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Abstract

This paper introduces private sender information into a sender-receiver game of Bayesian

persuasion with monotonic sender preferences. I derive properties of increasing di¤erences

related to the precision of signals and use these to fully characterize the set of equilibria

robust to the intuitive criterion. In particular, all such equilibria are either separating, i.e.,

the sender�s choice of signal reveals his private information to the receiver, or fully disclosing,

i.e., the outcome of the sender�s chosen signal fully reveals the payo¤-relevant state to the

receiver. Incentive compatibility requires the high sender type to use sub-optimal signals

and therefore generates a cost for the high sender type in comparison to a full information

benchmark in which the receiver knows the sender�s type. The receiver prefers the equilibrium

outcome over this benchmark for large classes of monotonic sender preferences.

Keywords: Bayesian Persuasion, Signaling.

JEL Classi�cation: D82, D83, D86.

1 Introduction

The literature on strategic transmission of information typically focuses on the extent to which

a sender transmits exogenous private information to a receiver when preferences are imperfectly

�Department of Economics, University of Heidelberg. Address: Bergheimer str. 58, 69115, Heidelberg, Germany.
Email: jonas.hedlund@awi.uni-heidelberg.de. Phone: +49 6221 54-3171. Fax: +49 6221 54-2997
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aligned (e.g., Spence 1973; Milgrom 1981; Crawford and Sobel 1982). Recent pioneering work on

Bayesian persuasion by Kamenica and Gentzkow (2011) departs from this tradition by instead

asking what information the sender would generate if he initially is as uninformed as the receiver

and commits to reveal all information generated. Applications range from prosecutors gathering

evidence for presentation at court to �rms specifying the terms of free trials of recently developed

products. In both examples there is some discretion with respect to which speci�c information

to generate and a conceivable commitment device ensuring that the generated information is

passed on to the receiver. The assumption, however, that sender and receiver are initially equally

uninformed, is not always plausible. For example, a �rm specifying terms for free trials upon

launching a new software (e.g., length or functionality) is likely better informed than a typical

consumer about the user-friendliness of this software. Further, such private information may be

di¢ cult to credibly disclose except through the consumer�s own trials. The question then arises to

what extent the design of the trials may in themselves signal something about the �rm�s private

information to the consumer.1 The present paper shows that such private information in fact

unravels and can be inferred from the nature of the evidence the sender collects, of the tests he

conducts, or of the trials he o¤ers, even if the private information is itself unveri�able and not

subject to standard unraveling arguments (as in Milgrom 1981).

I investigate a simple model of Bayesian persuasion in which the sender has unveri�able and

imperfect private information about a binary payo¤-relevant state prior to generating further

information about this state. Contingent on his private information the sender chooses a signal

which is informative about the payo¤-relevant state and the receiver observes an outcome of

the signal and updates her beliefs. The sender�s payo¤ is continuous and strictly monotonic in

the receiver�s updated belief.2 I show that con�ning attention to equilibria robust to Cho and

Kreps�(1987) intuitive criterion (henceforth, "equilibria") leads to a number of predictions about

1Similarly, a prosecutor might have observed some evidence which is not admissible for presentation at court,
such as information about the interrogation of a spouse who later refuses to testify. The question is then to what
extent the prosecutor�s private information can be inferred from the evidence that he does present.

2Such preferences of "pure persuasion" play an important role in the literature on transmission of veri�able
information, see, e.g., Milgrom (1981), Milgrom and Roberts (1986) and Hedlund (2014), as well as in several
signaling models, see, e.g., Spence (1973) and Mailath (1987). See also Cámara and Alonso (2014a).
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the sender�s behavior. The main result provides a full characterization of the equilibria and

reveals that private information leads to a form of unraveling (Theorem 1 and Proposition 1). In

particular, in equilibrium the sender�s private information is always transmitted to the receiver

in one of two ways. Any equilibrium is either fully separating, i.e., the sender�s choice of signal

reveals his private information to the receiver, or fully disclosing, i.e., the outcome of the sender�s

chosen signal fully reveals the payo¤-relevant state to the receiver. This is true even in situations in

which the sender would choose an uninformative signal in the absence of private information. The

result is not driven by the presence of a signal disclosing the senders type, as in Milgrom�s (1981)

unraveling result, but follows from conditions of increasing di¤erences in expected payo¤s, which

arise endogenously in the model and roughly state that sender types with more favorable private

information have stronger preferences for more precise signals (Lemma 1 and 2). The increasing

di¤erences imply that much of the logic of standard signaling games applies. Roughly, the intuitive

criterion requires the receiver to attribute deviations to some su¢ ciently precise signals to sender

types with favorable private information, making it possible to �nd pro�table deviations for such

types from any pooling strategy.

To obtain a tractable model I assume that the sender�s private information is binary, leading to

a binary type-space with a low (high) sender type with unfavorable (favorable) private information.

The main result reveals that each sender type�s equilibrium signal solves a maximization problem

related to a full information benchmark in which the receiver knows the sender�s type. In this

benchmark case each sender type would choose a signal maximizing his payo¤ given a common

prior on the payo¤-relevant state, i.e., what Kamenica and Gentzkow (2011) call an optimal signal.

In equilibrium the low sender type chooses any such optimal signal. The equilibrium signal of the

high sender type, however, maximizes this type�s payo¤under an incentive compatibility constraint

ensuring that the low type does not have incentives to mimic the high type�s signal. In most

interesting cases this constraint forces the high type to choose a signal which is not optimal in the

full information benchmark (Proposition 3).3 Incentive compatibility thus generates a cost for the

3Speci�cally, the high type�s equilibrium signal is optimal if and only if it fully reveals the payo¤ relevant state,
which in turn is possible only if such signals are optimal for both types.
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high sender type, as in many models of costly signaling (e.g., Spence 1973). This cost is constant

across equilibria and in particular, while there are sometimes several equilibria, all equilibria are

payo¤-equivalent from the point of view of the sender. Finally, there is an equilibrium at which

the signals of both sender types fully reveal the payo¤-relevant state if and only if such a signal is

optimal for both types (Proposition 2).

While the sender prefers the full information benchmark in which the receiver knows his type

over the equilibrium, the receiver sometimes strictly prefers the equilibrium. The reason is that

incentive compatibility sometimes forces the high sender type to use a signal which is strictly more

informative than the one he would use in the full information benchmark. This occurs, e.g., if

the sender�s payo¤ function is strictly concave in the receiver�s updated belief, in which case an

uninformative signal is optimal for both sender types (see Kamenica and Gentzkow 2011). This

may lead to odd situations in which the sender would like to disclose his private information to

the receiver prior to choosing a signal, and the receiver refuses to listen.

Finally, the model o¤ers some predictions with respect to "good news" and "bad news" in

equilibrium (Remark 2). First, from the sender�s point of view, the most favorable updated receiver

belief induced by the low type in equilibrium is always more favorable than the least favorable

updated belief induced by the high type. If the indued beliefs of both types do not overlap in

this way the low type has an incentive to deviate to the high type�s signal. There is therefore a

sense in which "good news" from low types are better than "bad news" from high types. Second,

and relatedly, an uninformative signal is neither the worst nor the best piece of equilibrium news.

This holds since only the low type�s equilibrium signal can be uninformative. For the updated

beliefs to overlap the high type must consequently induce some belief less favorable than the one

corresponding to the low type�s silence. Hence, while silence is always attributed to the low sender

type, as in Milgrom�s (1981) unraveling result, silence is never the worst piece of equilibrium news,

in contrast to the unraveling result.

The presence of private information in a framework of Bayesian persuasion generates a signal-

ing game with two main properties which together drive the results cited above. First, while I
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assume the sender�s payo¤ function constant in type, the expected payo¤ given a signal and an

interim receiver belief is linear in type, since di¤erent types generate signal outcomes with di¤erent

frequencies. This dependence can be structured by conditions of increasing di¤erences consistent

with an ordering of the signals according to their precision. Second, whenever the sender uses

a signal which fully reveals the payo¤-relevant state, his payo¤ is independent of the receiver�s

belief prior to observing the signal�s outcome. Such signals establish type-speci�c lower bounds on

equilibrium expected payo¤s. The increasing di¤erences imply that much of the logic of standard

signaling games can be applied, which together with the lower bounds on equilibrium payo¤s leads

to the characterizations of equilibria emphasized here.

Related literature. Surprisingly few papers in the literature following the seminal contribu-

tion of Kamenica and Gentzkow (2011) investigate the implications of private sender information.

An exception is the paper by Perez-Richet (2014), whose approach, however, di¤ers somewhat

from the one here. First, Perez-Richet (2014) considers sender preferences which are constant in

the receiver�s updated beliefs except for a single discontinuity. Second, while Perez-Richet (2014)

assumes the sender perfectly informed about the payo¤-relevant state, here the sender is imper-

fectly informed. Interestingly, these di¤erences allow Perez-Richet (2014) to restrict attention

to pooling equilibria, in contrast to the prominence of separation here. The concurrent working

paper by Alonso and Câmara (2014b) is technically more related. Their framework nests mine

by allowing more general sender preferences, a �nite set of payo¤-relevant states and a �nite type

space. However, Alonso and Câmara (2014b) only address the question of whether the sender may

obtain higher expected payo¤ under private information than in its absence (providing a negative

answer) and do not attempt further characterizations of equilibria. The present paper shows that

a more structured model leads to concrete insights in more limited, but still fairly interesting

environments. Alonso and Câmara�s (2014b) result is related to my result on the sub-optimality

of equilibrium signals, but less speci�c and slightly di¤erent since it compares the sender�s equi-

librium payo¤ with a benchmark in which the sender obtains no private information, while my

result concerns a benchmark in which the receiver observes the sender�s type. Kolotilin (2014a)
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discusses the impact of veri�able private sender information in a framework of Bayesian persuasion

and argues that such information unravels a la Milgrom (1981). In contrast, the present paper

emphasizes that unveri�able private sender information unravels in equilibrium and through a

very di¤erent mechanism. Alonso and Câmara (2014a) analyze Bayesian persuasion when sender

and receiver have di¤erent prior beliefs. By not modeling the process through which disagreement

occurs, however, Alonso and Câmara (2014a) abstract from the incentive compatibility issues in

focus here.

Some recent papers have in common with the present one that they investigate situations in

which the sender�s control of the receiver�s information is somewhat weakened. Gentzkow and

Kamenica (2012) �nd that competition between senders may increase the amount of information

transmitted. Gentzkow and Kamenica (2014) study costly Bayesian persuasion. Kolotilin (2014b)

considers a privately informed receiver.

Another strand of literature analyzes the design of public signals of privately informed senders

when, in contrast to the present paper, the set of feasible signals is constrained. Gill and Sgroi

(2012) analyze binary pre-launch tests of a privately and perfectly informed monopolist. The

precision of tests is �xed and the monopolist�s choice is constrained to a "toughness" parameter.

In contrast to the results here, all equilibria are pooling. Gill and Sgroi (2008), Rayo and Segal

(2010) and Li and Li (2012) impose related constraints on the set of feasible signals.

Finally, this paper is related to the literature on information acquisition followed by information

transmission, including the work of Austen-Smith (2000), Henry (2009), Che and Kartik (2009),

Ivanov (2010) and Argenziano, Severinov and Squintani (2014). In these papers the sender cannot

commit to reveal the information acquired and is also typically constrained in the set of signals

he can choose, leading to an analysis substantially di¤erent from the one here.
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2 The model

Payo¤-relevant states and types. There are two players, sender and receiver. The payo¤-

relevant states of the world are f!L; !Hg. Sender and receiver agree that the prior probability

of !H equals �0 2 (0; 1). Before anything else occurs, the unveri�able outcome of a binary

informative signal is privately revealed to the sender, who rationally updates �0 to either �L or

�H , with 0 < �L < �0 < �H < 1. I refer to �j 2 f�L; �Hg as the sender�s type.

Signals and beliefs. After observing his private signal the sender�s objective is to mod-

ify the receiver�s prior belief �0. In order to accomplish this the sender chooses a signal � =

(�(�j!L); �(�j!H)), consisting of a pair of conditional probability distributions �(�j!L) and �(�j!H)

over a �nite set of outcomes eS. Let � be the set of all signals. For a generic signal � let

S = fs1; :::; skg be the support of �, de�ned as S := fs 2 eS : �(sj!L) + �(sj!H) > 0g.4 I

abbreviate �(sij!j) = �ij and assume, for concreteness and without loss of generality, that for

1 � i � i0 � k either �iH=�iL � �i0H=�i0L or �i0L = 0, i.e., higher indexed outcomes in S are

associated with higher likelihood ratios (and higher posterior probabilities of !H).

The receiver observes the signal � chosen by the sender and makes an interim update of her

belief that the payo¤-relevant state is !H to e�(�) 2 [�L; �H ].5 I.e., the receiver is allowed to make
inferences about the sender�s private information from the sender�s choice of signal. The receiver

next observes a realization si 2 S drawn according to �, and updates her belief to �̂(�; si). Let

B(�; si; �) :=
�iH�

�iH�+ �iL(1� �)

be the mapping from a signal � 2 �, an outcome si 2 S and a prior � 2 (0; 1) to a posterior

probability that the state is !H .

4I thus assume the cardinality of S bounded above by jeSj, which departs slightly from Kamenica and Gentzkow
(2011). This assumption plays a role in the existence proof in Theorem 1, by ensuring compactness of the set of
feasible signals. The assumption is plausible if, e.g., there is some limit to the number of signal outcomes that
players can reasonably be expected to distinguish and reason about.

5While convention would require the receiver�s interim belief to be with respect to the sender�s type, the approach
here provides a shortcut and is without loss of generality as long as e�(�) 2 [�L; �H ].
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Two types of signals deserve special mention and their own name. First, the sender can fully

reveal the payo¤-relevant state by choosing a signal � such that �ij > 0 implies �ij0 = 0 for all

i 2 f1; :::; kg and fj; j0g = fL;Hg. The simplest example is a binary signal with �1L = �2H = 1.

I refer to such signals as fully disclosing. Let �FD denote a generic fully disclosing signal and

let �FD � � denote the set of fully disclosing signals. This de�nition of full disclosure di¤ers

from the standard de�nition in persuasion games (see, e.g., Milgrom 2008), where full disclosure

typically refers to revealing the private information, i.e., the sender�s type. Here full disclosure

instead refers to the payo¤-relevant state and does not imply that the receiver becomes certain

about the sender�s type.6 The sender�s second benchmark option is an uninformative signal, i.e.,

a signal � such that �iH = �iL for all i 2 f1; :::; kg. I refer to such signals as silent.

The setup requires the sender to commit to a signal and the receiver to observe a randomly

drawn outcome. E.g., the sender is not allowed to secretly choose a signal, observe an outcome and

choose a di¤erent signal if unsatis�ed. This is somewhat natural if the sender is a �rm specifying

terms of free trials of a recently developed product. Another interpretation is that the signal is an

investigative report containing evidence informative about the payo¤-relevant state. The sender

is not familiar with the evidence prior to collecting it and commits to a protocol of investigation

(a signal) and to report all gathered evidence (the signal�s outcome). As Kamenica and Gentzkow

(2011) argue, there are then several situations in which the commitment assumption is plausible.

For example, in the US a prosecutor is required by law to disclose any admissible evidence in favor

of the accused and naturally discloses any evidence against the accused. Pharmaceutical companies

must register the design of clinical trials prior to their execution and have clear incentives to report

the outcome to the FDA truthfully.

Sender and receiver payo¤ functions. I assume the sender�s payo¤ strictly and contin-

uously increasing in the receiver�s updated belief. For concreteness, I model this by assuming

the sender�s payo¤ dependent on a receiver action a 2 A := [a; �a] taken after her �nal update

6Indeed, no signal disclosing the sender�s type is available here and one can therefore not appeal to the unraveling
arguments in Milgrom (1981), Seidmann and Winter (1997), or Hagenbach, Koessler and Perez-Richet (2014) to
argue existence or uniquess of fully separating equilibria.

8



of beliefs. The receiver obtains a payo¤ depending on her action and the payo¤-relevant state

and given by a strictly concave and twice continuously di¤erentiable function u : 
 � A ! R.

Let aR(!j) := argmaxa2A u(!j; a) for j = L;H. I assume that a < aR(!L) < aR(!H) < �a.

The receiver�s expected payo¤ given a generic belief � 2 [0; 1] and action a 2 A is given by

U(�; a) = (1��)u(!L; a)+�u(!H ; a). Under the assumptions above âR(�) := argmaxa2A U(�; a)

is well-de�ned, continuous and strictly increasing.

The sender�s payo¤ depends only on the receiver�s action and is given by v : A! R, where v is

assumed continuous on A and strictly increasing. The mapping v̂ : [0; 1]! R such that v̂ = v � âR

then gives the sender�s payo¤ as a continuous and strictly increasing function of the belief of an

optimally responding receiver.

Strategies and equilibrium. I focus on pure sender strategies consisting of a pair (�L; �H) 2

�2, where �j is the signal chosen by type �j for j = L;H. A (pure) receiver strategy is a function

� : f� � Sg�2� ! A. Given a receiver strategy � the expected payo¤ of a type �j sender using a

signal � is given by the function

V (�; �; �j) :=
kX
i=1

�
�j�iH + (1� �j)�iL

�
v(�(�; si)).

Let V̂ : �� [0; 1]2 ! R be de�ned by

V̂ (�; �; �j) :=
kX
i=1

�
�j�iH + (1� �j)�iL

�
v̂(B(�; si; �)),

i.e., V̂ (�; �; �j) gives the expected payo¤ of a type �j sender using signal � on a receiver who

responds rationally to the signal given interim receiver belief �. Notice that V̂ is continuous in

its three arguments. Further, given a signal � and interim receiver belief � the set of payo¤s

fv̂(B(�; si; �))gki=1 induced by � is independent of the sender�s type �j. The sender�s expected

payo¤ given � and � is consequently linear in type and the type-dependence arises only since

di¤erent sender types induce di¤erent convex combinations of the induced payo¤s. Finally, let
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V̂ FDj := V̂ (�FD; �; �j) = (1 � �j)v̂(0) + �j v̂(1) denote the expected payo¤ of a type j = L;H

sender using a fully disclosing signal.

The solution concept is standard perfect Bayesian equilibrium (PBE) robust to the intuitive

criterion (Cho and Kreps, 1987), in what follows referred to simply as equilibrium and de�ned as

follows.

De�nition 1 An equilibrium is a sender strategy (�L; �H), a receiver strategy �, receiver interim

beliefs e� and receiver �nal beliefs �̂, such that (i) �(�; s) = âR(�̂(�; s)) for all (�; s) 2 f��Sg�2�,
(ii) for j = L;H we have �j 2 argmax�2� V (�; �; �i), (iii) the receiver�s beliefs are rational, i.e.,

for any (�; s) 2 f� � Sg�2� and fj; j0g = fL;Hg we have e�(�) 2 [�L; �H ],
e�(�j) =

8><>: �j if �
j 6= �j0

�0 if �
j = �j

0

and �̂(�; s) = B(�; s; e�(�)), and (iv) for any � 62 f�L; �Hg and fj; j0g = fL;Hg such that

V (�j; �; �j) < V̂ (�; �H ; �j) and V (�
j0 ; �; �j0) > V̂ (�; �H ; �j0) we have e�(�) = �j.

Conditions (i)-(iii) de�ne a standard PBE, while (iv) ensures robustness to the intuitive

criterion. Notice that the equilibrium expected payo¤ of a type �j sender is V (�
j; �; �j) =

V̂ (�j; e�(�); �j). An equilibrium is separating if �L 6= �H . In a separating equilibrium, the re-

ceiver�s interim belief agrees with that of the sender, implying that the private information re-

vealed to the sender�s before choosing a signal is transmitted to the receiver. An equilibrium is

pooling if �L = �H . Finally, an equilibrium is fully disclosing if �L; �H 2 �FD, implying that the

receiver becomes perfectly informed of the payo¤-relevant state.

3 Analysis

The nature of the set of feasible signals and the associated equilibrium expected payo¤ functions

generate a signaling game with some particular properties. First, the sender�s expected payo¤
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given a fully disclosing signal is independent of the receiver�s interim belief. The availability

of such signals therefore establish type-speci�c lower bounds on equilibrium expected payo¤s.

Second, given a signal and a receiver interim belief, the sender�s expected payo¤ is linear in

type. The slope of this linear dependence is related to a dimension of precision, along which

a fully disclosing signal represents one extreme. The third property of the game is a condition

of increasing di¤erences related to precision which exploits this linearity and roughly states that

higher types have stronger preferences for more precise signals. As will be shown below, the lower

bound on equilibrium expected payo¤s resulting from the availability of fully disclosing signals

together with the property of increasing di¤erences rule out any pooling equilibrium which is not

fully disclosing and pins down the equilibrium as the solution to a maximization problem.

In what follows I �rst identify conditions of increasing di¤erences in expected payo¤s in two

preliminary lemmata and then proceed to the characterizations of the equilibria.

3.1 Preliminary results

Since higher types have "better news" for the receiver it seems natural to expect that such types

in some sense should have stronger preferences for signals which reveal more information. The

following partial order on the set of feasible signals is consistent with such an intuition. For any

�; �0 2 � such that S = S 0 I say that �0 is more precise than � if for all i 2 f1; :::; kg either

�0iL � �iL � �iH � �0iH or �0iL � �iL � �iH � �0iH . If additionally �0 6= �, then �0 is strictly more

precise than �. This de�nition is stronger than Blackwell (1951) informativeness, i.e., if �0 is more

precise than �, then �0 is more informative than � in the sense of Blackwell (1951), but the converse

is not true.7 In particular, precision disperses the posterior probabilities from the prior, i.e., if �0

is more precise than �, then either B(�0; si; �) � B(�; si; �) � � or B(�0; si; �) � B(�; si; �) � �.

Notice that V̂ (�; �; �j) can be written as a linear function of �j with slope
Pk

i=1(�iH �

�iL)v̂(B(�; si; �)). The slope determines how the expected payo¤ of the sender given a signal

� and a receiver interim � depends on the sender�s type. It is not di¢ cult to see that the slope
7While there are more complete orderings of signals, including Blackwell�s (1951), the de�nition of more precise

is appropriate for the incentive compatibility analysis which is the main purpose here.
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is increasing in the precision of �. The following result exploits this fact to identify conditions of

increasing di¤erences which provide a sense in which higher types have stronger preferences for

more precise signals (proofs are in the appendix).

Lemma 1 Consider any �; �0 2 [0; 1] and any �; �0 2 � such that S = S 0. (i) If for all i 2 f1; ::; kg

either �0iL � �iL � �iH � �0iH and B(�0; si; �0) � B(�; si; �) or �0iL � �iL � �iH � �0iH and

B(�0; si; �
0) � B(�; si; �), then

V̂ (�0; �0; �H)� V̂ (�; �; �H) � V̂ (�0; �0; �L)� V̂ (�; �; �L).

(ii) If �0 is more precise than � then

V̂ (�0; �; �H)� V̂ (�; �; �H) � V̂ (�0; �; �L)� V̂ (�; �; �L),

with a strict inequality if �0 is strictly more precise than �.

These conditions rely on a payo¤ maximizing receiver updating beliefs according to Bayes

rule and is therefore more of an equilibrium construction than a standard condition of increasing

di¤erences, which is usually assumed on the primitives and without requiring particular receiver

behavior. The lemma implies, e.g., that if type �L is indi¤erent between two signals which induce

the same receiver interim belief and �0 is strictly more precise than �, then type �H strictly prefers

�0. The logic is that if �0 is more precise than �, then the di¤erence between the expected payo¤s

conditional on !H and !L is larger under �0 than under �. Since the state is more likely to be !H

for type �H than for type �L it follows that type �H is relatively more attracted by �
0. The �rst

part of Lemma 1 allows the receiver to respond to two di¤erent interim beliefs � and �0, which is

crucial in assessing incentive compatibility below. The second part is essentially a corollary of the

�rst part which obtains a neater condition by setting � = �0 and appealing to the e¤ect of more

precise signals on the set of induced receiver beliefs.

The next result relies on Lemma 1 to show that given any signal generating a weakly lower
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expected payo¤ than a fully disclosing signal for type �H under receiver interim � < �H , there are

(more precise) signals available such that only type �H bene�ts from these under receiver interim

�H .

Lemma 2 Consider any � 2 [0; �H) and any � 2 �n�FD and suppose V̂ (�; �; �H) � V̂ FDH . There

is some �0 2 � which is more precise than � and such that

V̂ (�0; �H ; �H)� V̂ (�; �; �H) > 0 > V̂ (�0; �H ; �L)� V̂ (�; �; �L).

Lemma 2 is useful in determining the receiver�s out-of-equilibrium beliefs below. The logic of

the proof is, roughly, the following. If both types use a signal � then an increase in the receiver�s

interim belief increases the payo¤s of both types. One can then consider a path of increasing

precision from � to some �FD 2 �FD along which increasing di¤erences ensure that type �H is

favored more than type �L. Since V̂ (�; �; �H) � V̂ FDH one eventually �nds some �0 such that type

�H marginally prefers �0 over � and type �L strictly prefers � over �
0. The main crack in the

argument, which leads to the main di¢ culty in the proof, is that it is not possible to say which

type bene�ts the most from the initial increase in interim belief. Lemma 1 is not helpful here,

since all posterior probabilities are higher after the interim increase. The trick in the proof is to

construct a signal satisfying the hypothesis of Lemma 1 and which is still preferred by type �H

over � after the interim increase, and then apply the argument of increasing precision outlined

above.

3.2 Equilibria

Lemma 2 almost immediately implies that any equilibrium is either separating or fully disclosing.

In equilibrium it obviously holds that the payo¤s of type �L and type �H at least equal V̂
FD
L and

V̂ FDH , respectively. If � is a pooling strategy, then the receiver�s equilibrium interim beliefs satis�ese�(�) = �0 < �H and the second part of Lemma 2 then implies the existence of some �00 such thate�(�00) = �H and which is a pro�table deviation for type �H .
13



Proposition 1 Any equilibrium is either separating or fully disclosing

In other words, either the sender�s choice of signal reveals his type to the receiver, or the

outcome of the signal reveals the payo¤-relevant state. The result is driven by type �H�s stronger

preferences for precise signals and the possibility of fully disclosing the payo¤-relevant state. The

argument is roughly the following. A deviation from a pooling strategy � to some signal �0 '

� is pro�table for both types if the receiver infers e�(�0) = �H . As �
0 becomes more precise

and converges to full disclosure, however, the deviation payo¤s converge to V̂ FDL and V̂ FDH . For

�0 su¢ ciently precise both types therefore prefer the equilibrium over �0. Type �H�s stronger

preferences for precise signals, re�ected in the increasing di¤erences, implies that there is some

su¢ ciently precise �0 such that type �L prefers the equilibrium while type �H prefers the deviation.

The intuitive criterion requires e�(�0) = �H and there is a pro�table deviation for type �H .
Proposition 1 implies that identifying the set of equilibrium sender strategies is equivalent to

identifying the set of incentive compatible fully disclosing and separating strategies. This can be

accomplished in terms of solutions to certain maximization problems. Let

��j := argmax
�2�

V̂ (�; �j; �j)

for j 2 fL;Hg, where it is not di¢ cult to see that ��j 6= ?. I.e., ��j is what Kamenica and

Gentzkow (2011) refer to as type �j�s optimal signals. Under a full information benchmark in which

the receiver knows the sender�s type, each type would choose one of its respective optimal signals.

The set of equilibrium sender strategies is fully characterized by type �L�s optimal signal and a

signal which maximizes type �H�s payo¤ under an additional incentive compatibility constraint

ensuring that type �L does not have incentives to mimic type �H�s signal.

Theorem 1 (i) There is an equilibrium at which the sender�s strategy is (�L; �H) if and only if

�L 2 argmax
�2�

V̂ (�; �L; �L) (1)

14



and

�H 2 argmax
�2�

V̂ (�; �H ; �H) s.t. V̂ (�; �H ; �L) � V̂ (�L; �L; �L). (2)

(ii) An equilibrium exists.

While counterexamples (e.g., if v̂ is a linear function), reveal that there is not generically a

unique equilibrium, an immediate corollary of Theorem 1 is that all equilibria are equivalent from

the point of view of the sender.

Corollary 1 The expected payo¤s of the type �L and type �H sender are constant across equilibria.

Theorem 1 shows that in spite of the absence of single-crossing assumptions on the primitives,

the model�s predictions are remarkably similar to those of well behaved signaling models, such

as simple versions of Spence�s (1973) model of job-market signaling. In particular, to identify a

separating PBE it is su¢ cient to maximize both types�expected payo¤s as if the receiver knew their

types and subject to an upward incentive compatibility constraint (1 and 2 are su¢ cient). When

adding the intuitive criterion this is the only equilibrium which survives (1 and 2 are necessary).

The result is again driven by increasing di¤erences in precision and the lower bound on equi-

librium expected payo¤s implied by the availability of a fully disclosing signal, and its proof uses

Lemma 1 and Lemma 2 extensively. It is fairly obvious that (1) and the constraint in (2) are

necessary for type �L not to have a pro�table deviation and su¢ cient if out-of-equilibrium beliefs

equal e�(�) = �L. The proof is thus mainly concerned with the necessity and su¢ ciency of type
�H�s maximization in (2). Su¢ ciency of (2) follows by setting out-of-equilibrium beliefs equal toe�(�) = �L and observing that the existence of a pro�table deviation would contradict (2). For,
one could then invoke the increasing di¤erences underlying Lemma 2 to claim the existence of

a su¢ ciently precise signal which outperforms the deviation under receiver interim �H and still

satis�es the constraint in (2). The necessity of (2) follows by appealing to the intuitive criterion.

If (2) does not hold in some equilibrium then there must be an alternative signal, say �0, satisfying

the constraint in (2) and generating a higher expected payo¤ for type �H . One can then consider

a continuous path of signals of increasing precision from �0 to some �FD and invoke Lemma 1 to
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argue existence of a signal �00 along this path which is marginally preferred by type �H over the

equilibrium and strictly satis�es the constraint in (2). The intuitive criterion implies a pro�table

deviation to �00 for type �H . Finally, given part (i) of the theorem, the existence of an equilibrium

in part (ii) follows by observing that maximization problems (1) and (2) are well de�ned.

Fully separating versus fully disclosing equilibria. Proposition 1 states that any equi-

librium is either separating or fully disclosing. It turns out that fully disclosing equilibria are

something of a special case and there is a simple way of checking whether they might occur.

Theorem 1 implies that a fully disclosing equilibrium can only exist if a fully disclosing signal

is optimal for type �L. It follows that if a fully disclosing signal is optimal also for type �H ,

then a fully disclosing equilibrium exists. The following result emphasizes that a fully disclosing

equilibrium exists if and only if fully disclosing signals are optimal for both types. In addition, if

this is the case, then type �H uses a fully disclosing signal in any equilibrium.

Proposition 2 (i) If a fully disclosing signal is optimal for both types, then any equilibrium signal

of type �H is fully disclosing. (ii) A fully disclosing equilibrium exists if and only if a fully disclosing

signal is optimal for both types.

The result follows by observing that if a fully disclosing signal is optimal for one type, then

such a signal is optimal also for the other type. Kamenica and Gentzkow�s (2011) characterization

of optimal signals provides a straightforward check of whether fully disclosing signals are optimal.

It su¢ ces to draw a line from (0; v̂(0)) to (1; v̂(1)). A fully disclosing signal is optimal for both

types if and only if this line is (weakly) above v̂.

Further properties of the equilibrium signals. Theorem 1 establishes that type �L�s

equilibrium signal is optimal, i.e., type �L would not behave di¤erently if the receiver could

observe his type. The next result shows that the constraint in (2) is active in the sense of forcing

type �H to choose a signal which is not optimal, with exception only for the special case in which

fully disclosing signals are optimal.

16



Proposition 3 Suppose (�L; �H) is an equilibrium sender strategy. If �H 2 ��H then �H 2 �FD.

Proposition 3 follows by noting that type �L strictly prefers posing as type �H under any signal

�H 2 ��Hn�FD over a signal �L 2 ��L under a correct receiver interim belief. The proof exploits

the characterization of optimal signals provided by Kamenica and Gentzkow (2011). In particular,

the choice of a signal is equivalent to the choice of a distribution of updated receiver beliefs. It

is easily seen that in equilibrium the lowest updated belief induced by type �H must be lower

than the highest updated belief induced by type �L. The proof then argues that if this is true for

some optimal signals of type �H and type �L, then the optimal distributions of updated receiver

beliefs of both types are similar in a precise sense.8 Intuitively, this similarity implies that if both

types use optimal signals in equilibrium and type �L deviates to type �H�s signal, then type �L

obtains his equilibrium payo¤ plus a bonus resulting from posing as type �H . The deviation is

then pro�table and type �H can therefore not use an optimal signal in equilibrium, except in the

special case in which the optimal signal is fully disclosing.

Proposition 3 implies that incentive compatibility generates a cost for type �H in comparison

to the full information benchmark in which the receiver knows the sender�s type. An implication

is that if the sender could credibly reveal his private information to the receiver prior to choosing

a signal he would prefer doing this.9 For example, a pharmaceutical company submitting a New

Drug Application to the FDA would be keen on passing on research results obtained prior to

choosing a protocol for clinical trials.10 It is not clear, however, that the FDA would be equally

keen on receiving this information. In equilibrium the pharmaceutical company reveals its private

information anyway through its choice of protocol for clinical trials, and incentive compatibility

sometimes leads the pharmaceutical company with favorable private information to reveal more

information than what it would if the FDA knew its type. For example, if type �H�s unique
8The idea is most easily visualized by plotting what Kamenica and Gentzkow (2011) refer to as the concave

closure of v̂, i.e., the smallest concave function greater than v̂. In particular, here �L and �H would belong to the
same linear segment of the concave closure of v̂, implying that the supports of both types�optimal distributions of
updated beliefs are similar.

9Adding a cheap-talk stage prior to the choice of signal, however, would not a¤ect the set of equilibrium outcomes,
since both types would claim to be type �H whenever such a message is believed by the receiver.
10A similar result is obtained by Kolotilin (2014a), who �nds that veri�able private sender information unravels

in a related model.
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optimal signal is silent, then Proposition 3 implies that type �H�s equilibrium signal is not silent

and therefore strictly Blackwell (1951) more informative than the optimal signal. If additionally

type �L has a unique optimal signal, the receiver would consequently strictly prefer the equilibrium

information structure over the information structure resulting in the full information benchmark

in which she knows the sender�s type. In other words, there is sometimes an "ignorance-rent"

for the receiver. A su¢ cient condition for such a rent to appear is that v̂ is strictly concave, in

which case both types�unique optimal signals are silent. The following remark summarizes the

observation.

Remark 1 Fix the signal of type �L at some ��L 2 ��L. If all ��H 2 ��H are silent, then the re-

ceiver�s equilibrium expected payo¤ is strictly larger than her expected payo¤ in the full information

benchmark in which she knows the sender�s type and each sender type chooses an optimal signal.

A su¢ cient condition for this to occur is that v̂ is a strictly concave function.

The next result implies that the equilibrium signal of type �H cannot be too imprecise. In

particular, there cannot be a signal which is more precise than the equilibrium signal of type �H

and which would give him a higher expected payo¤. Therefore, none of type �H�s optimal signals

can be more precise than the equilibrium signal of type �H .

Proposition 4 Suppose (�L; �H) is an equilibrium sender strategy. For any � 2 � which is more

precise than �H it holds that V̂ (�; �H ; �H) � V̂ (�H ; �H ; �H). Consequently, if ��H 2 ��H then ��H
is not more precise than �H .

Proposition 4 is established using an increasing di¤erences argument similar to those above.

The result implies that the equilibrium signal of type �H can never be silent. For, if the equilib-

rium signal of type �H were silent, then Proposition 3 implies that there is an optimal signal which

is more precise than type �H�s equilibrium signal, contradicting Proposition 4. Incentive compati-

bility hence requires the sender to reveal all private information and some additional information,

even when both types�optimal signals are silent.
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A remark concerning bad and good news. I will close the discussion with a remark

consisting of two parts. The �rst part has already been brie�y mentioned and relates to the distri-

bution of induced receiver beliefs in equilibrium, while the second part relates to the interpretation

of silence.

Remark 2 Suppose (�L; �H) is an equilibrium sender strategy such that �L and �H have supports

fsL1 ; :::; sLkLg and fs
H
1 ; :::; s

H
kH
g. Then (i) B(�H ; sH1 ; �H) < B(�L; sLkL ; �L) and (ii) if �

L is silent

there are i; i0 2 f1; :::; kHg such that B(�H ; sHi ; �H) < �L < B(�H ; sHi0 ; �H).

The �rst part states that the supports of the distribution of induced receiver beliefs of both

types must overlap in equilibrium. This follows trivially by observing that if type �L deviates

to type �H�s equilibrium signal he induces the same set of updated beliefs as type �H does. An

interpretation is that in equilibrium incentive compatibility requires the "worst news" of the "good

type" to be worse than the "best news" of the "bad type." In other words, the equilibrium signals

are always su¢ ciently informative to override the private information in some sense.

The second part of the remark is a corollary to the �rst part emphasizing that if the equilibrium

signal of type �L is silent, then type �H must induce updated beliefs both below and above the

updated belief induced by type �L�s silent signal (which equals �L). Since only type �L can use a

silent signal in equilibrium an interpretation is that an uninformative signal is never the worst nor

the best equilibrium news. The idea can be related to Milgrom�s (1981) unraveling result, which

states that withheld information is always interpreted in the worst possible way in equilibrium,

i.e., silence is the worst kind of news. While withholding information is interpreted in the worst

possible way here in terms of the receiver�s belief regarding the sender�s private information, it is

neither the worst possible nor the best possible equilibrium news.

4 Concluding remarks

This paper has shown that the introduction of unveri�able private information in a framework of

Bayesian persuasion generates a tractable signaling game with concrete predictions. In particular,
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in perfect Bayesian equilibria robust to a reasonable re�nement private information unravels and

the set of such equilibria can be fully characterized in terms of maximization problems resembling

the ones found in standard signaling models. The results are driven by properties of increasing

di¤erences which arise endogenously in the game. An implication is that one can sometimes infer

an agent�s private information by the design of his experiments, tests, free trials or by the type

of evidence he chooses to collect. By studying the equilibrium more closely it turns out that the

sender typically would prefer revealing his private information to the receiver prior to choosing a

signal. The receiver, however, sometimes obtains an "ignorance rent" and prefers the equilibrium

over the full information benchmark in which he knows the sender�s type.

There are many ways in which one could generalize the framework considered here. For ex-

ample, Gentzkow and Kamenica (2014) discuss how costs related to the reduction in entropy (see,

e.g., Shannon 1948) can be introduced into a framework of Bayesian persuasion. It would be inter-

esting to see how such costs would a¤ect the unraveling of private information. Another somewhat

restrictive feature of the framework here is the binary set of payo¤-relevant states. A natural ques-

tions is how robust the unraveling of private information is to a more general speci�cation of the

set of payo¤-relevant states. Finally, this paper investigates particularly simple sender preferences

over receiver beliefs. Extensions to other classes preferences, such as single peaked preferences,

would be of interest.

Another direction for future research is in applications. For example, in Gill and Sgroi�s (2012)

analysis of a monopolist�s pre-launch tests of a new product signaling through the choice of test can

be ruled out if the set of feasible signals is constrained and the monopolist is perfectly informed.

The analysis here suggests that if instead the set of feasible signals in unconstrained and the

monopolist is imperfectly informed, then such signaling may play an important role.

5 Appendix

Proof. (Lemma 1) Let �; �0 2 [0; 1] and let �; �0 2 � such that S = S 0.
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To prove (i) suppose that for all i 2 f1; ::; kg either �0iL � �iL � �iH � �0iH and B(�0; si; �0) �

B(�; si; �) or �0iL � �iL � �iH � �0iH and B(�0; si; �0) � B(�; si; �). Let k 2 f1; ::; k � 1g be

the smallest number such that �0
kH
� �0

kL
, i.e., such that B(�0; sk; �

0) � B(�; sk; �). Abbreviate

v̂i = v̂(B(�; si; �)) and v̂0i = v̂(B(�0; si; �)). Notice that
P

i<�k(�iH � �iL) = �
P

i��k(�iH � �iL)

and likewise for �0. Then

V̂ (�0; �0; �H)� V̂ (�; �; �H)�
h
V̂ (�0; �0; �L)� V̂ (�; �; �L)

i
= (�H � �L)

24X
i<�k

(�0iH � �0iL)v̂0i � (�iH � �iL)v̂i +
X
i��k

(�0iH � �0iL)v̂0i � (�iH � �iL)v̂i

35
� (�H � �L)

24X
i<�k

(�0iH � �0iL)v̂i � (�iH � �iL)v̂i +
X
i��k

(�0iH � �0iL)v̂i � (�iH � �iL)v̂i

35
� (�H � �L)

24X
i>�k

[(�0iH � �0iL)� (�iH � �iL)] v̂i +
X
i��k

[(�0iH � �0iL)� (�iH � �iL)] v̂�k

35
= (�H � �L)

24X
i<�k

[(�0iH � �0iL)� (�iH � �iL)] v̂i �
X
i<�k

[(�0iH � �0iL)� (�iH � �iL)] v̂�k

35
= (�H � �L)

X
i<�k

[(�0iH � �0iL)� (�iH � �iL)] (v̂i � v̂�k) � 0;

which proves (i).

To prove (ii), suppose �rst that �0 is more precise than �. Then for all i 2 f1; :::; kg either

�0iL � �iL � �iH � �0iH and B(�0; si; �) � B(�; si; �) or �0iL � �iL � �iH � �0iH and B(�0; si; �) �

B(�; si; �). By (i) we have V̂ (�0; �; �H)� V̂ (�; �; �H) � V̂ (�0; �; �L)� V̂ (�; �; �L).

Suppose now that �0 is strictly more precise than � and that for some i0 2 f1; :::; kg we have

�0i0H=�
0
i0L < �i0H=�i0L � 1, implying �0i0H � �0i0L < 0 and B(�0; si0 ; �) < B(�; si0 ; �). The series of

inequalities above is then valid and the �rst inequality is strict so V̂ (�0; �; �H) � V̂ (�; �; �H) >

V̂ (�0; �; �L)� V̂ (�; �; �L). An analogous argument holds if instead �0i0H=�0i0L > �i0H=�i0L � 1, and

we have therefore proved (ii)

Proof. (Lemma 2) Let � 2 [0; �H) and suppose � 2 �n�FD with V̂ (�; �; �H) � V̂ FDH . I �rst
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prove the following preliminary result.

Claim. There is some �0 2 �n�FD with support S 0 = S which is not silent and such that

V̂ (�0; �H ; �H)� V̂ (�; �; �H) � V̂ (�0; �H ; �L)� V̂ (�; �; �L)

V̂ (�0; �H ; �H)� V̂ (�; �; �H) > 0.

Proof. The proof constructs a signal �0 satisfying the hypothesis of part (i) of Lemma 1 and

such that V̂ (�0; �H ; �H) � V̂ (�; �; �H) > 0. Let k 2 f1; :::; k � 1g be the smallest number such

that �kH � �kL, let �K := f1g [ f1; :::; k � 1g and let K = f1; :::; kg. The construction transfers

probability in �(�j!H) from outcomes fsigi2 �K to outcomes fsigi2Kn �K maintaining B(�; si; �) �xed

for all i 2 �K. Let �0iL = �iL for all i 2 f1; :::; kg and let

�0iH =
�(1� �H)�iH
(1� �)�H�iL

�0iL =
�(1� �H)�iH
(1� �)�H

for all i 2 �K. Straightforward algebra shows that for all i 2 �K we have B(�0; si; �H) = B(�; si; �)

and �0iH � �iH , with equality only if �iH = 0. For all i 2 Kn �K let �0iH = �iH + �(1 � �iH) with

� =
P

i2 �K(�iH � �0iH)=
P

i2Kn �K(1 � �iH) if
P

i2Kn �K(1 � �iH) > 0 and � = 0 otherwise. Notice

that �0 is not silent, for then �0kH = �kH but then �
0
1H = 0, a contradiction.

For any i 2 �K it holds that �0iH � �iH � �iL � �0iL and B(�
0; si; �H) � B(�; si; �) and for

any i 2 Kn �K it holds that �0iH � �iH � �iL � �0iL and therefore B(�
0; si; �H) � B(�; si; �H) �

B(�; si; �). The hypothesis of part (i) of Lemma 1 is then satis�ed which implies

V̂ (�0; �H ; �H)� V̂ (�; �; �H) � V̂ (�0; �H ; �L)� V̂ (�; �; �L).
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Abbreviate v̂0i = v̂(B(�
0; si; �H)) and v̂i = v̂(B(�; si; �)). Then

V̂ (�0; �H ; �H)� V̂ (�; �; �H) =

kX
i=1

[�H(�
0
iH v̂

0
i � �iH v̂i) + (1� �H)�iL(v̂0i � v̂i)]

� �H

kX
i=1

(�0iH v̂i � �iH v̂i) � 0,

where the �rst inequality follows since v̂0i � v̂i for all i 2 K and the second inequality follows since

by construction �0(�j!H) �rst order stochastically dominates �(�j!H). If the �rst inequality is an

equality then v̂0i = v̂i and therefore B(�; si; �H) = B(�; si; �) for i 2 Kn �K, which is only possible

if �iL = 0 for all i 2 Kn �K. Since � 62 �FD it must then be that �iH > 0 for some i 2 �K and then

�(�j!H) 6= �0(�j!H) and the last inequality must be strict. Hence, V̂ (�0; �H ; �H)� V̂ (�; �; �H) > 0.

Finally, since V̂ (�0; �H ; �H) > V̂ (�; �; �H) � V̂ FDH we have �0 62 �FD.�

I now use a signal with the properties in the claim to construct a signal satisfying the statement

in Lemma 2. Let �0 2 �n�FD be a signal with support S 0 = S, which is not silent, and such that

V̂ (�0; �H ; �H) � V̂ (�; �; �H) � V̂ (�0; �H ; �L) � V̂ (�; �; �L) and V̂ (�0; �H ; �H) � V̂ (�; �; �H) > 0.

Let k 2 f1; :::; k � 1g be the smallest number such that �0
kH
� �0

kL
, where, since �0 is not silent,

k > 1.

De�ne a signal � with support S such that �iH = 0 for i < �k and �iH = �0iH + �H(1 � �0iH)

for i � �k, where �H =
P

i<�k �
0
iH=

P
i��k(1 � �0iH) if

P
i��k(1 � �0iH) > 0 and �H = 0 otherwise.

The de�nition of �H ensures that �iH distributes the probability mass �
0(�j!H) puts on outcomes

i < �k and distributes it over outcomes i � �k. De�ne �iL analogously by �iL = 0 for i � �k and

�iL = �
0
iL + �L(1� �0iL) for i < �k, where �L =

P
i��k �

0
iL=
P

i<�k(1� �0iL) if
P

i<�k(1� �0iL) > 0 and

�L = 0 otherwise. Then � 2 �FD with �iH � �0iH � �0iL � �iL for i < �k and �iL � �0iL � �0iH � �iH
for i � �k and since �0 62 �FD we have � 6= �0.

De�ne a family of signals g(
) with support S by giH(
) = (1 � 
)�0iH + 
�iH and giL(
) =

(1� 
)�0iL + 
�iL for 
 2 [0; 1]. Then g(0) = �0 and g(1) = � 2 �FD. For any 
0 > 
 we have that
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g(
0) is strictly more precise than g(
). By Lemma 1 and by hypothesis, for all 
 2 (0; 1]

V̂ (g(
); �H ; �H)� V̂ (g(
); �H ; �L) > V̂ (�0; �H ; �H)� V̂ (�0; �H ; �L) � V̂ (�; �; �H)� V̂ (�; �; �L),

and therefore V̂ (g(
); �H ; �H)�V̂ (�; �; �H) > V̂ (g(
); �H ; �L)�V̂ (�; �; �L). Since V̂ (g(
); �H ; �H)

is continuous in 
 and since V̂ (g(0); �H ; �H)�V̂ (�; �; �H) > 0 and V̂ (g(1); �H ; �H)�V̂ (�; �; �H) �

0 there is some 
̂ 2 (0; 1] such that

0 = V̂ (g(
̂); �H ; �H)� V̂ (�; �; �H) > V̂ (g(
̂); �H ; �L)� V̂ (�; �; �L).

Let �
 = minf
 � 0 : V̂ (g(
); �H ; �H) = V̂ (�; �; �H)g so V̂ (g(
); �H ; �H)� V̂ (�; �; �H) > 0 for all


 2 [0; �
) and V̂ (g(�
); �H ; �L)� V̂ (�; �; �L) < 0. There is then some " 2 (0; �
) such that

V̂ (g(�
 � "); �H ; �H)� V̂ (�; �; �H) > 0 > V̂ (g(�
 � "); �H ; �L)� V̂ (�; �; �L)

which concludes the proof.

Proof. (Proposition 1) Suppose, to contradiction, that �L = �H = � 2 �n�FD, � and

(e�(�); �̂(�; s)) is an equilibrium. Then e�(�) = �0, �̂(�; si) = B(�; si; �0) for all si 2 S and the equi-
librium payo¤ of a type �j sender is V̂ (�; �0; �i). Since we are in equilibrium V̂ (�; �0; �H) � V̂ FDH .

By Lemma 2 there is some �0 2 � such that V̂ (�0; �H ; �H)� V̂ (�; �0; �H) > 0 > V̂ (�0; �H ; �L)�

V̂ (�; �0; �L), which by (iv) in De�nition 1 implies e�(�0) = �H . Type �H therefore has a pro�table
deviation to �0, a contradiction.

Proof. (Theorem 1) First, notice that � is a compact subset of Euclidean space and that

V̂ (�; �; �j) =
X
s2eS

�
�j�(sj!H) + (1� �j)�(sj!H)

�
v̂(B(�; s; �))

is continuous in �. Hence, max�2� V̂ (�; �; �j) is well de�ned and therefore �
�
j 6= ? for j 2 fL;Hg.

Let ��L 2 ��L and let D := f� 2 � : V̂ (�; �H ; �L) � V̂ (��L; �L; �L)g, where �FD � D 6= ?.
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Step 1. The "if" part of (i). Proof. Suppose �L = ��L, that �
H 2 argmax�2D V̂ (�; �H ; �H),

and that the optimally responding receiver�s beliefs (e�; �̂) are rational. Notice that if �L = �H

then �L; �H 2 �FD since otherwise V̂ (�H ; �H ; �L) > V̂ (�L; �L; �L). Hence, type �j�s expected

payo¤ is V̂ (�j; �j; �j) for j = L;H. Notice that if V̂ (�; �H ; �H) > V̂ (�
H ; �H ; �H) then � 62 D, so

(iv) in De�nition 1 imposes no restriction on e�. Therefore, let e�(�) = �L for all � 2 �nf�L; �Hg.
Type �L then has no pro�table deviation by construction.

Suppose, to contradiction, that type �H has a pro�table deviation �0. Since �FD � D the

de�nition of �H implies V̂ (�0; �L; �H) > V̂ (�
H ; �H ; �H) � V̂ FDH and therefore �0 62 �FD. Lemma

2 then implies the existence of some �00 2 � such that

V̂ (�00; �H ; �H)� V̂ (�0; �L; �H) > 0 > V̂ (�00; �H ; �L)� V̂ (�0; �L; �L).

Then V̂ (�00; �H ; �H) > V̂ (�H ; �H ; �H) and V̂ (�
L; �L; �L) � V̂ (�0; �L; �L) > V̂ (�00; �H ; �L), so

�00 2 D, contradicting the de�nition of �H . Therefore type �H has no pro�table deviation and we

have an equilibrium.�

Step 2. The "only if" part of (i). Proof. Suppose (�L; �H), �, e�(�) and �̂(�; �) and is an equi-
librium. Proposition 1 implies that if �L = �H then V̂ (�j; �0; �j) = V̂

FD
j = V̂ (�j; �j; �j). Hence,

type �j�s equilibrium expected payo¤ is V̂ (�j; �j; �j) for j = L;H. Notice that V̂ (�
L; �L; �L) �

V̂ (��L; �L; �L) � V̂ (��L;
e�(��L); �L) and hence �L 2 ��L. Further, �H 2 D, since otherwise type

�L has a pro�table deviation to �
H . Suppose therefore, to contradiction, that there is some

� 2 � such that V̂ (�; �H ; �H) > V̂ (�H ; �H ; �H) and V̂ (�; �H ; �L) � V̂ (�L; �L; �L) and notice that

V̂ (�; �H ; �H) > V̂
FD
H and consequently � 62 �FD. Let g(
) be a convex combination of � and some

�FD 2 �FD parameterized by 
 and such that g(0) = �, g(1) = �FD and g(
0) is strictly more

precise than g(
) if 
0 > 
. For the details on how such a signal can be constructed, see the proof

of Lemma 2. Notice that V̂ (g(0); �H ; �H) > V̂ (�
H ; �H ; �H) and V̂ (g(1); �H ; �H) � V̂ (�H ; �H ; �H).
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Let �
 = minf
 � 0 : V̂ (g(
); �H ; �H) = V̂ (�H ; �H ; �H)g. Then

V̂ (g(�
); �H ; �H)� V̂ (�H ; �H ; �H) >

V̂ (g(�
); �H ; �H)� V̂ (�; �H ; �H) > V̂ (g(�
); �H ; �L)� V̂ (�; �H ; �L)

� V̂ (g(�
); �H ; �L)� V̂ (�L; �H ; �L),

where the second inequality follows from (ii) in Lemma 1. There is then some " 2 (0; �
) such that

V̂ (g(�
 � "); �H ; �H)� V̂ (�H ; �H ; �H) > 0 > V̂ (g(�
 � "); �H ; �L)� V̂ (�L; �H ; �L),

i.e., V̂ (g(�
 � "); �H ; �H) > V̂ (�H ; �H ; �H) and V̂ (g(�
 � "); �H ; �L) < V̂ (�L; �L; �L). Then (iv)

in De�nition 1 implies e�(g(�
 � ")) = �H and a pro�table deviation to g(�
 � ") for type �H ,

contradicting that we have an equilibrium.�

Step 3. Part (ii): There is an equilibrium. Proof. Since V̂ (�; �H ; �L) is continuous in � and �

is a compact subset of the Euclidean space we have that D is compact and max�2D V̂ (�; �H ; �H)

therefore has a solution. Hence, the problem of �nding (�L; �H) such that

�L 2 argmax�2� V̂ (�; �L; �L) and �H 2 argmax�2�fV̂ (�; �H ; �H) : V̂ (�; �H ; �L) � V̂ (�L; �L; �L)g

has a solution and Step 1 implies that there is an equilibrium.

Proof. (Proposition 2) The proof relies on the characterization of optimal signals in terms of the

"concavi�cation" of v̂ developed by Kamenica and Gentzkow (2011). Let &(x) be the line drawn

from (0; v̂(0)) to (1; v̂(1)). Corollary 1 and 2 in Kamenica and Gentzkow (2011) imply that a fully

disclosing signal is optimal for type �j if and only if &(x) � v̂(x) for all x 2 [0; 1] and in this

case max�2� V̂ (�; �j; �j) = &(�j) for j = L;H. This immediately implies that if a fully disclosing

signal �FD is optimal for type �H then �
FD is optimal also for type �L, and vice versa.

To prove (i), suppose a fully disclosing signal is optimal for both types and that (�L; �H)

such that �H 62 �FD is an equilibrium strategy. Let fsH1 ; :::; sHkHg be the support of �
H and let

f�Hi gkHi=1 be the updated beliefs induced by �H in equilibrium. Then V̂ (�j; �j; �j) = &(�j) for
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j = L;H and it follows from Corollary 2 in Kamenica and Gentzkow (2011) that v̂(�Hi ) = &(�
H
i )

for any i 2 f1; :::; kHg. If type �L deviates to �H his payo¤ therefore equals &(��) with �� =PkH
i=1(�L�

H
iH + (1� �L)�HiL)�Hi . We have

�H � �� =

kHX
i=1

(�H�
H
iH + (1� �H)�HiL)�Hi �

kHX
i=1

(�L�
H
iH + (1� �L)�HiL)�Hi

= (�H � �L)
kHX
i=1

(�HiH � �HiL)�Hi < �H � �L,

where
P

i(�
H
iH � �HiL)�Hi < 1 since �H is not fully disclosing. Hence, �� > �L and the deviation is

pro�table, contradicting that (�L; �H) is an equilibrium strategy.

Necessity in (ii) follows since a fully disclosing signal is optimal for �L if and only if it also

optimal for type �H and Theorem 1 requires type �L�s equilibrium signal to be optimal. Su¢ ciency

is an immediate consequence of Theorem 1.

Proof. (Proposition 3) Suppose (�L; �H) is an equilibrium sender strategy and that the support

of �j is fsj1; :::; s
j
kj
g for j = L;H. Suppose, to contradiction, that �H 2 ��Hn�FD. The proof again

relies on the characterization of optimal signals developed by Kamenica and Gentzkow (2011). For

j = L;H let f�jig
kj
i=1 be the updated beliefs induced by �

j in equilibrium, where �j1 � �j � �
j
kj
, so

�L1 < �
H
kH
. Let &j(�) be the (positively sloped) line going through (�j1; v̂

j
1(�

j
1)) and (�

j
kj
; v̂jkj(�

j
kj
))

and de�ned on [0; 1]. Corollary 1 and 2 in Kamenica and Gentzkow (2011) imply that since �L

and �H are optimal signals &j(x) � v̂(x) for x 2 [0; 1] and v̂(�ji ) = &(�
j
i ) for j 2 fL;Hg and for all

i 2 f1; :::; kjg. Suppose �rst that &L(1) > &H(1). It follows that &L(x̂) = &H(x̂) for some x̂ 2 (0; 1)

and since &H(x) > &L(x) � v̂(x) for x 2 [0; x̂) and &L(x) > &H(x) � v̂(x) for x 2 (x̂; 1] we have

�H1 � x̂ � �LkL . But then �L has a pro�table deviation to �
H , a contradiction. Suppose instead

that &L(1) < &H(1). Again &L(x̂) = &H(x̂) for some x̂ 2 (0; 1) and now �L � �L1 � x̂ � �HkH � �H ,

a contradiction. Hence, &L(1) = &H(1). But then &L(x) = &H(x) for all x 2 [0; 1], since otherwise

either �L1 = 1 > �L or �
H
1 = 1 > �H , a contradiction.

Let &(x) := &L(x) = &H(x). Since
Pkj

i=1(�j�
j
iH + (1 � �j)�

j
iL)�

j
i = �j we have V̂ (�

j; �j; �j) =
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&(�j) for j = L;H. If type �L deviates to �
H his deviation payo¤ equals &(��) with �� =PkH

i=1(�L�
H
iH + (1� �L)�HiL)�Hi . We have

�H � �� =

kHX
i=1

(�H�
H
iH + (1� �H)�HiL)�Hi �

kHX
i=1

(�L�
H
iH + (1� �L)�HiL)�Hi

= (�H � �L)
kHX
i=1

(�HiH � �HiL)�Hi < �H � �L,

where
P

i(�
H
iH � �HiL)�Hi < 1 since �H is not fully disclosing. Hence, �� > �L and the deviation is

pro�table, contradicting that (�L; �H) is an equilibrium strategy.

Proof. (Proposition 4) Suppose (�L; �H) is an equilibrium sender strategy. Suppose, to contra-

diction, that � is more precise than �H and that V̂ (�; �H ; �H) > V̂ (�H ; �H ; �H). Notice that

V̂ (�; �H ; �H) > V̂
FD
H , so � 62 �FD. Let g(
) be a convex combination of � and some �FD 2 �FD

parameterized by 
 2 [0; 1] and such that g(0) = �, g(1) = �FD and g(
0) is strictly more precise

than g(
) if 
0 > 
. For the details on how such a signal can be constructed, see the proof of

Lemma 2. Let �
 = minf
 � 0 : V̂ (g(
); �H ; �H) = V̂ (�
H ; �H ; �H)g. Since g(�
) is strictly more

precise than �H (ii) in Lemma 1 implies the �rst of the following inequalities, while type �L�s

incentive compatibility implies the second

V̂ (g(�
); �H ; �H)� V̂ (�H ; �H ; �H) >

V̂ (g(�
); �H ; �L)� V̂ (�H ; �H ; �L) � V̂ (g(�
); �H ; �L)� V̂ (�L; �L; �L),

There is then some " 2 (0; �
) such that

V̂ (g(�
 � "); �H ; �H)� V̂ (�H ; �H ; �H) > 0 > V̂ (g(�
 � "); �H ; �L)� V̂ (�L; �L; �L),

but this contradicts (2) in Theorem 1, i.e., (�L; �H) is not an equilibrium sender strategy.
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