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Abstract

We present evidence that global vectorautoregressive (GVAR) models produce
significantly more accurate recession forecasts than country-specific time-series
models in a Bayesian framework. This result holds for most countries and forecast
horizons as well as for several country groups.
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1 Introduction

Forecasting economic turning points is essential for optimally designing stabilization
policy because of the lagged economic impact that fiscal and monetary policy stimuli.
Consequently, the issue has been addressed in numerous studies (see, e. g., Zellner et al.,
1991; Canova and Ciccarelli, 2004). In a globalized world, recessions are often triggered
by external events. An example is given by the financial crisis of 2008/09 that pushed
many economies into a recession but originated, as many belief, from the burst of the
U. S. housing market. This leaves room for global models to outperform country-specific
models in forecasting turning points.

Global vectorautoregressive (GVAR) models (Pesaran et al., 2004) are designed to
capture the dynamics of a large part of the world economy by linking country-specific
VAR models to each other using trade weights. Though GVAR models are linear,
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they offer a fair degree of flexibility in modeling business-cycle dynamics of the world
economy. Recent studies show that they have merits of providing good forecasts for a
range of macroeconomic variables (Pesaran et al., 2009; Crespo Cuaresma et al., 2014;
Dovern et al., 2015). Yet, if they also provide accuracy gains (relative to country-specific
models) in terms of forecasting the business-cycle regime remains an open question.
Though Greenwood-Nimmo et al. (2012) address the issue, their study provides only
limited evidence both in terms of country coverage and length of the evaluation period;
it also presents no formal assessment of the accuracy of recession probability forecasts.

In this paper, we present broad-based evidence that GVAR models can be used to
generate probability forecasts for the occurrence of recessions that are more accurate
in terms of the quadratic probability score (QPS) than country-specific benchmark
models.

The paper is organized as follows. The next section presents the econometric frame-
work. Section 3 discusses how we evaluate and compare the forecast performance of
the models. Sections 4 and 5 describe the data set and empirical results, respectively.

Finally, Section 5 concludes the paper.

2 The Model Framework

2.1 The GVAR Model

The model consists of N+1 country-specific models that are combined to form the global
model. Let x;; be the k; x 1 vector of domestic variables for country ¢ = 0,..., N and
time t = 1,...,T, in which the first element is equal to the (log) level of gross domestic
product (GDP) y;;. For each country, we consider a VAR model which is augmented
with a set of foreign variables (VARX*). Each model is specified as follows:

(I)i(L)'ri,t = AAL)Z’,)Zt + Eit- (2].)

Here, ®;,(L) =1—®;L—...—®;,LP and A;(L) = Njo+ A L+ ...+ A L? are properly
sized matrix lag polynomials measuring the impact of lagged domestic variables and
foreign variables, respectively.! In the empirical application we set p = ¢ = 3. The
foreign variables are calculated as a weighted average of the domestic variables of all

other countries based on trade weights, x}, = Z;‘V:o w;jx; ¢, under the restriction that

IFor notational simplicity, we ignore any deterministic terms.



w;; = 0 and Z;V:O w;; = 1. We assume that the ;s are uncorrelated across time and
normally distributed with a covariance matrix ;.

Pesaran et al. (2004) show how the N + 1 country models can be combined to
form the GVAR model. The reduced-form of this GVAR, which is all we need to form

conditional forecasts, is given by
F(L)xt g et7 (22)

where all endogenous variables of the model are collected in the k x 1 vector z; =
(T04 T gs - - Ty) With kb = SNk F(L)=1—FL—...— FLP § = max{p,q},
and the covariance matrix of e;, say ., are functions of the estimated parameters of
the country-specific models and the bilateral trade weights that are used to link these
models.

Because traditional GVARs can suffer from overfitting issues which normally trans-
late into a weak out-of-sample forecasting performance, we take a Bayesian stance to
estimation and inference. More specifically, we use the prior setup stipulated in Sims
and Zha (1998) and implemented for GVAR models in Crespo Cuaresma et al. (2014),
who emphasize the strong forecasting performance of this specification. The prior se-
lects several important aspects of the specification (e.g. the lag order or whether the
model is estimated in levels or first differences) in a data-driven fashion which are oth-
erwise chosen subjectively by the forecaster. For a detailed description of the model,

we refer the reader to Crespo Cuaresma et al. (2014).

2.2 Benchmark Models

With a view to assessing the potential superiority of GVAR models over country-specific
models, we select a set of country-specific Bayesian VAR (BVAR) models and Bayesian
univariate autoregressions (AR) as benchmarks to produce alternative probability fore-
casts. We obtain these benchmark by ‘shutting down’ the interaction between variables
from different countries or between all variables, respectively. More formally, the BVAR
models are given by a restricted version of (2.1), ®;(L)x;; = €;, and the AR models
are given by ¢;(L)yi, = €!,.

2As for the GVAR model, we assume a lag order of 3 in each case.



3 Forecast Setup and Evaluation

We use a quasi real-time out-of-sample analysis to investigate the ability of the models
to produce accurate probability forecasts for the occurrence of recessions at a partic-
ular point in time. Beginning in 7 = tj, we re-estimate the GVAR model (and the
benchmarks) and simulate the predictive densities p™(z,44|D,) for h = 1,...,5 and
m = {GVAR,BVAR, AR}. This procedure is repeated until 7 = 7" — h is reached.
This yields a sequence of predictive densities for the verification period. Our initial
estimation period ranges from 1979q2 to 70=2003q4. The verification period consists
of 40 observations, covering the time span between 2004ql and T'=2013q4.

We define a recession as a decline of the level of GDP in two consecutive quarters,
i.e., country ¢ is in recession in period ¢ if either v;; < v;;—1 and y; 11 < y;y or if
Yit—1 < Yiz—2 and y;; < yi,t_l.?’ It is straightforward to use this definition to construct
a binary indicator x;, for each country, which equals one if country 7 is in a recession
in period ¢, and zero otherwise.

Probability forecasts for the occurrence of a recession can be constructed based on
P (44| D-), or more precise on p™(y; r+r|D-) which refers to the predictive marginal

density for GDP in country i after integrating out all other variables of the GVAR

model.* Using our definition of a recession, the conditional recession probabilities I hir
are given by
Zﬁhh =P Yirsn—1 < Yirth—2Yir+h < Yir+h—1|Dr)
+ P(Yirth-1 2 Yirsh—2;Yirth < Yirsh1; Yirsht1 < Yiryn|Dr). (3.1)

The first term refers to the possibility that period t 4+ h constitutes the first quarter of
a new recession while the second term refers to the probability that a recession began
already earlier and continues in period ¢ + h. The probabilities in equation (3.1) can
be approximated from the predictive densities using numerical methods.

A natural measure to assess the accuracy of probability forecasts is the QPS, which

corresponds to the mean squared error in a non-binary forecast setup. It is given by

T—h

QPS, =1/(T—h =m0+ 1) > (fhim — Xit) (3.2)

t=To

3While this simple approach is clearly imperfect, its results are very similar to quasi-official
business-cycle datings and it is highly transparent and easy to implement.
4Here, D, refers to any information available at time 7.
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The statistic ranges from 0 to 1 and lower values indicate a better forecast accuracy.’

4 Data

We use an extended version of the data set from Dées et al. (2007a) and Dées et al.
(2007b), which has been used already in a companion paper (Dovern et al., 2015). It
contains quarterly data for 36 countries spanning the period from 1979q2 to 2013q4.5
We include the following variables in z;,;: real gross domestic product (GDP), the
change of the consumer price level, real equity prices, the real exchange rate, and
short- and long-term interest rates. For further details on the data set and the special

treatment of the U.S. economy we refer the reader to Dovern et al. (2015).

5 Empirical Results

Table 1 summarizes the most important results of our analysis. It contains information
about the performance in terms of QPS for the different models corresponding to the
major economies and several country groups.” We use Diebold-Mariano tests to check
the significance of differences in forecast performance (Diebold and Mariano, 1995). To
test for performance differences with respect to groups of countries, we apply the panel
version of the test proposed in Pesaran et al. (2009).

Regarding individual countries, the GVAR model outperforms both benchmarks for
a little more than half of the major economies—especially at short forecast horizons.
To take an example: The one-step-ahead QPS of the GVAR model for the US is 0.104,
which is 0.005 (or roughly 5 %) lower than the corresponding QPS of the BVAR model.
We observe similar and statistically significant performance gains for Italy, Canada, the
UK, and Brazil. The GVAR model performs (marginally) worse than one or both of

the benchmarks only for Japan and India.®

See Lahiri and Wang (2013) for an excellent overview about alternative and complementary
performance statistics for probability forecasts. An application of these is, however, beyond the scope
of this short paper.

6The countries are: Austria, Belgium, Germany, Spain, Finland, France, Greece, Italy, the Nether-
lands, Portugal, Denmark, Great Britain, Switzerland, Norway, Sweden, Australia, Canada, Japan,
New Zealand, United States, China, India, Indonesia, Malaysia, Korea, Philippines, Singapore, Thai-
land, Argentina, Brazil, Chile, Mexico, Peru, Turkey, Saudi Arabia, and South Africa.

"Results for other countries of our sample are available upon request from the authors.

8India and China constitute special cases since no recession occurred during the verification period
for these countries. For India, the GVAR model predicts a recession one occasion while the benchmark
models do not predict any recession over the entire verification period. For China, all models do not
forecast any recession.
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For many combinations of countries and forecast horizons the differences between
the GVAR-QPS and those of the benchmarks are not statistically significant. One factor
behind this is the relatively short verification period that contains not many recessions
for each individual country and leads to low power of the DM tests. The test results
for country groups show, however, that the performance gains of the GVAR model are
indeed real. We look at the following country groups: the G7, the ‘BIC’ (formed by
Brazil, India, and China), all advanced economies (AE), all emerging economies (EE),
and all countries of the sample. The GVAR outperforms both benchmark models for
all of these groups except for the emerging economies, for which the BVAR model is
marginally better than the GVAR model. Relative to the AR model the performance
gains reach from 3 % (BIC, h = 3,4) to 17 % (AE, h = 3). Relative to the BVAR
model the gains are smaller and reach from 2 % (AE, h = 1) to 6.5 % (AE, h = 4).
Overall, i. e. based on all countries of the sample, the QPS of the GVAR model is 3.8 %
to 5.4 % lower than the QPS of the BVAR model and 8.6 % to 15.3 % lower than that
of the AR model.

6 Conclusion

Using a large international panel of macroeconomic data, we have shown that GVAR
models produce more accurate forecasts of recession probabilities than country-specific
BVARs or univariate models. This result holds for most individual countries and fore-
cast horizons as well as for several country groups. Thus, in a globalized world it might
pay off to take information from other economies into account to improve the ability
to forecast the future business-cycle regime. We anticipate that performance gains are
even higher in the case of event forecasts when the event definition involves variables
from more than one country (e.g. a recession in six of the G7 countries).

Since the focus of this paper is to study the gains from moving from country-specific
models to a global model, we concentrate on relatively tractable linear benchmark
models. At the same time, we acknowledge that other classes of non-linear models such
as Markov-switching models can be superior tools to forecast business-cycle turning
points (e. g., Kim and Nelson, 1998). Thus, it would be an interesting extension of our
research to see whether taking the international dimension into account pays off also
when comparing country-specific Markov-switching models with a Markov-switching
GVAR model (as, e.g., in Binder and Gross, 2013).
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