 2014).

Existing models with imperfect information assume that agents are symmetric, i. e., all agents

face the same information structure—in particular, they face homogeneous signal-to-noise ratios.

Disagreement is generated only by the idiosyncratic flow of information. This implies that, on

average, every agent deviates from the average forecast just about as far as any other agent.

However, using a large data set with professional forecasts for different macroeconomic vari-

ables, Dovern (2015) finds that there is substantial persistence in the degree to which individual

forecasters deviate from the average forecast (consensus) and also differences in the average level

of disagreement across forecasters. To account for this fact, he suggests to generalize imperfect

information models to allow for heterogeneous signal-to-noise ratios. The central hypothesis is

that forecasters who receive very noisy signals about the state of the world form, on average,

forecasts which deviate more strongly from the cross-sectional average forecast than predictions

by individuals who face a high signal-to-noise ratio.

In this paper, we formally introduce such a model, describe its properties, and empirically

test whether the idea of heterogeneous signal-to-noise rates finds support in the data. To this

1In general, Kajal Lahiri has paid much attention to the heterogeneity of forecasters in many of his papers
(Davies and Lahiri, 1995; Lahiri and Liu, 2006; Lahiri and Sheng, 2010b; Lahiri et al., 2015).

2The alternative “sticky” information model of Mankiw and Reis (2002) has been empirically rejected as an
appropriate model to describe the behavior of professional forecasters mainly due to the fact that the observed
frequency of forecast updates is much higher than implied by this model (Dovern, 2013; Andrade and Le Bihan,
2013; Dovern et al., 2015).
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end, we empirically test a direct implication of this type of model. This implication is the

following: those forecasters with very noisy signals not only exhibit high levels of disagreement;

the model also implies that they produce larger forecast errors than forecasters with high signal-

to-noise ratios. Thus, the imperfect information model with heterogeneous signal-to-noise ratios

implies that the cross-sectional correlation between forecasters’ performance and their average

level of disagreement is positive. This is the hypothesis that we test below.

Our main findings are as follows. First, we show that an imperfect information model with

heterogeneous signal-to-noise ratios can generate substantial differences in individual average

levels of disagreement. Second, we show that such model implies a strong positive correlation

between these levels of disagreement and the individual forecast performance. Finally, we show

empirically that this correlation is also observed in the data for short- and medium-run forecasts

while the two measures corresponding to long-run forecasts are not significantly correlated.

The remainder of this paper is structured as follows. In Section 2, we describe theoretical

models with imperfect information structure that allows us to analyze disagreement and forecast

performance of individual forecasters under homogeneous as well as heterogeneous signal-to-

noise ratios. In Section 3, we briefly describe the data that we use for the empirical analysis. In

Section 4, we present empirical evidence based on the Surveys of Professional Forecasters from

the US and the Euro Area. Section 5 concludes.

2 A Stylized Model with Imperfect Information

To describe the predictions of models with imperfect information, we use a simplified version

of the one described in Coibion and Gorodnichenko (2012). We focus on a parsimonious data

generating process (DGP) which can easily be extended to a model with richer time series

dynamics. At first, we consider a model with homogeneous signal-to-noise ratios. In the next

step, we allow for different signal-to-noise ratios across forecasters.

2.1 Homogeneous Signal-to-Noise Ratios

The fundamental (or true) DGP for the scalar random variable yt is represented by the autore-

gressive process

yt = αyt−1 + εt, (2.1)

where εt ∼ N (0, σ2
ε). Due to information rigidities (“imperfect information”), each forecaster

i = 1,. . . , N observes a noisy signal about the state of the world which is given by

yi,t = yt + ηi,t, (2.2)

where ηi,t ∼ N (0, σ2
η) denotes the idiosyncratic noise shocks with E[ηitηjs] = 0 for i 6= j or s 6= t.

Furthermore, we assume that the noise shocks are independent of the fundamental shock εt.

One can interpret the shock ηi,t as representing differences in the information sets of forecasters.

An alternative interpretation is that this term represents differences in forecasters’ capabilities

3



to filter/interpret publicly available information (Lahiri and Sheng, 2008). Note that in the case

of homogeneous signal-to-noise ratios σ2
η is equal for all forecasters.

We denote by yi,t|s agent i’s best estimate of yt in the MSE-sense, conditional on information

available in period s. Given the model defined by (2.1) and (2.2), agents optimally employ the

Kalman filter (Kalman, 1960) to recursively update their estimates about yt. Their predictions

of the state variable yt, conditional on information in t−1 are denoted yi,t|t−1 and are recursively

defined by

yi,t|t−1 = αyi,t−1|t−1 (2.3)

yi,t|t = yi,t|t−1 +
[
Pt|t−1/

(
Pt|t−1 + σ2

η

)] (
yi,t − yi,t|t−1

)
(2.4)

Pt|t = Pt|t−1 − P 2
t|t−1/

(
Pt|t−1 + σ2

η

)
(2.5)

Pt+1|t = α2Pt|t + σ2
ε . (2.6)

Since agents are symmetric, the state variances do not differ across forecasters once the effect of

initial values is washed out. The steady-state value of Pt+1|t = Pt|t−1 = P̄ is implicitly defined

by the Riccati equation

Pt+1|t = α2
(
Pt|t−1 − P 2

t|t−1/
(
Pt|t−1 + σ2

η

))
+ σ2

ε , (2.7)

which we obtain by using (2.5) and (2.6). In general, this forecast error variance is decreasing

in the signal-to-noise ratio (σ2
ε/σ

2
η) and increasing in (the absolute value of) α. In what follows,

we confine the index i to state forecasts yi,t|t which differ even in the steady state due to the

idiosyncratic shocks ηi,t.

To analyze the relation between a forecaster’s performance and her average level of disagree-

ment, we compare the mean squared forecast error (MSFE) to the average squared deviation of

an individual forecast from the average forecast. Defining the one-step-ahead forecast error as

ei,t+1|t = yt+1 − yi,t+1|t = yt+1 − αyi,t|t, (2.8)

the expected MSFE in the model is given by the forecast error variance E[e2
i,t+1|t] = P̄ for all i.

Thus, obviously, the model predicts that forecasters have bad performance when the signal-to-

noise ratio is low and when they have to forecast highly persistent processes.

To derive the model-implied unconditional disagreement, we start by formally defining indi-

vidual disagreement in a particular period as

di,t+1|t =

yi,t+1|t − (1/N)

N∑
j=1

yj,t+1|t

2

. (2.9)

Next, we show how the unconditional expectation of disagreement is related to the forecast

performance. Consider (2.3) and abbreviate Φ̄ = P̄ /
(
P̄ + σ2

η

)
, such that

yi,t+1|t = αyi,t|t
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= α
(
yi,t|t−1 + Φ̄(yi,t − yi,t|t−1)

)
.

Rearranging and using (2.2) results in

yi,t+1|t = α
(
(1− Φ̄)yi,t|t−1 + Φ̄(yt + ηi,t)

)
. (2.10)

Employing the lag operator L that is defined such that Lsyi,t+1|t = yi,t+1−s|t−s, solve (2.10) and

write

yi,t+1|t =
αΦ̄

1− α(1− Φ̄)L
(yt + ηi,t). (2.11)

Combining (2.9) and (2.11) yields

E[di,t+1|t] = E

 α2Φ̄2

[1− α(1− Φ̄)L]2

yt + ηi,t − (1/N)
N∑
j=1

(yt + ηj,t))

2 (2.12)

=
α2Φ̄2

[1− α(1− Φ̄)L]2
E

N2η2
i,t − 2Nηi,t

∑N
j=1 ηj,t +

(∑N
j=1 ηj,t

)2

N2

 (2.13)

=
α2Φ̄2

[1− α(1− Φ̄)]2
N − 1

N
σ2
η (2.14)

where the last step follows since E[ηitηjs] = 0 for i 6= j or s 6= t. Replacing Φ̄ and assuming

(N − 1)/N ≈ 1, we can write the relation between E[di,t+1|t] and E[e2
i,t+1|t] = P̄ as

E[di,t+1|t] =
α2P̄ /(P̄ + σ2

η)σ
2
η[

1− α
(
1− P̄ /(P̄ + σ2

η)
)]2 , (2.15)

which is the same for all individuals in the homogeneous case. It can be shown that this expected

level of disagreement is decreasing in the signal-to-noise ratio and increasing in α. Figure 1

visualizes this dependence.3 Both effects are intuitive: if there is few information in the signals

that forecasters receive, forecasts are far dispersed around the average forecast. Likewise, if

forecasters have to deal with persistent processes, idiosyncratic noise has long-lasting effects on

the forecasts and lead to a more dispersed forecast distribution. Note that in the extreme of a

static DGP (α = 0), disagreement disappears.

Taken together, the model with homogeneous signal-to-noise ratios predicts a positive re-

lation between performance and disagreement across forecasting environments which differ in

terms of the fundamental DGP and the signal-to-noise ratio. For each set of parameters, how-

ever, it predicts that every forecaster has the same expected performance and the same expected

level of disagreement. The latter prediction is at odds with the empirical evidence provided in

Dovern (2015) and we now turn to a version of the model with heterogeneous signal-to-noise

ratios.

3In the simulation, α takes values from 0 to 0.95 and σ2
ε/σ

2
η ranges from 0.1 to 2.
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Figure 1: Effect of signal-to-noise ratio and persistence on MSFE and disagreement

2.2 Heterogeneous Signal-to-Noise Ratios

We make only one change to the model given by (2.1) and (2.2): the variance of the noise

shocks are forecaster-specific in the alternative model, and we denote them by σ2
i,η. Thus, there

might be forecasters that, on average, receive small noise shocks (relative to the variance of the

fundamental shocks) and those that receive large noise shocks. Since there is no closed-form

solution for the relation between σ2
ε/σ

2
i,η and E[di,t+1|t], not the least because the expected degree

of disagreement of each forecaster now depends on the signal-to-noise ratios of all forecasters, we

use a simulation study to highlight the implications of the model. We are particularly interested

in the correlation between E[e2
i,t+1|t] and E[di,t+1|t].

To obtain a continuum of forecasters with varying signal-to-noise ratios, we assume that each

forecaster draws an individual noise variance factor, δi, from a generalized beta distribution with

mean 1 and variance σ2
β, such that σ2

i,η = δiσ
2
η.

4 In practice, we use σβ = 1/3 which is obtained

by using a beta(2,6) distribution scaled by the factor of (2 + 6)/2.5

For α = 0.9, N = 40, σ2
ε = 1, and σ2

η = 1, Figure 2 shows how different individual signal-

to-noise ratios lead to different individual MSFEs and different individual levels of average

disagreement.6 The lower plot displays the relation between the individual signal-to-noise ratio,

σ2
i,η, and the average level of disagreement of each forecaster. The upper right plot displays

the relation between σ2
i,η and the forecasters’ MSFEs. Finally, the upper left plot displays the

implied relationship between disagreement and forecast performance. It is evident that the

model predicts a linear relation between those two variables.

So far, we have concentrated on one-step-ahead forecasts. But, of course, in reality we also

observe forecasts with larger forecast horizons. So, which predictions does our model make for

these? The first thing to note is that the optimal h-step-ahead forecast for each forecaster is

4By ensuring that the factors are equal to 1, on average, we can simulate cases which are comparable to the
homogeneous case in the sense that the average signal-to-noise ratio is equal to that in the model with symmetric
forecasters.

5Note that the scaling ensures that the mean is equal to 1. Results are the same qualitatively for other
parameterizations of the beta distribution or other distributional assumptions.

6The simulation is based on T = 5, 000 to ensure a good approximation of the expected moments.
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Figure 2: MSFEs and average disagreement levels under heterogeneous signal-to-noise ratios

given by yt+h|it = αhyt|it. If the DGP is stationary (|α| < 1), the MSFEs increase in h up to

a limiting value. This value is dervied by noting that for any h, the general form of (2.7) with

heterogeneous signal-to-noise ratios is given by

Pi,t+h|t = α2h
[
Pi,t|t−1 − P 2

i,t|t−1/
(
P 2
i,t|t−1 + σ2

i,η

)]
+ σ2

ε

h−1∑
j=0

α2j . (2.16)

For long-run forecasts where h→∞,

Pi,t+h|t → P∞ =
σ2
ε

1− α2
, (2.17)

the unconditional variance of the DGP. Note that this limit does not depend on σ2
i,η. Thus,

the model predicts that disagreement disappears for increasing forecast horizons. This can also

be seen by noting that the long-run forecasts converge to the unconditional mean of the true

DGP which, in our example, is given by 0. Figure 3 shows the relation between forecast perfor-

mance and average individual disagreement at different forecast horizons for two values of α. We

observe three things. First, the positive relationship between the two is confirmed by our simula-

tions. Second, disagreement (and obviously MSFEs) is higher for persistent fundamental DGPs.

Third, for increasing h all forecasters do indeed converge to the same performance level and

disagreement converges to zero. Abstracting from the fact that all forecasters submit the same

predictions if h → ∞, the slope of the “lines” in the performance-disagreement plane does not

depend on the horizon, i. e., the correlation between individual performance and disagreement

is the same for all horizons.
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Figure 3: Distribution of MSFEs and levels of E[di,h] under heterogeneous signal-to-noise ratios
(stationary DGP)

Empirical results of (Andrade et al., 2014; Dovern, 2015), however, suggest that long-run

disagreement can be substantial and may even exceed short-run disagreement. Andrade et al.

(2014) suggest to introduce a second informational rigidity into the model by assuming that

there are two types of fundamental shocks—transitory shocks and permanent shocks (to the

unconditional mean of yt). To demonstrate what such an extension implies for the relation

between individual disagreement and forecast performance, we replace (2.1) by

yt = (1− α)µt + αyt−1 + εt, ε ∼ N (0, σ2
ε) (2.18)

µt = µt−1 + eµt eµt ∼ N (0, σ2
µ), (2.19)

where ε and eµt are independent of each other and we set µ0 = 0 as a starting value without

loss of generality. In this model, forecasters have to infer whether changes in yi,t are due to

noise shocks, temporary fundamental shocks, or permanent fundamental shocks. Since they

come up with different estimates for µt and since their long-run forecasts will converge to these

estimates, there is long-run disagreement in this model. How does this modification affect the

cross-sectional correlation between individual disagreement and forecast performance? Figure 4

indicates how the latter changes relative to the stationary case.7 Comparing Figure 4 to 3

shows that the strong positive relationship is preserved. Not surprisingly, forecast errors are

higher, on average in the nonstationary case. Again, the slope of the horizon-specific “lines” in

the performance-disagreement space does not differ across horizons.

3 Data

We primarily rely on data from the Survey of Professional Forecasters (SPF) for the US. In

addition, we use long-run forecasts from the SPF for the Euro area (EA) to analyze the relation

between individual disagreement and forecast performance for very large forecast horizons. Both

7We set σ2
µ = 0.5.
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Figure 4: Distribution of MSFEs and levels of E[di,h] under heterogeneous signal-to-noise ratios
(non-stationary DGP)

surveys are conducted at a quarterly frequency. Survey participant—mostly from research insti-

tutes and financial institutions—are questioned about their forecasts for the future development

of a range of macroeconomic variables.

The US SPF had formerly been conducted by the American Statistical Association and the

National Bureau of Economic Research and was taken over by the Federal Reserve Bank of

Philadelphia in 1990. It covers a wide range of variables, but we concentrate on forecasts about

the (annualized) growth rate of real gross domestic product (GDP)8, the inflation rate, and

the three-month treasury bill rate. In this paper, we focus on fixed-horizon forecasts for one

to five quarters ahead. The sample periods range from 1968q4 to 2015q3 for GDP and the

unemployment rate and from 1981q3 to 2015q3 for inflation and the interest rate.

The European SPF is conducted by the European Central Bank. It covers forecasts for real

GDP growth, the inflation rate, and the unemployment rate. We focus on the those forecasts

with a horizon of five years.9 The sample covers the forecast periods from 1999q1 to 2015q3.

Table 1 displays some descriptive statistics for the different surveys, different variables, and

different forecast horizons. The data from the US SPF offer a longer sample and a larger total

number of forecasters in the cross-section compared to the EA SPF. The average number of

forecasts in each survey (which determines how well disagreement measures can be estimated) is

considerably larger in the EA SPF. Note that the pronounced differences in average disagreement

and the average squared forecast error are due to the different nature of the forecasts: the data

used from the US SPF refer to (annualized) quarter-on-quarter changes or quarterly averages,

respectively, while the data from the EA SPF refer to annual averages.

8Survey waves before 1992q1 refer to gross national product (GNP) rather than GDP.
9Strictly speaking, the five-years-ahead forecasts are fixed-event forecasts made for the annual average of the

forecast variables in a particular target year. This target year is changing in such a way that the forecast horizon
varies between 21 and 18 quarters. Given the very long forecast horizon, it is unlikely that forecasts are affected
by changes of the target year or small variations of the forecast horizon.
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Table 1: Descriptive statistics for SPF data

US EA
GDP h = 1 h = 2 h = 3 h = 4 h = 5 h = 20

ȳh 2.4 2.7 3.0 3.2 3.2 2.1
d̄h 3.1 3.3 3.5 3.9 4.1 0.1
ēh 11.6 12.6 13.9 15.7 14.7 6.1
T 188 188 188 188 183 63
∅N 17.5 17.5 17.5 17.4 16.4 43.8
N 258 258 258 258 255 89

Inflation h = 1 h = 2 h = 3 h = 4 h = 5 h = 20

ȳh 2.8 2.8 2.9 3.0 3.0 1.9
d̄h 1.1 0.8 0.7 0.7 0.7 0.05
ēh 9.5 7.9 7.5 7.7 8.3 1.2
T 137 137 137 137 137 63
∅N 11.4 11.4 11.4 11.3 11.1 45.0
N 181 181 181 181 178 90

Unempl. h = 1 h = 2 h = 3 h = 4 h = 5 h = 20

ȳh 6.3 6.3 6.2 6.2 6.2 8.0
d̄h 0.02 0.05 0.1 0.1 0.2 0.6
ēh 0.2 0.4 0.7 1.1 1.4 8.1
T 189 189 189 189 184 63
∅N 17.8 17.8 17.8 17.7 16.7 39.8
N 260 260 260 260 258 81

Tbill h = 1 h = 2 h = 3 h = 4 h = 5 h = 20

ȳh 4.0 4.0 4.1 4.2 4.3 −
d̄h 0.06 0.15 0.2 0.3 0.4 −
ēh .5 .9 1.7 2.6 3.6 −
T 137 137 137 137 137 −
∅N 11.2 11.2 11.2 11.2 10.8 −
N 182 182 182 182 180 −
Notes: The time-average of the consensus forecast (ȳh) is given by the grand mean across

N and T , i. e., ȳh = (1/NT )
∑N
i=1

∑T
t=1 yi,t+h|t.
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4 Empirical Results

To see whether the positive correlation between individual disagreement and forecast perfor-

mance, as implied by the imperfect information model with heterogeneous signal-to-noise ratios,

is empirically supported or rejected, we start by looking at short- to medium-run forecasts from

the US SPF. We only consider forecasters that submitted at least 4 forecasts.10 For each of

these forecasters (and separately for each of the variables and forecast horizons considered), we

calculate the MSFE and the average level of disagreement, which we denote by Ê[di,h]. We then

run regressions of the form11

M̂SFEi,h = β0 + β1Ê[di,h] + ui,h (4.1)

The results are given in Table 2. The results Most importantly, all estimated slope coefficients

(β1) are significantly different from 0 and often close to unity. This finding is robust across h and

for all three variables and suggests that M̂SFEi,h and Ê[di,h] adjust proportionately—similar

to what we find in the stylized theoretical model above. We also find a considerable degree

of explanatory content of the disagreement statistics for the MSFE of all variables’ forecasts.

Furthermore, the R2 statistics show that for inflation, unemployment and the tbill rate, the

relation between M̂SFEi,h and Ê[di,h] becomes weaker as the forecast horizon increases. The

pattern is less clear, however, in case of the R2 for the regression based on GDP data. To

see whether this observed trend causes disagreement and forecast performance based on very

long-run forecasts to be unrelated to each other, we now turn to the EA SPF that provides

information about five-year ahead forecasts.

Table 3 shows results based on the long-run forecasts from the EA SPF. Clearly, the cor-

relation between M̂SFEi,h and Ê[di,h] is not significantly different from 0 here. This suggests

that features other than informational imperfections as modelled above might be contributing

to disagreement at very large forecast horizons.

5 Conclusion

In this paper, we show that a model with imperfect information structure and heterogeneous

signal-to-noise ratios has a directly testable implication regarding the correlation between the

individual average level of disagreement and the individual forecast performance. We confirm

empirically and by means of simulation that forecasters with low signal-to-noise ratios deviate

a lot from the consensus forecast and, at the same time, produce relative large forecast errors.

We conclude that imperfect information models with heterogeneous signal-to-noise ratios as

proposed in Dovern (2015) are not rejected by the data based on the correlation between forecast

performance and disagreement for short- to medium-run forecast. For very long-run forecasts,

10Results are robust against selecting a higher required number of observations.
11To limit the influence of outlier observations, we use the square root of M̂SFEi,h as the dependent variable

in (4.1). The results based directly on M̂SFEi,h are qualitatively equivalent to those reported in the paper and
are available from the authors upon request.
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Table 2: Correlation between Performance and Disagreement (US SPF)

GDP h = 1 h = 2 h = 3 h = 4 h = 5

β0 1.762∗∗∗ 1.779∗∗∗ 2.193∗∗∗ 1.860∗∗∗ 2.067∗∗∗
(14.76) (13.60) (16.53) (14.85) (14.10)

β1 0.972∗∗∗ 0.955∗∗∗ 0.838∗∗∗ 1.168∗∗∗ 0.997∗∗∗
(14.82) (13.74) (12.43) (18.50) (13.95)

N 256 254 249 247 241
R2 0.46 0.43 0.38 0.58 0.45

Inflation h = 1 h = 2 h = 3 h = 4 h = 5

β0 1.481∗∗∗ 1.651∗∗∗ 1.811∗∗∗ 1.948∗∗∗ 2.007∗∗∗
(7.67) (10.45) (11.80) (12.65) (9.78)

β1 1.309∗∗∗ 1.067∗∗∗ 0.879∗∗∗ 0.788∗∗∗ 0.921∗∗∗
(7.54) (6.38) (5.23) (4.89) (4.23)

N 181 179 178 177 173
R2 0.24 0.19 0.13 0.12 0.09

Unemployment h = 1 h = 2 h = 3 h = 4 h = 5

β0 0.287∗∗∗ 0.433∗∗∗ 0.503∗∗∗ 0.665∗∗∗ 0.719∗∗∗
(12.16) (11.52) (11.37) (11.66) (11.44)

β1 1.227∗∗∗ 0.852∗∗∗ 1.059∗∗∗ 0.917∗∗∗ 0.982∗∗∗
(7.92) (5.30) (7.28) (5.82) (6.57)

N 258 256 251 249 244
R2 0.20 0.10 0.18 0.12 0.15

Tbill h = 1 h = 2 h = 3 h = 4 h = 5

β0 0.369∗∗∗ 0.453∗∗∗ 0.665∗∗∗ 0.627∗∗∗ 0.878∗∗∗
(7.82) (8.70) (9.44) (6.08) (6.64)

β1 1.487∗∗∗ 1.528∗∗∗ 1.367∗∗∗ 1.928∗∗∗ 1.641∗∗∗
(10.71) (13.66) (11.08) (11.55) (8.84)

N 182 179 179 175 171
R2 0.39 0.51 0.41 0.44 0.32

Notes: Dependent variables are the RMSFEs of the forecasters. The constant is denoted β0,
whereas β1 refers to the correlation between the RMSFE and the disagreement of the forecasters.

Table 3: Correlation between Performance and Disagreement (EA SPF)

Inflation GDP Unempl.

β0 1.136∗∗∗ 2.515∗∗∗ 2.663∗∗∗
(17.37) (14.04) (11.09)

β1 −0.409 −0.797 0.001
(−1.41) (−1.33) (0.00)

N 85 83 78
R2 0.02 0.02 0.00

Notes: Dependent variables are the RMSFEs of the forecast-
ers. The constant is denoted β0, whereas β1 refers to the
correlation between the RMSFE and the disagreement of the
forecasters.
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in contrast, the model’s predictions are rejected by the data. Overall, this type of model remains

promising for describing the expectation formation process in macroeconomic models.

We can think about a number of extensions of our work. First, one might use the information

that the US SPF provides on the occupation of forecasters. In Lahiri and Sheng (2008), the

authors briefly comment on how this sort of information may be employed to examine questions

regarding the presence of strategic bias as described, e. g., by Laster et al. (1999). Second,

the model-implied relation between the persistence of the fundamental DGP on the one hand

and the level of disagreement on the other hand could be tested empirically in a cross-country

setting. This might yield further insights about the way expectations are formed and about how

disagreement is related to fundamental characteristics of macroeconomic dynamics. Finally,

adapting the model to generate zero correlation between average individual disagreement and

individual forecast performance for long-run forecasts remains a challenging task.

References

Andrade, P., Crump, R. K., Eusepi, S., and Moench, E. (2014). Fundamental disagreement.
Working Papers 524, Banque de France.

Andrade, P. and Le Bihan, H. (2013). Inattentive professional forecasters. Journal of Monetary
Economics, 60(8):967–982.

Barron, O. E., Kim, O., Lim, S., and Stevens, D. E. (1998). Using analysts’ forecasts to measure
properties of analysts’ information environment. Accounting Review, pages 421–433.

Branch, W. A. (2004). The theory of rationally heterogeneous expectations: Evidence from
survey data on inflation expectations. Economic Journal, 114(497):592–621.

Coibion, O. and Gorodnichenko, Y. (2012). What can survey forecasts tell us about information
rigidities? Journal of Political Economy, 120(1):116 – 159.

Davies, A. and Lahiri, K. (1995). A new framework for analysing survey forecasts using three-
dimensional panel data. Journal of Econometrics, 68:205–227.

Dovern, J. (2013). When are GDP forecasts updated? Evidence from a large international panel.
Economics Letters, 120(3):521–524.

Dovern, J. (2015). A multivariate analysis of forecast disagreement: Confronting models of
disagreement with survey data. European Economic Review, 80(C):16–35.

Dovern, J., Fritsche, U., Loungani, P., and Tamirisa, N. T. (2015). Information rigidities:
Comparing average and individual forecasts for a large international panel. International
Journal of Forecasting, 31(1):144–154.

Harris, M. and Raviv, A. (1993). Differences of opinion make a horse race. Review of Financial
Studies, 6(3):473–506.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of
basic Engineering, 82(1):35–45.

13



Lahiri, K. and Liu, F. (2006). Modelling multi-period inflation uncertainty using a panel of
density forecasts. Journal of Applied Econometrics, 21(8):1199–1219.

Lahiri, K., Peng, H., and Sheng, X. (2015). Measuring uncertainty of a combined forecast and
some tests for forecaster heterogeneity. CESifo Working Paper Series 5468, CESifo Group
Munich.

Lahiri, K. and Sheng, X. (2008). Evolution of forecast disagreement in a Bayesian learning
model. Journal of Econometrics, 144(2):325–340.

Lahiri, K. and Sheng, X. (2010a). Learning and heterogeneity in GDP and inflation forecasts.
International Journal of Forecasting, 26(2):265–292.

Lahiri, K. and Sheng, X. (2010b). Measuring forecast uncertainty by disagreement: the missing
link. Journal of Applied Econometrics, 25(4):514–538.

Laster, D., Bennett, P., and Geoum, I. S. (1999). Rational bias in macroeconomic forecasts.
Quarterly Journal of Economics, 114(1):293–318.

Lorenzoni, G. (2009). A theory of demand shocks. American Economic Review, 99(5):2050–2084.

Malmendier, U. and Nagel, S. (2011). Depression babies: Do macroeconomic experiences affect
risk taking? The Quarterly Journal of Economics, 126(1):373–416.

Mankiw, N. G. and Reis, R. (2002). Sticky information versus sticky prices: a proposal to
replace the new Keynesian Phillips curve. Quarterly Journal of Economics, 117:1295–1328.

Mankiw, N. G., Reis, R., and Wolfers, J. (2003). Disagreement on inflation expectations. NBER
Macroeconomics Annual, pages 209–248.

Melosi, L. (2014). Estimating models with dispersed information. American Economic Journal:
Macroeconomics, 6(1):1–31.

Nimark, K. P. (2014). Man-bites-dog business cycles. American Economic Review, 104(8):2320–
2367.

Sims, C. (2003). Implications of rational inattention. Journal of Monetary Economics, 50(3):665–
690.

14


	Introduction
	A Stylized Model with Imperfect Information
	Homogeneous Signal-to-Noise Ratios
	Heterogeneous Signal-to-Noise Ratios

	Data
	Empirical Results
	Conclusion

