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Abstract

Agencies charged with regulating complex risks such as food safety or novel
substances frequently need to take decisions on risk assessment and risk manage-
ment under conditions of ambiguity, i.e. where probabilities cannot be assigned to
possible outcomes of regulatory actions. What mandates should society write for
such agencies? Two approaches stand out in the current discussion. One charges
the agency to apply welfare economics based on expected utility theory. This ap-
proach underpins conventional cost-benet analysis (CBA). The other requires that
an ambiguity-averse decision-rule – of which maxmin expected utility (MEU) is the
best known – be applied in order to build a margin of safety in accordance with the
Precautionary Principle (PP). The contribution of the present paper is a relative
assessment of how a CBA and a PP mandate impact on the regulatory task of risk
assessment. In our parsimonious model, a decision maker can decide on the preci-
sion of a signal which provides noisy information on a payoff-relevant parameter. We
find a complex interplay of MEU on information acquisition shaped by two coun-
tervailing forces that we dub ’Precautionary Learning’ and ’Research Pessimism’.
We find that – contrary to intuition – a mandate of PP rather than CBA will often
give rise to a less informed regulator. PP can therefore lead to a higher likelihood
of regulatory mistakes, such as the approval of harmful new substances.
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tionary principle; active information acquisition; regulatory mandates.
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1 Introduction

In the early summer of 2011, the European Union experienced an outbreak of Shiga-

toxin producing Escherichia coli (STEC).1 More than 3,100 cases of bloody diarrhea and

more than 850 of haemolytic uremic syndrome (HUS), a serious condition that can lead

to kidney failure, were reported during the outbreak. There were 53 confirmed deaths

(EFSA 2012). The outbreak of STEC was linked through epidemiological research to

the consumption of fresh salad vegetables (BfR 2012). Because research found toxin

producing E.coli on cucumbers from Spain, European Commission and German officials

issued alerts and effectively required Spanish cucumbers to be withdrawn from the mar-

ket (BBC 2011; BfR 2012). These events saddled Spanish vegetable growers, among

others, with economic damages of several hundred millions of Euros (BBC 2011). After

more research commissioned by the European Food Safety Authority (EFSA) and the

German Interior Ministry, however, it became clear that officials had in all likelihood

misidentified the source: Bean sprouts from a German farm, rather than contaminated

Spanish cucumbers, carried the dangerous strain that gave rise to potentially lethal HUS

among consumers (BfR 2012). While acknowledged as the most likely source, an entirely

conclusive result on the cause of the outbreak has never been established.

The STEC incident from 2011 typifies an important recurring problem for regula-

tors. Here, a regulator was called upon to make decisions of both public mortality

and morbidity risk and economic livelihoods on the basis of ambiguous evidence on the

source of risk. Not only did the regulator have to decide on which produce to ban in

order to eliminate the source of risk, thus imposing damages of several hundred million

Euros on its producers. The regulator also had to decide on the scale of the research

effort of collecting and screening thousands of samples in order to reduce the risk of

erroneously banning harmless produce while allowing harmful produce to continue to

be sold. As the European Commission made clear after the episode, the relationship

between the regulator’s research effort and the quality of the regulatory decision was

well understood.2

Situations in which a regulator needs to take a highly consequential decision based

on poor, but improvable knowledge, are commonplace in today’s world (Sunstein 2005a;

Randall 2009; Graham 2001). This raises the question of what rules should govern these

decisions. Differently put, under what mandate should the EFSA reach its decisions on

the appropriate amount of research effort and on product regulation? Two approaches

for writing this mandate stand out in the current discussion on regulation. One is the use

of a traditional welfare-economic approach based on expected utility theory. This is the

1The outbreak was first incorrectly classified as EHEC and has become widely known under this label.
2EU Health Commissioner John Dalli said ”In future we need to see how the timing of the alerts

can be closer to the actual scientific basis and proof” (EUobserver 2011), suggesting that the European
Commission would have preferred a better level of information before removing a certain product from
the market that might or might not be the cause of a serious health incident.

2



approach that underpins most forms of conventional cost-benefit analysis (CBA) (Viscusi

et al. 2000).3 The other is the Precautionary Principle (PP). Despite lacking a clear

definition (Asselt et al. 2013) and being criticized on grounds of internally inconsistency

(Sunstein 2005b) and logical incoherence (Peterson 2006), the PP has been adopted by

the European Commission (European Commission 2000) and gained significance of ”a

general priciple of EU law” (Recuerda 2006). The PP has several connotations, all of

them rooted in the presence of fundamental uncertainties that challenge traditional risk

assessments. One of these interpretations of the PP requests the regulator to avoid harm

even if the causal chain is subject to scientific uncertainty, and thus to prepare against

unfavorable events (Zander 2010; Sunstein 2005c). A related, yet distinct, interpretation

of the PP directly targets the level of information under which the regulator has to make

her decision. In this widespread view, regulatory mandates based on the PP would lead

to ’more science’ (Tickner 2002) and thus a better informed regulatory decision than

conventional CBA mandates (Cranor 2005; Myers and Raffensberger 2005; Martuzzi

2007; Bourg and Whiteside 2009).

How to meaningfully compare the implications of CBA and PP? Over the last

decades, the literature on decision-making under uncertainty has offered alternatives

to the subjective expected utility framework (Savage 1972) which underpins traditional

CBA (Dasgupta and Pearce 1973; Shaw and Woodward 2008). These non-expected util-

ity frameworks provide several coherent ’rationalizations’ of ambiguity averse preferences

(Gilboa and Schmeidler 1989; Klibanoff et al. 2005; Chateauneuf et al. 2007), forming

the decision-theoretic foundations of the PP in applications (Asano 2010; Athanassoglou

and Xepapadeas 2012; Basili et al. 2008; Lemoine and Traeger 2012; Millner et al. 2013;

Treich 2010; Treich et al. 2013; Vardas and Xepapadeas 2010; Barrieu and Sinclair-

Desgagné 2006; Gollier and Treich 2003; Gollier et al. 2000). Despite being important

steps into a solid economic foundation of the PP, these contributions are not capable of

shedding light on the interplay of regulatory decision and research effort that was at the

heart of the EFSA tasks during the STEC outbreak. The reason for this gap is that the

present PP literature rests upon a static level of information, leaving disregarded recent

decision-theoretic advances in formalizing intertemporal ambiguity averse preferences

under learning (Epstein and Schneider 2003, 2007).

The purpose of the present paper is to exploit the insights of these recent advances.

By operationalizing the PP as maxmin expected utility preferences (Gilboa and Schmei-

dler 1989), thus following the main approach in the economic literature on the PP (Asano

2010; Athanassoglou and Xepapadeas 2012; Treich et al. 2013; Vardas and Xepapadeas

2010), we can build on Epstein and Schneider (2003, 2007) to analyze the PP in an

intertemporal set-up with learning. In doing so, the paper demonstrates how decision

problems of the EFSA type can be formalized within these decision-theoretic frame-

works; likewise, it extends these frameworks by showing how decisions about active

3Also this traditional approach is prone to subtleties, cf. Martin and Pindyck (2015).
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learning can be incorporated into decision-making under ambiguity. Jointly, these two

steps demonstrate that intuition leads in many cases to a mistaken prediction about the

relative research efforts expended by a regulator operating under a conventional CBA

mandate and one operating under a PP mandate. In many settings conventional CBA,

not the PP, leads to a greater effort to understand the true state of the world.

The paper proceeds in three steps. By introducing two specific stylized examples

of regulatory decision-making situations, we first illustrate numerically that in one of

them the standard intuition holds, while in the other one it fails. This discrepancy of

outcomes, in which the PP sometimes leads to more research, sometimes to less, jus-

tifies the development of a simple conceptual model that explains the nature of these

effects. We develop such a model and demonstrate that there are two effects at work, a

’Precautionary Learning Effect’ that makes a PP regulator value research more highly

than a CBA regulator, and a ’Research Pessimism Effect’ that has the opposite effect.

Which effect dominates depends on the specific features of the decision-making situa-

tion. This means that no mandate will ensure that the regulatory decision is always

better informed, irrespective of the circumstances. The insight that the choice of the

mandate does not have a uniform impact on the regulator’s level of information is not

only important in its own right. The identification of the two countervailing effects also

has immediate implications for the design of regulatory institutions. A setting in which

the decision on information acquisition is institutionally separate from the regulatory

decision can reconcile the PP with its notion of better informed decision-making.

We proceed as follows. Section 2 numerically works out two stylized examples, the

STEC example from above and the approval decision for a new pesticide by the Environ-

mental Protection Agency. Despite being structurally very similar, the examples exhibit

sharply different ramifications of the PP on the research effort. Section 3 develops the

fundamental decision-theoretic model that embraces both examples. The reader more

interested in the formal analysis may thus skip section 2 and go straight to section 3.

Section 4 demonstrates the existence of two countervailing effects of the PP on infor-

mation acquisition and, by comparing their relative dependency on the payoff-structure,

provides a compelling understanding of the contrarian findings in section 2. Finally,

section 5 concludes.

2 Two leading examples

In this section we present a stylized numerical version of the STEC example delineated

in the introduction. The second example, revolving around the approval decision for a

novel pesticide by the Environmental Protection Agency (EPA), is very similar in its

structure but features a sharply different effect of the PP on research effort.
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2.1 Example 1: STEC and the EFSA

At the core of the European Food Safety Authority’s (EFSA) decision problem is un-

certainty about which vegetable is the actual cause of an STEC outbreak. For the sake

of simplicity, say that the set of potential origins of the infection has been narrowed

down to cucumbers and sprouts exclusively. Thus, either cucumbers or sprouts should

be banned from the market to prevent harm from society.4 The reason not to ban (or

prematurely warn for) both products is the significant loss in trade value that has serious

impacts on the agricultural sector, as was the case for Spanish cucumber farmers. Table

1 gives a stylized specification of societal costs that accrue under the two possible states

of the world and the two different actions by the EFSA.

Table 1: Societal outcomes in millions EUR of the EFSA’s ban decision.

Sprouts Cucumbers
contaminated contaminated

Ban sprouts +500 −500
Ban cucumbers −500 +500

A product ban results in losses to the agricultural sector that equal the market value

of the product, here assumed to be 500 million EUR for either product. The baseline

for calculating the payoffs is the health incident without any intervention. Relative to

that, the ban of the contaminated vegetable renders positive payoffs equal to the health

damages caused by STEC, which are assumed to be 1000 million EUR. If the EFSA

makes the correct decision and bans the contaminated vegetable, final societal payoffs

are thus +1000 − 500 = +500 million EUR. In contrast, banning the wrong product

just leads to losses in the market value of this product, −500. The numbers chosen are

for illustration purposes only, but are in the order of magnitude of the actual decision

problem back in 2011.5

Research on the true origin of the outbreak is crucial to increase the chance of making

the right decision. It involves taking samples of cucumbers and sprouts from different

regions and testing them for the specific dangerous E.coli strain. Such research is always

imperfect, as was demonstrated by wrongly suspecting Spanish cucumbers based on

positive E.coli tests. Importantly, however, the EFSA is not only passive recipient

of research results: It can decide how many resources to invest in research and thus

improving the state of knowledge about the source of the infection. The usual economic

4The simultaneous occurrence of the dangerous strain in cucumbers and sprouts is extremely unlikely
due to separate production lines and can thus be ignored.

5There are de facto more options for the EFSA, namely a ban of both products or of none. Both
actions would result in payoffs of 0 EUR relative to the baseline, irrespective of the true state of the
world. Once the EFSA has observed evidence that, say, sprouts are more likely to be the cause of the
outbreak, banning sprouts however strictly dominates the ban of both and the ban of none product. The
same obviously holds if there is evidence that cucumbers ought to be banned. As a result, the actions
’ban both’ and ’ban none’ can be ignored right from the start.
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principles of this learning process are decreasing marginal improvements in the state of

knowledge and / or increasing marginal costs. Obviously, the EFSA finds the optimal

level of research by balancing costs and benefits of improved knowledge.

Assume that the costs of such a research program are known to the EFSA. The

benefits, however, are uncertain for different reasons. The first reason why benefits are

uncertain is the imperfectness of research. It is unclear whether results are conclusive,

and even if so, results may be misleading. This uncertainty has to be taken into account

when assessing the benefits of research. Past experience, however, gives the EFSA a quite

thorough understanding of the odds of such a research program. The second source of

uncertainty is more severe. At the core of the EFSA’s decision problem is uncertainty

whether sprouts or cucumbers are the reason for the health emergency. The EFSA

initially lacks reliable data on this question and is thus confronted with fundamental

scientific uncertainty.

As mentioned in the introduction, there exist two opposed ways for the EFSA to re-

flect this uncertainty and accordingly make an optimal regulatory decision. The heuristic

in standard CBA is to apply subjective expected utility theory and describe the (lack of)

initial knowledge with the uniform prior over the two possible states. To be specific, the

EFSA’s knowledge before research can be described by ρ0 = 1/2, where ρ0 = 0 (ρ0 = 1)

would correspond to perfect knowledge that sprouts (cucumbers) are the contaminated

vegetable. Expected benefits are calculated based on this initial prior. Opposed to

this standard CBA approach, many have argued to account for the lack of precise data

about the problem and use robust decision rules in the precautionary spirit of ’better be

safe than sorry’ (Sunstein 2005c). A prominent example for such precautionary decision

making is to describe the initial knowledge by a set of probability distributions and to

base decision making on the worst probability scenario among them (maxmin expected

utility).

Let us first analyze the research decision if the EFSA follows a standard CBA. With

reasonable functional specifications on the likelihood of research outcomes and costs of

different research precision level (see appendix A), we get the following expected benefits

and costs.6

Table 2: Research decision by the EFSA with a CBA mandate. Numbers are millions of Euros.

Precision level Expected benefits Costs Net benefits

Low 316 55 261
Medium 432 110 322

High 475 165 310

Marginal expected (gross) benefits are decreasing in the research precision and marginal

costs are constant. Expected gross benefits under perfect information would be 500 mil-

6The general framework to calculate these numbers will be developed in section 3
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lion EUR since the correct product ban decision could then be taken in any case. But

this status of full information is hardly attainable. Research is imperfect so that its ben-

efits, even under high research precision, fall short of the value of perfect information.

In our example, the EFSA equipped with the CBA decision rule would choose a medium

research level. Increasing research further would increase expected benefits; the higher

costs, however, do not justify that.

We now compare this result to the research precision choice if the EFSA followed

the PP, modeled as maxmin expected utility (Gilboa and Schmeidler 1989). In contrast

to the single probability distribution of the CBA approach, the EFSA equipped with

a PP mandate initially holds a set of priors (see Vardas and Xepapadeas 2010; Asano

2010). Without information that one state is more likely than the other, it is plausible

to assume a symmetric set around the uniform distribution ρ0 = 1/2. Let this set be

M0 = [3/8, 5/8]. The first consequence of assuming a set of priors is that also ex-

post knowledge (after observing research results) is a set of probability distributions

(the Bayesian updates of all single priors). The EFSA’s decision under the PP is, by

definition of maxmin expected utility, based on the worst of these ex-post probability

distributions. Likewise, the optimal research decision is found by balancing expected

benefits (taking into account the final ban decision for all possible research results) and

costs under the worst ex-ante prior.

Table 3: Research decision by the EFSA with a PP mandate. Numbers are in millions of Euros.
Expected benefits are calculated based on the worst probability scenario.

Precision level Expected benefits Costs Net benefits

Low 252 55 197
Medium 405 110 295

High 464 165 299

The counterpart of Table 2 is Table 3. Not being subject to uncertainty, costs are

the same irrespective of the regulatory mandate. As for the CBA mandate, marginal

expected gross benefits are decreasing in the level of precision. We see however that

expected benefits under the PP are systematically lower than their CBA counterparts.

The simple reason is that expected benefits are calculated based on the worst probability

scenario.

The main finding is that optimal research levels under the PP and CBA are different.

The PP, in line with the narrative of precautionary learning, increases the research

precision choice relative to the CBA mandate. Higher information costs are tolerated

to improve the product ban decision. Due to the higher level of information acquisition,

the regulatory ban decision is improved, decreasing the odds of further STEC infections.

The EFSA operating under a standard CBA, however, considers the information costs

for this gain in precision too high.
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2.2 Example 2: The EPA decides on a novel pesticide

The second example is about the US Environmental Protection Agency (EPA) com-

missioned to decide whether to approve a novel pesticide. The pesticide relies on a new

mechanism against a variety of pests, and suppose its improved efficacy has already been

demonstrated. What has not been researched, however, is whether the new pesticide

poses any threat to human health. The approval decision of the EPA critically depends

on whether this is the case or not and is complicated by the fact that the pesticide builds

on a novel mechanism on which no data exists.

The similarities to the EFSA’s task to ban a contaminated vegetable are striking.

In both cases there is uncertainty about a payoff relevant parameter with two possible

states. The EFSA is uncertain about whether sprouts or cucumbers are responsible for a

serious STEC outbreak; the EPA is uncertain whether a novel pesticide has severe side-

effects to human health or not. Intimately linked are two possible regulatory actions.

The EFSA can either ban sprouts or cucumbers from the market; the EPA can approve

or not approve the pesticide. In both examples the appropriate decision depends on the

underlying true state of the world. The regulatory thus benefits from information about

the true state.

To specify the EPA example, let us assume that non-approval of the pesticide is the

baseline and, relative to that, approval gives rise to societal gains of 500 million USD

if the substance is innocent and losses of −500 million USD if involves negative health

effects. See table 4.

Table 4: Societal outcomes in millions USD of the EPA’s pesticide approval decision.

Pesticide Pesticide
harmless harmful

Approval +500 −500
Non-approval 0 0

Another similarity of both examples is the option to undertake and shape research

efforts to learn about the true state of the world. Pesticides are tested with animals

to assess their health impacts on humans, and this testing can take different levels of

precision. Suppose the substance can either be tested with mice, rabbits or apes. The

more similar to humans the animals are, the higher the costs and the reliability of

research. The research precision is a choice variable to the EPA, as it was to the EFSA

in the STEC example.

The EPA operates in an uncertain environment. There is uncertainty whether re-

search results will be conclusive and if so, how reliable the results actually are. More

severe, the EPA has no data on the novel pesticide, thus facing the same kind of fun-

damental scientific uncertainty that complicated the EFSA decision. In the previous

section we analyzed the EFSA’s research decision under two regulatory mandates, CBA

8



and PP, and found, as expected, that the PP pushed the EFSA to undertake more

research relative to CBA. The following tables demonstrate that the impact of the reg-

ulatory mandate on the EPA’s research choice is fundamentally different.

Table 5: Research decision by the EPA with a CBA mandate. Numbers are millions of USD.

Precision level Expected benefits Costs Net benefits

Low 158 55 103
Medium 216 110 106

High 238 165 73

Table 5, the counterpart of Table 2, is based on the same information structure as

in the previous example. Again, we observe decreasing marginal expected benefits of

research precision. Expected (gross) benefits here are significantly smaller (essentially

half the corresponding numbers of the EFSA example) because gains accrue only if the

pesticide is harmless, while the EFSA can realize gains in either case. As in the EFSA

example, though, trading off benefits and costs of research under the CBA mandate

leads to a medium level of research precision.

Table 6: Research decision by the EPA with a PP mandate. Numbers are millions of USD.
Expected benefits are calculated based on the worst probability scenario.

Precision level Expected benefits Costs Net benefits

Low 103 55 48
Medium 156 110 46

High 176 165 11

In the EFSA example (cf. Table 3), the PP mandate increased research efforts relative

to the CBA decision rule. Table 6 shows that a PP mandate for the EPA has the contrary

effect. As before, expected (gross) benefits are increasing in the level of precision with

decreasing marginal benefits. Also, the focus on the worst probability scenario gives

rise to consistently lower expected benefits compared to the CBA mandate. What is in

stark contrast to the previous example, however, is that balancing costs and benefits of

research under the PP mandate here leads to a reduction in research precision. In other

words, the EPA equipped with the maxmin rule would, relative to a CBA mandate,

accept an increase in wrong decisions about the pesticide in order to save information

costs. This is in clear contradiction to the notion of precautionary learning.

The EFSA and the EPA examples are very similar in their structure, so why does

the PP lead to such disparate information acquisition choices? The following section

develops a simple decision-theoretic framework that embraces both examples and thus

opens them to a joint analysis. With this framework at hand it will be possible to

verify the findings of the two examples in a general algebraic way and gain a deeper

understanding of the different and partially counterintuitive findings.
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3 The general framework

In order to shed light on the interplay of regulatory mandates and information acqui-

sition, this section develops a parsimonious framework combining two building blocks.

The first building block is a two states-two actions model with a one-shot noisy signal

structure whose precision is a choice variable to the decision-maker. Around this active

learning model, we build maxmin expected utility preferences as the second building

block. From a decision-theoretic viewpoint, our framework thus analyzes active learning

under ambiguity aversion and is, to our knowledge, the first model to do so.

3.1 Timeline

Figure 1 presents the time structure of the model. First, nature chooses a payoff relevant

parameter θ from two possible values, θ− and θ+. The regulator is uncertain which

parameter is the true θ. In the STEC example in section 2.1, the EFSA is uncertain

whether sprouts (θ = θ+) or cucumbers (θ = θ−) is the origin of the STEC outbreak;

in the second example in section 2.2, the EPA is uncertain whether a new pesticide is

harmless and beneficial (θ = θ+) or has severe side-effects to human health and the

environment (θ = θ−).

In the second stage, the regulator decides on the precision of research activities. The

result of this research realizes in stage three. Research results can be either inconclusive

or they might provide evidence for one of the two parameter values being the true θ.

As usual, however, there is some likelihood that even conclusive research results are

wrong. The more resources the regulator invests into research precision (stage 2), the

less likely get those erroneous findings. This option to influence the information structure

is called active learning, also known as active information acquisition. It is an example

of This decision stage The main focus of this paper is to analyze the active information

acquisition decision under different regulatory mandates.

After research results from stage 3 have been observed and processed to a better, yet

incomplete understanding of the decision problem, the regulator has to make the final

regulatory decision a (stage 4). The regulator chooses among (randomizations over) two

actions, a− and a+, where the first is optimal if θ = θ− and the second if θ = θ+. In

the examples, the actions available to the EFSA are the ban of sprouts (a = a+) or the

ban of cucumbers (a = a−); the EPA can either approve the new pesticide (a = a+) or

not approve it (a = a−). In both examples, no action dominates the other: The optimal

decision depends on the true state of the world θ.

In a regulatory dimension, stage 2 and stage 4 correspond to risk assessment and risk

management (Sunstein 2002; Haimes 2005), respectively. Correspondingly, the economic

theory of uncertainty and information differentiates informational and terminal moves

(Hirshleifer and Riley 1992).

In the following subsections we will explain the components of the model in detail.
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Figure 1: Time structure of the model. The regulator chooses how much to invest into research
precision (stage 2) and makes the final regulatory decision (stage 4). Both decisions have to
be taken under incomplete knowledge because the regulator is uncertain which payoff relevant
parameter θ was chosen by nature in stage 1. Research results in stage 3 however provide noisy
information about θ. The precision of this information depends on the regulator’s investment
decision in stage 2.

In the spirit of backward induction, which is the natural tool to solve the model, we

start with payoffs (3.2) and competing regulatory mandates (3.3) to analyze the final

regulatory decision of stage 4 (3.4). In a next step, we then explain the signal structure

that represents the observation of research results in stage 3 (3.5) and finally turn to the

choice of research precision in stage 2 (3.6) that is the central topic of this paper.

3.2 Payoff structure

Let π+
− denote the payoff if the true state is θ− and the regulator chooses action a+.

All other notations accordingly. The assumptions π−− > π+
− and π+

+ > π−+ then reflect

that there is no dominant action. We also assume that the difference in payoffs under

correct and incorrect decision be independent of the states, π+
+ − π−+ = π−− − π+

− =: a∆,

and call a∆ the error cost. It measures how large the cost of erroneous decision-making

by the regulator is. The second parameter we define is the payoff asymmetry parameter

π∆ = π+
+ − π−− = π−+ − π+

−. This parameter captures, orthogonal to the interpretation

of a∆, how asymmetric the regulatory problem is in terms of the unknown parameter θ.

Parameter π∆ is non-negative if we assume, without loss of generality, that π+
+ ≥ π−−. As

a further simplification, we normalize payoffs such that π−−+π−+ = π+
+ +π+

− = 0. We will

see in section 3.4 that this is equivalent with normalizing the value of no information in

the CBA case to 0. The initially four dimensional payoff space is now fully described by

the error cost a∆ and the payoff asymmetry π∆. Figure 2 gives a graphical illustration.

Table 7 summarizes how the two examples fit into the general framework. The

payoff asymmetry parameter π∆ vanishes in the STEC example as the final payoffs are

symmetric over both parameter values θ− and θ+; the payoff only depends on whether the

EFSA is able to identify the contaminated vegetable. In contrast to that, π∆ is positive
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Figure 2: The parameter a∆ and π∆ fully describe the payoff structure. The error cost a∆

captures how wide the span between correct and wrong decision is. The payoff asymmetry π∆ is
a measure of how strong payoffs differ across the two realizations of the unknown parameter θ.

in the pesticide example because the payoffs associated with a harmless pesticide, θ = θ+,

are consistenly higher than those associated with a harmful pesticide, θ = θ−. We will

see in section 4 that π∆ plays a crucial role in understanding the effect of the PP on

research incentives.

Table 7: The two examples from section 2 in the language of the general framework.

Interpretation and Numbers

Parameter STEC example (2.1) Pesticide example (2.2)

θ+ Sprouts contaminated Pesticide harmless
θ− Cucumbers contaminated Pesticide harmful
a+ Ban sprouts Approve pesticide
a− Ban cucumbers Not approve pesticide
π+

+ +500 +500
π−+ −500 0
π−− +500 0
π+
− −500 −500
a∆ 1000 500
π∆ 0 500

3.3 Regulatory mandates under static information

Before we can analyze the final regulatory decision, we have to clarify our understanding

of the two regulatory mandates under uncertainty we are contrasting in this paper and

briefly touch upon their decision-theoretic foundation. The typical decision-problem

under uncertainty, with the examples in section 2 as specific applications, is characterized

by two components. First, a payoff relevant parameter θ is unknown to the decision-

maker who only knows that θ ∈ Θ with some set Θ. Secondly, the decision-problem

involves the task to choose an action from the set A. The final payoff π(θ, a), we restrict

for simplicity to a risk-neutral decision-maker, depends on the true state θ and the action

taken a. The decision rules that form the basis of the two regulatory mandates differ in
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how they deal with the uncertainty about the parameter θ.

The basis for the standard CBA mandate is the maximization of subjective expected

utility (seu, Savage 1972). Integral part of this decision rule is the formation of a single

belief µ over Θ that best reflects the decision-maker’s knowledge. Based on this belief,

the optimal action a ∈ A is found by maximizing subjective expected utility,

max
a∈A

Eµπ(θ, a) . (1)

Apparent from (1) is the central role of the formation of the belief µ. What is relevant

for our analysis is that in settings with no prior information about θ the belief µ is usally

modeled as the uniform distribution on Θ (Principle of Insufficient Reason, cf. Gilboa

2009).

As mentioned before, standard CBA based on seu is challenged for two reasons.

First, the single probability distribution in (1) pretends a clear knowledge about the

decision-problem that seems arbitrary given the high degree of scientific uncertainty

present in problems like the STEC outbreak or the new pesticide on which no data

exists. A multiple prior approach is regarded as a possible solution (Athanassoglou and

Xepapadeas 2012). Related to that, the second source of criticism of CBA is that in the

presence of significant scientific uncertainty a precautionary approach preparing against

adverse outcomes may be advised. A well-known axiomatization to accommodate both

concerns is maxmin expected utility (meu, Gilboa and Schmeidler 1989). The subjective

uncertainty here is reflected in a set of beliefs M, and every action available to the

decision-maker is assessed based on the worst probability distribution in M. In other

words, the optimal action maximizes the worst expected utility,

max
a∈A

min
µ∈M

Eµu(π(θ, a)) . (2)

Subjective expected utility (1) is the special case of (2) when M is a singleton.

Due to its conceptual simplicity and sound axiomatization, meu has been used in

many regulatory settings (for instance Asano 2010; Treich et al. 2013; Vardas and Xepa-

padeas 2010) to reflect precautionary decision-making. In the present paper we follow

this literature and always mean meu preferences when we write ’PP’. It is important

to note that the specific form of the set of beliefs M is part of the preferences of the

decision-maker (Gilboa and Schmeidler 1989; Etner et al. 2012). The ’size’ ofM can be

regarded as the decision-maker’s degree of uncertainty aversion and has been associated

with the degree of precaution.

The next section contrasts the implications of the competing regulatory mandates

for the final regulatory decision.

13



3.4 Final regulatory decision

The final regulatory decision, for instance which vegetable to ban from the market or

whether to approve a new pesticide, depends on the research results observed and the

regulatory mandate. We start the analysis with the standard CBA approach and then

contrast it with the PP.

3.4.1 Standard CBA

The regulator following a CBA has started initially with a single belief about both pa-

rameter values (usually 1/2 for each of them), and thus also holds a unique posterior

belief after having observed the research results (by Bayesian updating, the precise for-

mulation will be explained in section 3.5). Since the set of states Θ has only two elements,

the posterior belief can be expressed by the single number ρ1 ∈ [0, 1] that captures the

(subjective) probability the regulator holds for θ = θ+. Then, 1 − ρ1 is the probability

that θ = θ−.7 In line with (1), the decision problem under CBA is to maximize expected

payoffs,

max
a∈[0,1]

ρ1

(
aπ+

+ + (1− a)π−+
)

+ (1− ρ1)
(
aπ+
− + (1− a)π−−

)
. (3)

Here a is a randomization over the two actions a− and a+, with a = 1 (a = 0) cor-

responding to the pure action a+ (a−). Based on the payoff assumptions in 3.2, it is

easy to show that the regulator strictly prefers the pure action a+ (a−) if and only if

ρ1 > 1/2 (ρ1 < 1/2); under inconclusive knowledge ρ1 = 1/2 the regulator regards all

randomizations a ∈ [0, 1] as equally reasonable.

Based on this profile of optimal actions, we can derive the value function that

maps the posterior belief to the expected value under the optimal regulatory decision,

ρ1 7→ V (ρ1). This value function is a standard tool for the analysis of information ac-

quisition problems (Mirman et al. 1993; Grossman et al. 1977). With the payoff space

simplifications that enable us to write all payoffs in terms of the error cost a∆ and the

payoff asymmetry π∆, the value function for the CBA regulator reads

V (ρ1) =


(1

2 − ρ1)(a∆ − π∆) ρ1 < 1/2

0 ρ1 = 1/2

(ρ1 − 1
2)(a∆ + π∆) ρ1 > 1/2 .

(4)

As a result of the normalization π−−+π−+ = π+
++π+

− = 0 (see 3.2), the value of inconclusive

knowledge V (1/2) is zero. When the posterior knowledge ρ1 approaches subjective

certainty ρ1 = 0 and ρ1 = 1, the value V (ρ1) converges to the optimal payoffs π−− =

(a∆ − π∆)/2 and π+
+ = (a∆ + π∆)/2, respectively.

7The index ’1’ refers to the posterior belief after having observed the signal; the index ’0’ is used for
initial priors.
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Figure 3 depicts the value function for the two examples from section 2. In the

STEC example, the expected value, as we move away from the uninformative posterior

ρ1 = 1/2, rises uniformly on both sides, reflecting the inherent symmetry of this problem.

In the pesticide example, the left leg 0 ≤ ρ1 < 1/2 is flat because the regulator with

such posterior belief does not approve the pesticide, and non-approval of the pesticide

yields payoffs of 0 irrespective of the true state θ and thus irrespective of the regulator’s

level of confidence ρ1.

(a) STEC example (b) Pesticide example

Figure 3: The value functions of the two examples. Every posterior ρ1 ∈ [0, 1] is associated with
the expected payoff under the optimal decision given ρ1.

3.4.2 Precautionary maxmin rule

As explained in 3.3, basically two features set the PP apart from CBA. First, the reg-

ulator does not hold a unique belief ρ1 about the true state θ but a set of beliefs. We

denote the set of ex-post beliefs by M1 = [ρ
1
, ρ̄1]. That M1 is an interval results from

the assumptions we will impose on the set of initial priors M0 in section 3.5. The sec-

ond feature that is in sharp contrast to CBA is that the PP regulator assesses expected

benefits of an action a ∈ A based on the worst posterior, cf. (2),

max
a∈[0,1]

min
ρ1∈M1

ρ1

(
aπ+

+ + (1− a)π−+
)

+ (1− ρ1)
(
aπ+
− + (1− a)π−−

)
. (5)

The optimal action a∗(M1), again a randomization over actions a− and a+, under the PP

depends on the set of posteriors M1. Only if all posteriors are higher (lower) than 1/2,

the PP regulator chooses the pure action a+ (a−). If however 1/2 ∈ M1, the regulator

randomizes over actions in a non-trivial way that depends on the payoff structure: In

the STEC example, the PP regulator randomizes over both actions with 1/2 while PP

regulation in the pesticide example leads to non-approval, a∗ = 0 (see appendix B). The

clear non-approval under ambiguous knowledge, compared to indifference under CBA

regulation, is one indicator of precautionary decision-making.

As before, optimal actions translate into the value function, which is now the worst

expected payoff under optimal decision-making. A difference to (4) is that the value
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depends on the shape of the payoff structure and is a function of the set of posteriors

M1 = [ρ
1
, ρ̄1]. We get (for details see appendix B)

a∆ ≥ π∆

V (M1) =


( 1

2 − ρ̄1)(a∆ − π∆) ρ̄1 < 1/2

0 1/2 ∈M1

(ρ
1
− 1

2 )(a∆ + π∆) ρ
1
> 1/2 .

(6a)

a∆ < π∆

V (M1) =


( 1

2 − ρ1
)(a∆ − π∆) ρ̄1 < 1/2

( 1
2 − ρ1

)(a∆ − π∆) 1/2 ∈M1

(ρ
1
− 1

2 )(a∆ + π∆) ρ
1
> 1/2 .

(6b)

A difference between (6) and (4) is that the value under inconclusive posteriors depends

on the payoff structure. Under moderate payoff asymmetry π∆ ≤ a∆, the value of

inconclusive knowledge is zero as in the CBA case. If the payoff asymmetry is larger than

the error cost, however, the value depends on the worst posterior ρ
1

and gets negative. In

particular, the maxmin value function under inconclusive posterior knowledge 1/2 ∈M1

is never larger than the CBA counterpart ρ1 = 1/2, a statement that is also true for

clearer posterior knowledge, 1/2 6∈ M1. The reason is that the value of the decision

problem is always determined by the worst posterior. Note that what the worst posterior

is, ρ
1

or ρ̄1, depends on the shape of the payoff structure.

3.5 Research results - the signal structure

The previous section gave expressions for the value of the final regulatory decision based

on the posterior knowledge. This section will shed light on the formation of those

posterior beliefs and explain how a priori knowledge is updated in order to process

research results. Such research results are modeled as a one-shot noisy signal structure,

whose precision is already fixed at this point in time (it is the choice variable of the

regulator in stage 2, to be discussed in the next subsection 3.6.) We first explain Bayesian

updating in the multiple prior case (3.5.1) and then develop a discrete signal structure

(3.5.2) that enables us to derive closed-form solutions.

3.5.1 Bayesian Updating

A signal structure is characterized by a signal space S and a likelihood function l : Θ→
∆(S) that describes how likely the signals s ∈ S are if θ is the true state. For better

readability we write l+(s) for l(θ+)(s). Because Θ has only two elements, every belief

can be expressed as a single number in the unit interval. Let the regulator initially hold

ρ0 ∈ [0, 1], her ex-ante belief that θ = θ+. If she observes the signal s ∈ S, the prior is

updated to the posterior

ρ1(s, ρ0) =
ρ0l+(s)

ρ0l+(s) + (1− ρ0)l−(s)
. (7)
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When the regulator initially has no information about the true θ ∈ Θ, she would usu-

ally follow the Principle of Insufficient Reason (see for instance Gilboa 2009) and hold

the uniform prior ρ0 = 1/2. With that, formula (7) simplifies further: ρ1(s, 1/2) =

l+(s)/(l+(s) + l−(s)).

The learning process of the PP regulator is similar. Instead of a single prior ρ0 she

holds a set of initial beliefs M0. In analogy to the Principle of Insufficient Reason, let

this set be symmetric around the uniform distribution,M0 = [1/2− δ, 1/2 + δ] with the

uncertainty parameter 0 ≤ δ ≤ 1/2. Importantly, the ’size’ of M0, here fully expressed

by the uncertainty parameter δ, is not exogenous; instead, it is part of the preference

structure of the regulator (Gilboa and Schmeidler 1989; Etner et al. 2012). The extreme

cases are the CBA regulator, who narrows down the set to a single belief (δ = 0), and

the most pessimistic PP regulator who does not exclude any possible prior (δ = 1/2).

Further assumptions we are going to make will shortly rule out this extreme pessimistic

case.

The learning dynamics of multiple priors follow Epstein and Schneider (2003, 2007).

The set of initial beliefs is updated to the set of posteriorsM1 by updating every single

ρ0 ∈M0 according to (7),

M1(s) = {ρ = ρ1(s, ρ0) | ρ0 ∈M0} . (8)

In other words, we assume full Bayesian updating of multiple priors.8 This updating

process has very intuitive features. For instance, a non-informative signal s with l−(s) =

l+(s) results in no learning, M1 = M0. A maximal informative signal structure, on

the other extreme, transforms M1 into a singleton reflecting subjective certainty; for

instance, observing a signal s that can only be observed in case of θ = θ+, l−(s) = 0, gives

rise to ex-post certainty that θ+ must be the payoff relevant parameter, M1(s) = {1}.
A standard signal structure widely used in the literature consists of normally dis-

tributed likelihoods with some fixed variance and different means for θ− and θ+. The

reciprocal of the variance is usually defined as the precision of the signal structure

(Kihlstrom 1974; Keppo et al. 2008). The main drawback of this approach, however,

is its lack of tractability. We thus design a simple discrete signal space. The justifica-

tion for the discrete signal structure will be given in appendix E where we demonstrate

that all main findings of this paper also hold for the continuous structure with normally

distributed signals.

3.5.2 Discrete signal space

We consider a discrete signal space with three elements, S = {s−, s?, s+}. Their interpre-

tation is straightforward: The signals s− and s+ represent research results that suggest

8For simplicity and to ensure dynamic stable preferences (Heyen 2014), we abstain from the ex-post
rejection of beliefs that is allowed for in Epstein and Schneider (2007).
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θ = θ− and θ = θ+ respectively, while s? models inconclusive research outcomes. A sig-

nal structure requires a specification of the likelihood of all signals under all parameters

θ ∈ Θ. Assuming symmetry over θ− and θ+, the signal structure is fully determined by

specifying the likelihood of correct, erroneous and inconclusive research results

Pcorr = l−(s−) = l+(s+) , Pmist = l−(s+) = l+(s−) , Pinconcl = l−(s?) = l+(s?) . (9)

These likelihoods are functions of the signal structure’s precision τ ∈ T = [τ0,∞) and

sum to one for all τ ∈ T .9 We further assume that Pcorr, Pmist and Pinconcl are twice

continuously differentiable in τ and that for all precision level τ

lim
τ→∞

Pcorr(τ) = 1 , P ′corr(τ) > 0 (10a)

lim
τ→∞

Pmist(τ) = 0 , P ′mist(τ) < 0 (10b)

lim
τ→∞

Pinconcl(τ) = 0 , P ′inconcl(τ) < 0 (10c)

(1− 2δ)Pcorr(τ) > (1 + 2δ)Pmist(τ) (10d)

(PcorrPmist)
′(τ) < 0 . (10e)

Assumptions (10a) to (10c) are straightforward: The noisiness of the signal structure

decreases in the precision of the signal structure and vanishes in the limit of perfect

information. Equivalent with (10c) is P ′corr + P ′mist > 0. Assumption (10d) is equivalent

with ρ
1
(s+) > 1/2 and ρ̄1(s−) < 1/2 and thus ensures that also for PP regulation clear

research results lead to clear actions; otherwise information trivially has no value. In

particular, assumption (10d) rules out the extreme regulator preferences δ = 1/2 right

from the start. Assumption (10d) rules out, for given 0 ≤ δ < 1/2, small precision levels.

This is also true for the technical assumption (10e) because PcorrPmist is non-negative

and PcorrPmist → 0 for τ → ∞. Thus, assumptions (10d) and (10e) basically translate

into assumptions for the smallest feasible precision level τ0.10

With the restriction on the discrete signal structure we can give simple expressions

for the updating formula (7). Let ρ0 be an initial prior. From the inconclusive research

result s? no information can be gained, ρ1(s?, ρ0) = ρ0. Observation of s− transforms

the initial prior to ρ1(s−, ρ0) = ρ0Pmist/(ρ0Pmist + (1 − ρ0)Pcorr). This push towards

ρ1 = 0 is stronger the higher is the research precision τ . Similar, observing s+ pushes

ρ1(s+, ρ0) = ρ0Pcorr/(ρ0Pcorr + (1 − ρ0)Pmist) to the right. These formulas are of use

both in the CBA and the PP analysis. For CBA, ρ0 = 1/2. For the PP, every ρ0 ∈M0

is updated in that way, together forming the set of posteriors M1.

9There is no natural unit for precision (Chade and Schlee 2002). The assumptions (10) are however
invariant under monotone transformations τ 7→ τ ′; together with the fact that we do not have to make
restrictions on the cost function, see section 3.6, this shows that our results are invariant under monotone
transformations in the precision parameter τ .

10In particular, τ0 usually does not correspond with the ”uninformative” signal structure of Radner
and Stiglitz (1984).
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3.6 The research precision choice

We have now all components at hand to analyze the regulator’s research precision choice.

The optimal research precision level is found when marginal benefits of research equal

marginal costs. Two factors make the cost part very simple so that it need no further

attention in our analysis: Firstly, costs are not prone to uncertainty, so that the different

regulatory stance has no implications for the cost assessment; secondly, the statements

we are going to make about the (marginal) benefits of research will hold for all precision

levels τ > 0 and thus make further specifications of the cost function unnecessary.

Sufficient are the standard assumptions of positive and non-decreasing marginal costs.

Being thus disburdened from a sophisticated analysis of costs, we can turn our full

attention to a derivation of the marginal benefits of research MB(δ). Here, δ is the

uncertainty parameter that determines how cautious the regulator is in the description of

the initial knowledge.11 The CBA regulator is the special case δ = 0, so that statements

about changes in the research behavior under different regulatory decision rules can be

made by analyzing the function δ 7→ MB(δ). If, for instance, MB(δ) > MB(0), we can

unambiguously conclude that the PP regulator chooses a higher research precision level

than the CBA regulator.

Figure 4: A reduced form of the timeline. Compared to Figure 1, here the final regulatory
decision is replaced by its value under optimal play, and the uncertainty under which the research
precision choice has to be made is not explicit. The focus here is on the possible research results
s ∈ S. Expected benefits of research are the sum of the values V (s, δ) over all s ∈ S, weighted
with their likelihoods of occurrence. The values V (s, δ) and likelihoods l(s, δ) both depend on
the precision τ .

The main step for the derivation of MB(δ) is to determine the benefits B(δ). Figure 4

gives a reduced form of the timeline (cf. Figure 1), designed to draw the attention to the

research precision choice at which the benefits of research have to be assessed. For this

purpose, and as is usual in backward induction, the final regulatory decision stage has

been condensed into the value of the final decision under optimal play. Accordingly, every

possible research result s ∈ S is associated with some value V (s, δ). The formula for

these values was given in (6): The research result s, the precision τ , and the uncertainty

parameter δ through the initial prior set M0 = [1/2 − δ, 1/2 + δ] jointly determine

11To keep the notation simple, we do suppress as often as possible the benefit’s dependency on the
precision level τ .
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the posterior set M1. The expected benefits of research are the sum of these values

V (s, δ) over all possible research results s ∈ S, weighting the different signals s with

their likelihood l(s). Because the PP regulator consistently follows meu preferences not

only in the final regulatory decision but also in the research precision choice, also the

likelihoods depend on the uncertainty parameter δ. We get for the meu benefits of

research

B(δ) = l(s+, δ)V (s+, δ) + l(s?, δ)V (s?, δ) + l(s−, δ)V (s−, δ) . (11)

Here, the likelihood l(s, δ) for the occurrence of the research result s ∈ S, assessed from

the perspective of the PP regulator, reads l(s, δ) = (1/2− δ)l+(s, δ) + (1/2 + δ)l−(s, δ).

(Recall that l+(s) = l(s|θ = θ+) and similar for l−). The reason for less weight on l+

and more weight on l− is V (s+, δ) ≥ V (s−, δ), a simple consequence of our assumption

that θ+ is the more favorable state. Together with l+(s+) = l−(s−) = Pcorr > Pmist =

l+(s−) = l−(s+) this implies that ρ
0

= 1/2− δ is the prior that minimizes the expected

benefits
∑

s∈S
(
ρ0l+(s) + (1 − ρ0)l−(s)

)
V (s, δ) and is thus the worst prior relevant for

PP regulation.

Central for the research precision choice are the marginal benefits MB(δ),

MB(δ) = B′(δ) . (12)

Note that the prime always means the derivative with respect to τ , not with respect to δ.

The benefit function B(δ), as a sum of products of differentiable functions, is obviously

differentiable in τ . What makes the analysis of MB(δ) intricate is that both the values

V (s, δ) and likelihoods l(s, δ) depend on τ .

The expression simplifies if we focus on the specific settings from the regulatory

examples in section 2. The partially surprising effects we found there can now be formally

validated. The convenient tool for comparing marginal benefits under CBA and PP is

to analyze the derivative d/dδMB, in particular at δ = 0.

3.6.1 Research precision choice in the STEC example

Due to the symmetry of the STEC example, V (s−, δ) = V (s+, δ) and V (s?, δ) = 0,

cf. (6). Together with l(s+, δ) + l(s−, δ) = Pcorr + Pmist we get that the marginal

benefits of research are MB(τ, δ) = a∆

(
(Pcorr + Pmist)(ρ1

(s+, δ) − 1/2)
)′

and this reads

a∆

(
Pcorr+Pmist

2
(1/2−δ)Pcorr−(1/2+δ)Pmist

(1/2−δ)Pcorr+(1/2+δ)Pmist

)′
. From that we infer for the δ-derivative at δ = 0

d

dδ
MB(δ)|δ=0 = − 4a∆

(Pcorr + Pmist)2
(P 2

corrP
′
mist + P 2

mistP
′
corr) . (13)

Due to assumption (10e) this expression is positive. By continuity, the positive sign

extends to a full neighborhood of δ = 0. Thus, compared to a CBA regulator with

δ = 0, the PP regulator characterized by the uncertainty parameter δ (as long as δ is not
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too large) prefers a higher amount of research precision. This is the formal verification

of the effect that we found in the example in section 2.1.

3.6.2 Research precision choice in the pesticide example

The pesticide example is characterized by V (s−, δ) = V (s?, δ) = 0 because any evidence

that is not clear in favor of the pesticide leads to its non-approval by the EPA. We

thus get MB(τ, δ) = 2a∆

(
l(s+, δ)(ρ1

(s+, δ) − 1/2))′, where we used π∆ = a∆. This is

equivalent with MB(τ, δ) = a∆

(
(1/2− δ)Pcorr − (1/2 + δ)Pmist)

′. We get

d

dδ
MB(δ) = −a∆(P ′corr + P ′mist) . (14)

This expression is negative because P ′corr + P ′mist > 0 by (10c). Interestingly, the δ-

derivative – and its sign in particular – does not depend on the uncertainty parameter

δ. Thus, and in contrast to the STEC example, the decline in the research precision in

the pesticide example (cf. section 2.2) caused by the PP regulation is unambiguous.

Throughout this section we have developed a framework for the analysis of research

incentives under different regulatory mandates under uncertainty. As demonstrated at

the end of the section, this framework is capable of verifying the opposed effects of the

PP on research behavior illustrated in the examples. Still unclear, however, is what

drives the diverging results. This will be answered in the next section.

4 Two countervailing effects

In this section we explain how the intricate implications of the PP on research incentives

can be disentangled into two effects, the Precautionary Learning Effect and the Research

Pessimism Effect. While the former drives demand for research precision up relative to

CBA, the latter has the opposite effect. The specific way in which both effects depend

on the payoff asymmetry π∆ gives us the final explanation why we found so different net

effects of the PP regulation on the demand for research precision in the STEC and the

pesticide example (cf. section 2 as well as (13) and (14)).

What is an important step for disentangling the different drivers is the observation

that the benefits B(δ) in (11), and thus also the marginal benefits MB(δ), depend on the

maxmin rule in two different ways, reflecting that the regulator makes two temporally

separated decisions under meu. Let us formally distinguish the role of the uncertainty

parameter in those two decisions and write12

B(δ1, δ2) = l(s+, δ1)V (s+, δ2) + l(s?, δ1)V (s?, δ2) + l(s−, δ1)V (s−, δ2) . (15)

12To avoid excessive notation we use the same symbol B irrespective of whether we consider the
benefits as a function of one or two arguments. In that sense, B(δ) = B(δ, δ).

21



The parameter δ2 belongs to the final regulatory decision and is closely connected to the

size of the posterior set, determining through this channel the final stage value V (s, δ2).

In contrast to this, the parameter δ1 describes the size of the initial prior setM0 relevant

for the likelihood assessment of the possible research results.

Basic calculus gives us a convenient tool to disentangle the impact of δ1 and δ2. In

3.6.1 and 3.6.2, we have seen that the derivative d/dδ MB(δ) is a key tool for analyzing

the implications of the PP on research incentives. We can write the net effect of the PP

regulation as the sum of the partial effects,

d

dδ
MB(δ) =

∂

∂δ1
MB(δ, δ) +

∂

∂δ2
MB(δ, δ) . (16)

In the following it will become apparent that the distinction into δ1 and δ2 is justified:

the first partial derivative is negative (4.2) while the second is positive (4.1).

4.1 The Precautionary Learning Effect

We start with the general statement of the theorem and then provide intuition for the

results.

Theorem 4.1 (Precautionary Learning Effect). The introduction of meu at the final

regulatory decision stage has, irrespective of the payoff structure, a positive impact on

research incentives,
∂

∂δ2
MB(δ, δ)|δ=0 > 0 . (17)

By continuity, this extends to a full neighborhood of δ = 0.

Proof. The proof is similar to the special case in the STEC example. See appendix C

for details.

In the remainder of this section we provide intuition for the Precautionary Learning

Effect and also show why the positive sign of the δ2-derivative in (17) does not hold for

arbitrary δ > 0. For the sake of illustration, we restrict to the specific payoff structures

of the examples. The general proof is in appendix C.

From 3.6.1 and 3.6.2 we can see that for both examples (up to a factor of 1/2 in the

pesticide example) marginal benefits as a function of δ2 can be written as

MB(0, δ2) = (Pcorr + Pmist)V
′(s+, δ2) + (P ′corr + P ′mist)V (s+, δ2) . (18)

Expression (18) shows that a higher research precision τ is productive for two reasons:

Higher precision shifts the posteriors away from the inconclusive middle region, cf. (6),

and thus increases the value V (s+, δ2) (first term); also, higher research precision sharp-

ens the likelihood of correct research results (second term), P ′corr + P ′mist > 0 by (10c).
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The δ2-derivative of (18) reads

∂

∂δ2
MB(0, δ2) = (Pcorr + Pmist)

∂

∂δ2
V ′(s+, δ2) + (P ′corr + P ′mist)

∂

∂δ2
V (s+, δ2) . (19)

Theorem 4.1 states that the Precautionary Learning Effect is not clear-cut; the reason

is that the second term in (19) is negative. An increase in the final stage uncertainty

δ2 reduces V (s+, δ2) and thus dampens the positive marginal effect on the likelihood

of correct research results. The first term in (19) however is positive and can thus be

regarded as the key driver behind the Precautionary Learning Effect. The reason for
∂
∂δ2
V ′(s+, δ2) > 0 is the following: For every precision level V (s+, δ2) < V (s+, 0), but

the difference gets smaller and zero in the limit τ → ∞ as both values converge to the

value of perfect information. As a result, the increase of V (s+, δ2) in the precision level

τ is steeper the higher is δ2. In other words: Research precision is more productive in

shifting up the pessimistic value V (s+, δ2). This is the Precautionary Learning Effect.

4.2 The Research Pessimism Effect

The negative effect of meu on the demand for research precision holds for all asymmetric

payoff structures and, in contrast to the Precautionary Learning Effect, globally.

Theorem 4.2 (Research Pessimism Effect). The likelihood assessment of research results

with meu has a negative effect on research incentives,

∂

∂δ1
MB(δ, δ) ≤ 0 for all δ . (20)

The derivative vanishes if and only if the payoff structure is perfectly symmetric, π∆ = 0.

Proof. From (11),

∂

∂δ1
MB(δ, δ) = −

[
(Pcorr − Pmist)(V (s+, δ)− V (s−, δ))

]′
. (21)

The first factor, Pcorr−Pmist, is positive by assumption (10d). Its τ -derivative is positive

by assumptions (10a) and (10b). The second factor, V (s+, δ)− V (s−, δ), is positive by

the assumption π+
+ ≥ π−−. Its derivative is positive for the same reason; if V (s−, δ)

′ is

positive at all, it is bounded by V (s+, δ)
′.

In the following we will provide intuition for this result. We start from (15) and

write

MB(δ1, δ2) = l(s+, δ1)V (s+, δ2)′ + l(s−, δ1)V (s−, δ2)′ + . . . . (22)

In order to focus only on relevant contributions, this omits all terms that involve

the inconclusive signal s? or marginal effects on the likelihoods. Figure 5 depicts

both contributions to marginal benefits. Here, the left bar is lower in height be-

cause V (s−, δ2)′ ≤ V (s+, δ2)′. The Research Pessimism Effect results from the fact
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(a) CBA regulator (b) PP regulator

Figure 5: The intuition behind the Research Pessimism Effect. Important contributions to
marginal benefits MB are l(s−, δ1)V (s−, δ2)′ (dark shaded area) and l(s+, δ1)V (s+, δ2)′ (light
shaded area). Under the CBA regulation both contributions are equally weighted (left subfigure).
The PP regulation however implies a shift in the likelihoods and thus more weight on the left
bar (right subfigure). This explains why the maxmin rule in assessing the likelihoods of research
results decreases the marginal benefits of research precision.

that the maxmin rule shifts likelihood weights: the CBA regulator assesses both sig-

nals as equally likely, l(s−, 0) = l(s+, 0), but the PP regulator assesses the occur-

rence of s− more likely, l(s−, δ1) > l(s+, δ1). The simple reason is that signal likeli-

hoods are directly associated with prior beliefs regarding the parameter values θ, cf.

l(s, δ) = (1/2 − δ)l+(s, δ) + (1/2 + δ)l−(s, δ). As a result of that shift in likelihoods,

marginal benefits of research precision decrease under the PP. The Research Pessimism

Effect thus deserves its name: Due to the pessimistic maxmin rule, the (marginal) value

of information is assessed lower compared to a CBA regulation. This reduces the demand

for research precision.

4.3 The net effect

For any given regulatory problem, both effects explained in the previous sections, the

Research Pessimism Effect and the Precautionary Learning Effect, are present and jointly

form the net effect of the PP on information acquisition. In this section we analyze

how these countervailing effects depend on the payoff asymmetry π∆ of the regulatory

problem. This will help us to eventually understand why we found a positive net effect

of the PP on research incentives in the STEC example, in contrast to the opposite result

for the pesticide regulation. To keep the analysis tractable we restrict the evaluation

of the derivatives underlying the effects to the most important case δ = 0. We show

findings for some δ > 0 in appendix D.

We start with the Research Pessimism Effect. Starting from (21) we get with (6)
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that

∂

∂δ1
MB(δ, δ) =

−π∆

[
(Pcorr − Pmist)(ρ1

(s+, δ)− ρ̄1(s−, δ))
]′

a∆ ≥ π∆

−π∆

[
(Pcorr − Pmist)(ρ1

(s+, δ)− ρ1
(s−, δ))

]′
a∆ < π∆ .

(23)

We already know that the Research Pessimism Effect vanishes for π∆ = 0. From there,

its strength increases (piecewise) linearly in the payoff asymmetry π∆ because in both

cases the two factors in the bracket and their τ -derivatives are positive. There is a

change of the slope at a∆ = π∆. When evaluating the Research Pessimism Effect at

δ = 0 the two slopes coincide.

The payoff asymmetry dependency of the Precautionary Learning Effect is slightly

more complex. From appendix C we get

∂

∂δ2
MB(0, 0) =

αa∆ a∆ ≥ π∆

β0(π∆ − a∆) + β1π∆ a∆ < π∆

(24)

with π∆-free positive coefficients α, β0 and β1. Thus, the Precautionary Learning Effect

is positive at π∆ = 0 and remains constant until π∆ = a∆. From there on the Precau-

tionary Learning Effect increases linearly in π∆. Figure 6 gives a graphical illustration

of all effects (with the specific likelihood assumptions from appendix A and a∆ = 1000).

Figure 6: The disentangled effects on research incentives and the net effect as a function of the
payoff asymmetry π∆.

What we know so far already determines the net effect of the PP mandate on in-

formation acquisition for all payoff structures with 0 ≤ π∆ ≤ a∆, with the boundaries

given by the examples from section 2. At π∆ = 0, the STEC example, the net effect is

positive; at π∆ = a∆, the class of the pesticide example13, the net effect is negative. In

between, as the Research Pessimism Effect gets stronger, the net effect decreases and

turns negative at some point π∆ < a∆.

With the Precautionary Learning Effect and the Research Pessimism Effect both

13The pesticide example was constructed with a∆ = 500 so that the point π∆ = a∆ = 1000 in Figure
6 is a scaled version of the pesticide example.
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increasing for π∆ > a∆, the net effect in this region is yet unclear. One obvious way

to proceed would be to compare the slopes of both effects. It however proves easier

and more general to write down MB(δ) in this region and determine the overall deriva-

tive d
dδ MB(δ). With l(s−)V (s−, δ) =

(
(1/2 + δ)Pcorr − (1/2 − δ)Pmist

)
(a∆ − π∆)/2,

l(s?)V (s?, δ) = (1 − Pcorr − Pmist)δ(a∆ − π∆) and l(s+)V (s+, δ) =
(
(1/2 − δ)Pcorr −

(1/2 + δ)Pmist

)
(a∆ + π∆)/2 we get

MB(δ) = a∆

(
(1/2− δ)P ′corr − (1/2 + δ)P ′mist

)
for a∆ < π∆ (25)

and thus d/dδMB(δ) = −a∆(P ′corr + P ′mist). This demonstrates that for π∆ > a∆ the

net effect, for any δ ≥ 0, is independent of the payoff asymmetry π∆. The consequence

is that the overall effect of the PP on research incentives remains at the same negative

level for all π∆ ≥ a∆ (cf. Figure 6 and also its counterparts with δ > 0 in appendix D).

5 Concluding Discussion

The regulation of complex risks like food safety and novel substances is characterized

by far-reaching consequences of erroneous decisions and, at the same time, a poor in-

formational basis for making those decisions. In light of these challenges and with the

intention to prevent harm from society, the Precautionary Principle (PP) has recently

gained significant importance in the regulatory practice.

What has not received adequate attention in the literature, despite being a cen-

tral task in the regulation of complex risks, is the regulator’s possibility of undertaking

research and thus managing her state of knowledge. Most notably, the interplay of reg-

ulatory mandates like the PP and the incentives for active information acquisition has

so far gone unnoticed. The present paper sheds light on this interplay with a parsimo-

nious decision-theoretic setting of active learning under maxmin expected utility (meu)

preferences. The latter is a common operationalization of the PP, while active learning

reflects the regulator’s option to choose her preferred state of information.

We find a non-trivial impact of the PP on research incentives. On the one hand, and

in line with common narratives about the PP, we find the existence of a ’Precaution-

ary Learning Effect’ that induces a regulator following the PP to improve here state of

knowledge relative to a standard CBA mandate. On the other hand, however, we also

demonstrate the existence of a research dampening ’Research Pessimism Effect’. The

total effect of the PP on information acquisition is not clear-cut and depends on the char-

acteristics of the regulatory problem, in particular its payoff structure. The significance

of this finding is that no mandate, neither CBA nor PP, always leads to better informed

decision-maker. If such a better informed decision-making is regarded as a desirable and

crucial feature of the regulation of complex risks, then writing an appropriate mandates

is not possible without paying attention to the specific regulatory problem.
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Our framework can only be the starting point for researching the interplay of the

PP and research incentives. One possible extension is about the decision-theoretic foun-

dation. Although being a standard formulation of the PP in the theoretical regula-

tion literature, meu is not the only definition of ambiguity averse preferences that has

been suggested as a precautionary decision-rule. Even though we expect alternative ap-

proaches (Klibanoff et al. 2005; Chateauneuf et al. 2007) to give rise to similar effects

on information acquisition, future research ought to clarify these issues with similar and

equally tractable frameworks.

Another direction for future research is the significance of our findings for the reg-

ulatory practice. Our model is the first step towards informing the regulatory practice

about institutional set-ups surrounding PP and information acquisition. Our findings

suggest that an institutional separation of the regulatory decision and research is pos-

sible, and that this separation might reconcile the PP with the notion of precautionary

learning. Future research can leap from there and, by carefully analyzing real-world

examples and their subtleties, make specific suggestions for the design of risk regulation.
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A Functional specifications for the example

Pcorr(τ) := 1−2/3 ·exp(−τ), Pmist(τ) := 1/3 ·exp(−τ). Low, medium and high precision

level corresponds with τ = 1, 2, 3. Costs are linear in precision τ , c(τ) = 55τ . All effects

in Figure 6 are evaluated at τ = 2 ln(4/3).

B Optimal actions and the value function in the general

case for the maxmin regulator

The expected value of the decision problem is

ρ1(aπ+
+ + (1− a)π−+) + (1− ρ1)(aπ+

− + (1− a)π−−) . (26)

29



We define the (potentially negative) â := 1/2 − π∆/(2a∆). With that we find that the

worst belief is, depending on which action a ∈ [0, 1] the regulator considers,

ρworst
1 =

ρ1
a > â

ρ̄1 a < â .
(27)

After plugging this into the expected value (26) we can determine the optimal action.

Three cases are relevant: ρ
1
> 1/2, 1/2 ∈M1 and ρ̄1 < 1/2. Consider ρ

1
> 1/2. Among

the actions a > â then clearly a = 1 is best; among a < â (if â ≥ 0) the best action is â.

Comparing payoffs under a = 1 and â shows that the former is strictly better. Similarly

in the two other cases. Together we get

a∗(M1) =


0 ρ̄1 < 1/2

max(0, â) 1/2 ∈M1

1 ρ
1
> 1/2 .

(28)

The corresponding value function (6) is obtained by plugging in a∗(M1). If max(0, â) =

0, the value function still depends on the worst belief ρ
1
.

C Full formula of δ2-derivatives

The general δ2-derivative is

∂

∂δ2
MB(τ, δ, δ) =

 1
X(δ)

(
A0a∆ + P (δ)

)
π∆ ≤ a∆

1
X(δ)Y (δ)

(
B0(π∆ − a∆) +B1π∆ +Q(δ)

)
π∆ > a∆ .

(29)

Here, X(δ) =
(
(1−2δ)Pcorr +(1+2δ)Pmist

)3
and Y (δ) =

(
(1+2δ)Pcorr +(1−2δ)Pmist

)3
.

Both expressions are positive, X(δ) due to assumption (10d). P (δ) and Q(δ) are poly-

nomials in δ of degree 2 and 6 respectively with P (0) = Q(0) = 0. The coefficients

are

A0 = −4(Pcorr + Pmist)(P
2
corrP

′
mist + P 2

mistP
′
corr) > 0 (by (10e))

B0 = (P ′corr + P ′mist)(Pcorr + Pmist)
6 > 0 (by (10c))

B1 = −4(Pcorr + Pmist)
4(P 2

corrP
′
mist + P 2

mistP
′
corr) > 0 (by (10e)) .

Taken together, this proves the Precautionary Learning Effect: The δ2-derivative at

δ = 0, as stated in (17), is positive. Due to continuity, this extends to a full neighborhood

of δ = 0. The δ2-derivative can become negative at some δ > 0 due to the higher order

terms P (δ) and Q(δ).
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D The effects at δ > 0

In section 4.3 we discussed all effects and their dependency on the payoff asymmetry π∆

when the effects are evaluated at δ = 0. Figure 7 gives some intuition how these findings

change when δ > 0.

(a) δ = 1/8 (b) δ = 1/4

Figure 7: The analog of Figure 6 for δ > 0.

The Research Pessimism Effect always vanishes at π∆ = 0 and gets linearly stronger

as π∆ increases. The slope at π∆ = a∆ in general changes, a fact that is obscured in the

special case δ = 0 depicted in Figure 6 in the main text. The Precautionary Learning

Effect, when evaluated at δ > 0, is in general neither constant nor positive in the range

leπ∆ ≤ a∆; unambiguous, however, is that it increases for π∆ > a∆. The net effect,

due to the vanishing Research Pessimism Effect, must equal the Research Pessimism

Effect at π∆ = 0 and can thus be negative for higher δ. The net effect at π∆ = a∆ is

unambiguously negative and remains at this δ-independent level for all π∆ > a∆, as was

proven in section 4.3.

E Continuous, normally distributed signals

Let the signal space be S = R and

l−(s, τ) =
τ√
2π

exp
(
−1

2τ
2(s+ a)2

)
, l+(s, τ) =

τ√
2π

exp
(
−1

2τ
2(s− a)2

)
(30)

the densities. Here, τ = 1/σ is the usual measure of precision when σ is the variance of

the normal distribution. In this signal structure a signal s < 0 (s > 0) suggests θ = θ−

(θ = θ+). The higher |s|, the stronger is the signal. The latter feature could not be

reflected in the simple discrete structure we use throughout the paper.

As before, l(s, δ) = (1/2 − δ)l+(s) + (1/2 + δ)l−(s). With that, the benefits of

research are B(δ) =
∫
S l(s, δ)V (s, δ)ds, cf. (11). The distinction into δ1 and δ2 reads

B(δ1, δ2) =
∫
S l(s, δ1)V (s, δ2)ds.
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The signal space splits into three parts. For s < s ≤ 0, the signal is strong enough

to push all posteriors ρ1 ∈M1 below 1/2 so that V (s, δ2) is determined by the first line

in (6). For s < s < s̄, with s̄ ≥ 0, the posterior set contains 1/2 so that the middle

line in (6) applies. Finally, for s > s̄ all posteriors are above 1/2 and V (s, δ) always

equals (ρ
1
(s, δ2)− 1/2)(a∆ + π∆). Obviously, s and s̄ depend on τ and δ2. For instance

s = s̄ = 0 when δ2 = 0.

(a) δ = 0 (b) δ = 1/50 (c) δ = 1/8

Figure 8: The net effect as a function of the payoff asymmetry π∆ for a continuous, normally
distributed signal. Compare to Figure 6 and Figure 7.

Figure 8 shows the resulting effects for the continuous signal structure described

above. The main figure is the left one with δ = 0, the counterpart of Figure 6. The two

other figures show the effects for two different positive δ-levels.

Focus on the left figure first. It shows that all effects exist with the same qualitative

behavior that we found in the discrete signal structure: The Research Pessimism Effect

vanishes at π∆ = 0 and from there evolves linearly. The Precautionary Learning Effect

is positive and constant in 0 ≤ π∆ ≤ a∆ and increases in π∆ once π∆ > a∆. Most

importantly, the net effect is positive at π∆ = 0, negative at π∆ = a∆, and remains

constant for π∆ > a∆.

Moreover, the two other figures show that also for the continuous signal structure the

implications of δ > 0 is intricate with the potential to kill the Precautionary Learning

Effect while the Research Pessimism Effect is very robust. The reaction to increasing

levels of the uncertainty parameter δ seems to be more pronounced in the normal dis-

tribution structure. Interestingly, however, the net effect is still constant in π∆ once

π∆ > a∆. This constant level, however – and this is the only apparent qualitative differ-

ence between discrete and continuous signal structure – is here a function of the point δ

at which the derivative is evaluated.

In sum, Appendix E has shown that the analytical tractable discrete signal structure

captures the relevant features of the model surprisingly well.
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