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1 Introduction

Since Ellsberg (1961), ambiguity averse preferences as opposed to subjective ex-
pected utility preferences (seu, Savage 1954) have been a vital economic research
topic. One of the most influential axiomatization of ambiguity aversion is the mul-
tiple prior model with maxmin expected utility (meu) of Gilboa and Schmeidler
(1989). The framework of Gilboa and Schmeidler (1989), however, is atemporal
and thus not capable of reflecting intertemporal ambiguity aversion. In a recent
and influential paper, Epstein and Schneider (2007) (henceforth es) develop, based
on Epstein and Schneider (2003), a tractable framework of intertemporal maxmin
preferences and thus opens ambiguity aversion to a dynamic learning environment.
This framework has already been used extensively in various contexts, including fi-
nancial markets (Condie and Ganguli 2011; Garlappi et al. 2007; Ju and Miao 2012;
Leippold et al. 2008) and real options (Nishimura and Ozaki 2007; Riedel 2009).

The focus of this paper is a problematic characteristic of the belief dynamics in
Epstein and Schneider (2007). The updating process in es involves the rejection of
initial beliefs that have become less plausible given the observed signal history. I
demonstrate that the rejection of beliefs renders possible a switch in preferences. To
illustrate this, I construct a simple example in which an ambiguity averse decision-
maker switches to ambiguity loving behavior after observing one draw from a payoff-
relevant urn. The reason for this instability of preferences is found in the rejection
of initial beliefs in the updating procedure. It can happen that the uniform dis-
tribution, the standard initial prior of the seu decision-maker, is rejected in the
reevaluation procedure of es. As a consequence, the set of updated beliefs does not
include the posterior of the seu decision-maker, who serves as the usual reference
point to define ambiguity preferences. This gives rise to the switch to ambiguity
loving behavior.1 Furthermore, I show that this anomaly of intertemporal beliefs
is not just an artifact, but rather a pervasive and general feature of the es belief
dynamics. Finally, I suggest two modifications of the es setting to ensure stable
ambiguity averse preferences over time.

I proceed as follows. In section 2, I recapitulate the basic cornerstones of Epstein
and Schneider (2007). The simple example demonstrating the es anomaly in a stan-
dard setting is found in section 3. Section 4 generalizes the example to symmetric
urns with an arbitrary number of balls and shows that the es anomaly may occur
under very general conditions. The two parts of the theorem are illustrated graph-
ically in section 5. In section 6, I offer two alternatives to overcome the problems
while keeping the general structure of es. I conclude in section 7.

1es notes that Ellsberg type behavior in the short run will converge (for a fixed composition
urn) to ambiguity neutral behavior in the long run. The possibility of a change in preferences to
ambiguity loving choices, however, was not mentioned.
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2 Intertemporal maxmin preferences – The setting of Ep-
stein and Schneider (2007)

The main purpose of this section is to recall the basic components of Epstein and
Schneider (2007). All readers familiar with the es framework may thus skip this
section.

To reemphasize the motivation of their framework, I consider two urns that are
simplifications of the scenarios in es. Both urns only features risk or ambiguity, but
not both kinds of uncertainty at the same time. These urns are used in section 3 to
demonstrate the existence of the es anomaly and are then generalized in section 4
to arbitrary symmetric settings.

Urn R: Risk Urn A: Ambiguity

Figure 1

2.1 Unknown parameter

To motivate the introduction of the parameter space in es, consider the two urns in
Figure 1. Both urns contain exactly three balls (this assumption will be abandoned
in section 4). In both urns there is, apart from a white and a black ball, a third
ball that is either black or white. The composition of either urn is thus unknown to
the decision-maker but will not change over the course of the experiment.2 In the
language of es, the ratio of black balls in the urn is the unknown parameter θ with
possible values in the set Θ = {1/3, 2/3}. The key difference between both urns
is that for the risky Urn R, the decision-maker knows that the color of the third
ball has been determined via a fair mechanism, e.g. a fair coin. This is the same
kind of uncertainty as in scenario 1 in es. For the ambiguous Urn A however, the
decision-maker has no information on the mechanism that determined the color of
the third ball. In contrast to scenario 2 in es, Urn A features pure ambiguity.

2Thus, we do not consider scenario 3 in Epstein and Schneider (2007) with unknown likelihoods
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2.2 State space and recursive utility

In every period and for each urn, one ball is drawn and then put back (sampling
with replacement). The period state space is St = S = {B,W}, identical for all
times. We denote by st ∈ S the color observed by the agent at time t. An agent’s
information at time t is the history st = (s1, . . . , st). The natural full state space is
S∞.

The agent ranks consumption plans c = (ct) according to recursively defined
utility,

Ut(c; s
t) = min

p∈Pt(st)
Ep
[
u(ct) + βUt+1(c; st, st+1)

]
, (1)

where u and β have the usual properties. A central component in es is Pt(st). This
set of probability measures models beliefs about the next ball observed, st+1, given
the history st. Such beliefs reflect ambiguity if Pt(st) is a non-singleton, which is
the appropriate description if the draw will be made from Urn A. Beliefs about the
next draw from Urn R can be, as usual, described with Pt(st) being a singleton. es
refer to (Pt) as the process of one-step-ahead beliefs. Specifying beliefs in this way
ensures dynamic consistency of the decision framework, as is shown in Epstein and
Schneider (2003). To further clarify this set of beliefs, let us turn to the learning
structure in the es setting.

2.3 Learning

By observing data, here a sequence (st) of white and black balls, the decision-maker
tries to learn the color of the third ball and thus the unknown parameter θ ∈ Θ.
Ambiguity in initial beliefs about parameters can be represented by a set M0 of
probability measures on Θ. The size of M0 reflects the decision-maker’s (lack of)
confidence in the prior information on which initial beliefs are based.

In both urns, Urn R and Urn A, the likelihood of observing a black or a white
ball is fully determined by the parameter θ, the ratio of black balls in the urn.
Obviously, l(s = B|θ) = θ. Throughout this paper, we restrict ourselves to those
settings of unique likelihood functions.3 Beliefs about parameters and the likelihood
function jointly determine the process of one-step-ahead beliefs

Pt(st) =

{
pt(·) =

∫
Θ

l(·|θ)dµt(θ) : µt ∈Mt(s
t)

}
, (2)

where Mt(s
t) is the set of posterior beliefs after observing the data st. This set

is basically the priorwise bayesian update of initial beliefs µ0 ∈ M0. es, however,

3es also allow for ambiguity in likelihoods, that is a set of likelihoods L. At any point in time,
any element of L might be relevant for generating the next observation. Multiple likelihoods refer
to those components of a decision problem the decision-maker has decided that she will not try to
(or is not able to) learn about. The findings of this paper are independent of L, which is why I
restrict this analysis to the simplest case with a single likelihood function.
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incorporate the possibility that the decision-maker rejects at every t some implau-
sible initial beliefs. The set of posteriors only include updates of initial beliefs that
are not rejected in this process. The specific procedure of rejecting beliefs in es,
however, gives rise to the anomaly that is the topic of this paper. In the following
subsection, we explain the rejection of beliefs in es in detail.

2.4 Updating and reevaluation

To assess the plausibility of a ”theory” µ0 ∈ M0 after having observed the history
of signals st, es use the data density evaluated at st. I denote this plausibility of a
theory µ0 given the data st = (s1, . . . , st) by

Plaus(µ0; st) =

∫
Θ

t∏
j=1

l(sj|θ)dµ0(θ) . (3)

With the usual Bayesian updating, recursively defined by

dµt(·; st, µ0) =
l(st|·)∫

Θ
l(st|θ′)dµt−1(θ′; st−1, µ0)

dµt−1(·; st−1, µ0) , (4)

es define the set of posteriors

Mα
t (st) =

{
µt(·; st, µ0) : µ0 ∈Mα

0 (st)
}

(5)

as the set of prior-by-prior updates of Mα
0 (st). Here,

Mα
0 (st) =

{
µ0 ∈M0 | Plaus(µ0; st) ≥ α max

µ̃0∈M0

Plaus(µ̃0; st)

}
(6)

is the set of theories (i.e. initial priors) that are not rejected after having observed
the signal history st. Rejected are those inital priors that fail a maximum likelihood
test against the most plausible prior, and the parameter α governs how strict this
maximum likelihood test is. es consider 0 < α ≤ 1 as possible values for the
rejection parameter. Ruling out α = 0 implies that they require the decision-maker
to actually use this rejection device.

The likelihood-ratio test is more stringent and the set of posteriors smaller, the
greater is α. In the extreme case α = 1, only parameters that achieve the maximum
likelihood are permitted. If the maximum likelihood estimator is unique, ambiguity
about parameters is resolved as soon as the first signal is observed. More generally,
we have that α > α′ implies Mα

t ⊂Mα′
t . It is important that the test is done after

every history. In particular, a theory that was disregarded at time t might look
more plausible at a later time and posteriors based on it may again be taken into
account.
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2.5 Subjective expected utility vs. maxmin preferences

Some words on the relation between subjective expected utility (seu) and intertem-
poral maxmin (meu) preferences are in order to round up this section. For Urn
R, the initial prior (1/2, 1/2) that puts equal weight on both parameters is obvi-
ously the best description of the decision-maker’s state of knowledge, irrespective of
whether the decision-rule is seu or meu.

For Urn A this is different. An seu decision-maker – who is the standard
Bayesian decision-maker – is by definition characterized by a single belief. As ob-
jective knowledge about Urn A is not available, the question how the initial prior
is determined is in general not easy to answer (Maskin 1979). Due to the perfect
symmetry of this setting, however, it is clear that a Bayesian decision-maker would,
according to the principle of insufficient reason (see for instance Gilboa 2009), hold
the initial prior that assigns equal probability to θ = 1/3 and θ = 2/3. As a
consequence, an seu decision-maker sees no difference between Urn R and Urn A.

3 A simple example demonstrating the switch in prefer-
ences

In this section I design a simple example to illustrate the key problem in the es
setting. It involves an meu decision-maker who initially features the usual ambiguity
averse preferences. After observing one draw from the urns, however, she switches
her preferences and partially exhibits ambiguity loving behavior.

3.1 Preliminaries

The example is constructed within the standard infinite horizon setting with S∞. I
will, however, only compare the betting behavior on the color of the next ball before
and after a single signal realization s. That is, I will focus on the betting preferences
at t = 0 and t = 1. For simplicity, I consider exclusively the two bets 1B0 and 1W0,
where the bet 1B0 involves a payment of 1 $ if the color of the ball drawn is black
and 0 $ if the ball is white. The bet 1W0 is defined similar.

The example rests on the simple three-ball-urns introduced in section 2, cf.
Figure 1. Consequently, the parameter space consists of the two possible ratios of
black balls in the urn, Θ = {1/3, 2/3}. Any prior and posterior over the parameter
space has the form (ν, 1− ν) where the extreme points (1, 0) and (0, 1) correspond
to full weight on the parameter θ = 1/3 and θ = 2/3, respectively.

For Urn R, both the seu and the meu decision-maker hold the uniform distri-
bution as the initial prior. This is also the prior the seu decision-maker associates
with the ambiguous Urn A. The meu decision-maker, in contrast, holds a set of
initial priors regarding Urn A. For simplicity, let the set in this example be the full
set of priors M0 = {(ν, 1− ν) | 0 ≤ ν ≤ 1}. Let the rejection parameter α be 4/5,
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which means that the meu decision-maker only updates the initial priors with a
plausibility of at least 0.8 of the maximal plausibility.

3.2 Ambiguity aversion before observing the signal

Let us first compare the betting preferences of the seu and the meu decision-maker
before the signal has been observed. Irrespective of the color to bet on, the seu is
indifferent between the bet on Urn R and Urn A as for her both urns are essentially
the same. The meu decision-maker, however, has – irrespective of the color to bet
on – a clear preference for betting on Urn R. The reason is basically expression (1).
For bet 1B0, where B is the favorable color, the worst scenario is that with the lowest
number of black balls in the urn. Thus the meu decision-maker rests her decision
on the prior (1, 0) that puts full weight on θ = 1/3. The associated expected payoffs
are 1/3 $. A similar argument for bet 1W0 shows that the worst prior is (0, 1), again
with the expected payoff 1/3 $. This has to be compared to the expected payoffs
for Urn R. Clearly, the prior (1/2, 1/2) is for both bets associated with expected
payoffs of 1/2 $. Thus, the MEU decision-maker strictly prefers either bet in Urn
R over Urn A. This is the well-known ambiguity averse behavior.

3.3 Switch to ambiguity loving behavior after learning

We now compare the betting behavior after a signal s has been observed. To make
behavior comparable, we restrict to the case that the balls drawn from Urn R and
Urn A have the same color. Without loss of generality, say s = B. This transforms
the seu decision-maker’s belief from the initial prior (1/2, 1/2), irrespective of the
urn, into the posterior (1/3, 2/3), reflecting the increased subjective probability for
the scenario that the unknown ball is black.

The meu decision-maker shares this view for Urn R, but naturally has a different
take on Urn A. Here, the set of initial priors M0 is, according to (5), updated to
the set Mα

1 (s). To recapitulate the es procedure explained in section 2.4, the
first task is to find the most plausible theory µ0 ∈ M0. This is clearly (0, 1).
The plausibility of this theory (cf. (3)) is 2/3. With α = 4/5, the meu decision
maker rejects all theories with a plausibility less than 4/5 · 2/3 and thus keeps the
set M0(s) = {(ν, 1− ν) | 0 ≤ ν ≤ 2/5}. Finally, this set is updated to Mα

1 (s) =
{(ν, 1− ν) | 0 ≤ ν ≤ 1/4}.

Let us again compare betting preferences of the seu and the meu decision-
maker. The seu remains, for either bet, indifferent between Urn R and Urn A.
Turning to the meu decision-maker, consider first the bet 1W0. Urn R promises
expected payoffs of 4/9 $. For Urn A the worst belief is still (0, 1), associated with
expected payoffs of 1/3 $ < 4/9 $. Thus, the meu decision-maker still prefers the
bet 1W0 in Urn R over Urn A.

Most intriguing, this is different for the bet 1B0. Urn R promises an expected
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payoff of 5/9 $. For Urn A, the worst posterior inMα
1 is (1/4, 3/4). This translates

into expected payoffs of 7/12 $, which is larger than 5/9 $. The maxmin decision-
maker thus prefers the bet 1B0 in Urn A over the same bet in Urn R. This very
surprising and a clear contradiction to ambiguity averse preferences. The reason
for that switch in behavior stems from the fact that in general es reject too many
theories. Here, with a rather high α = 4/5, the critical ambiguity neutral seu prior
(1/2, 1/2) is rejected. This prior is critical because with it also all ’pessimistic priors’
that would give rise to ambiguity averse choices are rejected. As a consequence, the
set of posteriors M1 only contains optimistic beliefs that give rise to ambiguity
loving choices.

One could argue that this problematic betting behavior can be avoided by ade-
quately choosing α. In the example, any α < 3/4 would not give rise to the switch
in preferences, at least not at t = 1. However, α was introduced by es to be a char-
acteristic of the decision-maker and it is thus unnatural to adjust α to the specific
setting.

The next section will demonstrate that the es anomaly is pervasive. For every
α > 0 there is a similar setting to that considered in the example for which such a
disconnect in the behavior of the meu decision-maker occurs. It is thus not possible
to find a rejection parameter 0 < α ≤ 1 that is not prone to the es anomaly.

4 The general result

In this section, I first generalize the setting from urns with three balls to arbitrary
symmetric settings. This provides the framework to demonstrate that the problem-
atic characteristic of the es updating procedure is not restricted to specific urns.
Indeed, we can show that each pair of generalized urns has this property for some
rejection parameter 0 < α ≤ 1. Even more interesting and less obvious, for each
0 < α ≤ 1 we can construct a pair of urns and a signal history st such that the meu
decision-maker features the switch to ambiguity loving behavior.

4.1 Generalized urns

The first step is to define generalizations of Urn R and Urn U. I restrict to symmetric
settings in the sense that a priori both colors are interchangeable. The generalized
Urn R and Urn A, I denote them by UR(n, k) and UA(n, k), respectively, have
exactly 2n + k balls. It is known that n balls are black, n balls are white and
each of the remaining k balls can either be black or white. As will become clear
in what follows, the urns in the example in the previous section correspond to
the case n = k = 1. To generalize the three balls urn example, we assume that
the number of black balls within the k unknown balls in urn UR(n, k) is uniformly
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distributed.4 The urn UA(n, k) is basically the same, but without information about
the distribution of the k unknown balls. In either case, the parameter set is Θ =
{n/(2n+ k), . . . , (n+ k)/(2n+ k)} with θ ∈ Θ being the true fraction of black
balls in the urn, unknown to the decision-maker. The period state space is again
S with the full state space S∞. The likelihood functions are fully specified by
l(s = B|θ) = θ.

In terms of initial prior, it is clear that for UR(n, k) both seu and meu decision-
maker have the initial prior (1/(k + 1), . . . , 1/(k + 1)) on Θ. This is also the ini-
tial prior the seu decision-maker holds for Urn A. In contrast, the meu decision-
maker operates with a set M0 of initial priors, which is by definition a subset of
∆({0, . . . , k}). The natural assumption I make is that the uniform distribution is
an element of the set of initial priors, (1/(k + 1), . . . , 1/(k + 1)) ∈M0.

It is convenient to focus on simple and tractable sets forM0. As a generalization
of intervals around 1/2 in the case k = 1, I consider sets of the form

∆(k)
ε =

{
(ν0, . . . , νk) |

∑
i

νi = 1 , 0 ≤ ε ≤ νi ≤ 1− kε ≤ 1∀i , ε < 1
k+1

}
. (7)

By construction, all these sets contain the uniform distribution. The full set of
priors ∆ is the special case ∆

(k)
ε with ε = 0, and for ε→ 1/(k + 1) the set collapses

to a singleton with the uniform distribution as the only element.

4.2 Theorem

I now have the toolkit to formulate the main finding. The intertemporal maxmin
decision-maker in the es sense is characterized by the parameter α that describes
to what extent theories are rejected ex-post. I have shown in section 3 that also the
uniform distribution, the initial prior of the seu decision-maker, can be rejected in
this process. As a consequence, all pessimistic priors are rejected as well, giving rise
to ambiguity loving choices. This anomaly occurs under very general conditions.
Concrete,

4An alternative generalization would be that of k independent coin flips. My choice, however,
is more intuitive and technically simpler
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Theorem 4.1. The es anomaly can be characterized by two statements.

(i) For any pair (n, k) ∈ N2, any M0 = ∆
(k)
ε and any bet there is a rejection pa-

rameter α and a signal history st such that after observing st the meu decision-
maker exhibits ambiguity loving behavior, i.e. she prefers the bet in UA(n, k)
over the same bet in UR(n, k).

(ii) For any rejection parameter α ∈ (0, 1] and any bet there is (n, k) ∈ N2, a set

of initial prior M0 = ∆
(k)
ε and a signal history st such that after observing

st the meu decision maker prefers the bet in UA(n, k) over the same bet in
UR(n, k).

Proof. For both statements of the theorem I have to construct a suited signal history
st. Without loss of generality, I consider the bet 1B0. Accordingly, the signal
history can be constructed as st = (B, . . . , B). The task then is to construct an

appropriate t. For M0 = ∆
(k)
ε , the maximal plausible prior after observing only

black balls is (ε, . . . , ε, 1 − kε). The es anomaly occurs if the uniform distribution
(1/(k + 1), . . . , 1/(k + 1)) is rejected. This happens if its plausibility is lower than
α times the maximal plausibility. This condition, after multiplying with (2n + k)t,
reads

k∑
i=0

(n+ i)t < (k + 1)α

(
ε
k−1∑
i=0

(n+ i)t + (1− kε) (n+ k)t
)

. (8)

For part (i), I have to construct a suited rejection parameter 0 < α ≤ 1. In the
appendix I demonstrate that this is equivalent with α > α, where α is a number
independent of t. I show α < 1 and thus the existence of a problematic rejection
parameter α.

For part (ii), α ∈ (0, 1] is given and the task is to construct an urn (n, k), a set

of initial prior ∆
(k)
ε and a signal history st that fulfills (8). With sensible choices,

this reduces to finding a number of unknown balls k. It is obvious that the smaller
α, the larger must be k. In the appendix I derive a condition for k of the form
k > k(α) that is sufficient for (8).

5 Graphical illustration

This section is dedicated to the graphical illustration of the general findings. The
first subsection 5.1 illustrates the first part of the theorem by demonstrating the
existence of a problematic rejection parameter in any given setting, here n = k = 1.
The second part of the theorem is made more concrete in subsection 5.2: A given
rejection parameter that is innocent in some setting (k = 1) gets problematic in a
higher dimensional setting (k = 2).
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5.1 First part of the theorem

The first part of the theorem can be illustrated with n = k = 1. In Figure 2
we see the time series of non-rejected initial priors Mα

0 (st) (top panel), the history
of standard seu beliefs (black line in the bottom panel) and the set of es beliefs
Mα

t (st) (shaded area in the bottom panel) for different rejection parameter α. At

t = 0, by definition M0 =M0 which is chosen as the full set ∆
(1)
0 . The initial seu

prior is (1/2, 1/2).

α = 0.0 α = 0.2 α = 0.4

α = 0.6 α = 0.8 α = 1.0

Figure 2: Illustration of the first part of the theorem. Each subfigure corresponds
to a different rejection parameter α and presents the history of non-rejected initial
priors Mα

0 (st) (top panel), the history of standard seu beliefs (black line in the
bottom panel) and the set of es beliefs Mα

t (st) (shaded area in the bottom panel).
For α > 0.5, the es anomaly occurs at some point in time.

The signal underlying all subfigures in figure 2 is the iteration of the sequence
W,B,B (six times) and thus evidence for the theory θ = 2/3, which corresponds
to the belief (0, 1). In the subfigures we see how this evidence is processed under
different rejection parameter α. With α = 0, which is a limiting case not permitted
by es, no theory in M0 is ever rejected. Thus M0(st) remains the full set M0

over the whole time (top panel). The update of the full set, however, is the full set
again. This is why also Mt remains constant over time. The update of the seu
decision-maker, of course, is independent of α and converges to (0, 1).

For increasing α more and more theories are rejected. Note that after observing
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the first signal, s = W , the theory (1, 0) is the most plausible one. This is why
theories in the neighborhood of (0, 1) are rejected for adequately high α at time
t = 1 (cf. top panel) but later, as (0, 1) has become the most plausible theory,
are element of the set M0 again. After observing the first two signal realizations,
s1 = W and s2 = B, all theories are equally likely. This is reflected in the fact that
Mα

0 (s2) is the full set, even for the most strict rejection parameter α = 1. The same
effect occurs at t = 4.

Central in this paper is the question under which conditions the seu posterior
is not in the setMt of es posteriors, potentially causing those problems delineated
in section 3 and generally formulated in section 4.2. By definition of Mt, this es
anomaly occurs if and only if the initial seu prior (1/2, 1/2) is not in M0. We see
this effect in the subfigures with α = 0.6, α = 0.8 and α = 1.0. In the latter case,
with the strictest rejection parameter possible, the set of non-rejected theories is
either the full set (when the signal history is not conclusive) or the singleton with
one of the extreme theories (1, 0) or (0, 1). As a consequence, also the posterior set
Mt is either the full set or an extreme singleton. This shows the problem of the
es updating in a nutshell: The specific form of es updating favors extreme beliefs,
rather than ’smooth’ beliefs around the seu belief history. With α = 1.0, the MEU
decision-maker is positive that the unknown ball in the urn is white (M1 = {(1, 0)})
after observing the first signal realizations; after the second signal realization, she
is clueless (M2 = ∆); then positive that the color of the unknown ball is black
(M3 = {(0, 1)}); then clueless again before remaining perfectly convinced that the
unknown ball is black. This extreme form of reevaluation is due to α = 1, but even
smaller values give rise to a similar behavior.

Figure 2 thus illustrates the first part of the theorem: For a given urn, it states
the existence of a signal history st and a rejection parameter α such that the setting
described by those parameters features the es anomaly. Figure 2 suggests that the
es anomaly does occur for α ≥ 0.6, but not for α ≤ 0.4. The proof of Theorem 4.1
in the appendix indeed shows that α = 0.5 is the relevant threshold for α.

This, in turn, implies that the setting n = k = 1 is innocent for α ≤ 0.5.
Indeed, the es anomaly does not occur even with extreme signal histories. This is
demonstrated in Figure 3. Here, the rejection parameter α = 0.5 is just small enough
to ensure that the seu posterior remains in the set of es posteriors. Observing
only black balls drawn, (0.1) is always the upper bound of the non-rejected initial
priors (Figure 3, upper panel) and consequently also the upper bound of the set of
posteriors (lower panel). The lower bound of the non-rejected priors M0 converges
to (1/2, 1/2). Thus, the setting α = 0.5 exhibits no es anomaly.

5.2 Second part of the theorem

The second part of the theorem, however, shows that all rejection parameter α > 0
are potentially problematic. An arbitrary α ≤ 1/2 might be innocent for the urn

12



Figure 3: Illustration that n = k = 1 is innocent for α = 0.5.

characterized by k = 1; there exists, however, a generalized urn (characterized by n
and k) giving rise to the es anomaly.

This part of the theorem is illustrated by Figure 4 with α = 1/2, the signal
history st = (B,B,B,B,B) and n = k = 2.5 As usual, the beliefs under k = 2 can
conveniently be captured in a simplex. Each subfigure in Figure 4 corresponds to one
point in time and shows the non-rejected theories M0 with the uniform distribution
(1/3, 1/3, 1/3) marked with a black dot (top panel), seu posteriors (black dots in
the bottom panel) and set of es posteriors (shaded area in the bottom panel).

We can see in the top panels that the uniform distribution (1/3, 1/3, 1/3) is not
in the set of admissible theories M0 for all t ≥ 4. As a result, the set of posteriors
Mt does not contain the seu update. This reflects the general theorem: A rejection
parameter α, here α = 0.5, might be innocent for certain settings, e.g. n = k = 1
(cf. Figure 3). It is always possible, however, to construct a generalized urn, here
n = k = 2, such that the es anomaly occurs after observing s = B for a finite
number of times.

The theorem demonstrates the problematic feature of the es setting: It is not
possible to avoid the es anomaly when the positive rejection parameter α > 0
ought to be independent of the decision-problem. In the next section, we offer
two modifications of the es framework in order to avoid the witch in ambiguity
preferences.

5The number of unknown balls, k, determines the dimension of beliefs and is the relevant
number. The number n only determines likelihoods and is thus of minor importance.
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t = 0 t = 1 t = 2

t = 3 t = 4 t = 5

Figure 4: Illustration of the second part of the theorem with α = 0.5 and k = 2.
Each subfigure shows for a certain point in time the set of non-rejected initial priors
Mα

0 (st) (top panel), the standard seu belief (black line in the bottom panel) and
the set of es beliefs Mα

t (st) (shaded area in the bottom panel). The es anomaly
occurs at t = 4 and t = 5 when the uniform distribution is rejected.

6 Alternatives

In this final substantive section I offer two modifications of the es framework, each
of which is designed to overcome the es anomaly. The first modification in 6.1 is
basically a refinement of the es approach and thus also involves the rejection of
initial priors; the es anomaly is avoided by defining a set of essential beliefs that are
immune to rejection. The second modification, which I consider the preferable fix,
has the charme of simplicity. I argue that the rejection of theories is not desirable
anyway. Abstaining from the rejection of theories clearly avoids the es anomaly. As
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I will demonstrate in 6.2, simple restrictions on the set of initial priors M0 suffice
to ensure well-behaved learning dynamics.

6.1 Refinement of the rejection of theories

The first modification of the es framework declares certain theories as unrejectable
and can thus avoid the es anomaly. The decision-maker may feel that a certain
set of theoriesMess

0 is essential and thus should be immune to ex-post rejection, no
matter how implausible the essential priors are in light of the signal history.

The modification of (6) is, for Mess
0 6= ∅,6 given by

Mα
0 (st) =

{
µ0 ∈M0 | Plaus(µ0; st) ≥ α min

µ̃0∈Mess
0

Plaus(µ̃0; st)

}
. (9)

That is, a theory µ0 is only rejected if it fails a maximum likelihood test against all
theories inMess

0 . This ensures that even for α = 1 all theories inMess
0 are updated.

In our setting, a natural candidate for such an essential theory is the uniform
distribution held by the seu decision-maker as the prior distribution. As it might
be desirable to ensure that the Bayesian update is an inner point ofMt, we choose
Mess

0 = ∆
(k)
εess (cf. 4.1) with some 0 < εess < 1/(k + 1).

In Figure 5 we illustrate the effect of this alternative definition on the dynamics
of multiple beliefs. All parameters settings are as in Figure 2. The only difference
is that the rejection of initial priors is based on (9) instead of (6).

Figure 5 shows that the es anomaly is avoided by this alternative definition. Due
to (9), the initial prior (1/2, 1/2) is an element of the set of non-rejected priors for
all t and all rejection parameter α (upper panels). Thus, the seu posterior (black
line in the bottom panel) is always element of set of modified es posteriors. As the
reference point for theory rejection is not the theory with the maximal plausible
anymore, the rejection of theories is less strict even in cases that were not prone
to the es anomaly (compare α = 0.2, α = 0.4 and α = 0.6 in Figure 5 to those
in Figure 2). The convergence behavior of the modified es framework is the same
as in the initial framework: For α > 0, the set of posteriors converges to the true
distribution.

The appeal of this modified definition is that it is only a slight modification of
the es framework. It avoids the es anomaly while preserving their general struc-
ture of reevaluation of theories. In the next subsection, I argue for an alternative
modification that does not rest on the reevaluation of theories (α = 0).

6If Mess
0 = ∅ and thus no theory is regarded essential, the es framework is unchanged. In that

case the rejection of theories is defined by (6).
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α = 0.0 α = 0.2 α = 0.4

α = 0.6 α = 0.8 α = 1.0

Figure 5: Refinement of the es theory rejection with essential priors Mess
0 . Each

subfigure corresponds to a different rejection parameter α. In each subfigure you find
the history of non-rejected initial priors Mα

0 (st) (top panel), the history of standard
seu beliefs (black line in the bottom panel) and the set of modified es beliefsMα

t (st)
(shaded area in the bottom panel). The critical seu prior, the uniform distribution,
is never rejected.

6.2 A simple alternative to the rejection of theories

If a decision-maker holds the full set of priors ∆
(k)
0 as the initial prior set M0,

unrestricted updating (full bayesian updating, α = 0) is not capable of reflecting
learning asMt =M0 for all t, irrespective of the signal history (cf., for example, the
first subfigure in Figure 2). As shown by es, this undesirable feature can be avoided
by using a theory rejection parameter α > 0 (cf. Figure 2). This, however, in turn
gives rise to a problem I coined the es anomaly. Theorem 4.1 showed that this
anomaly is a pervasive characteristic of the es framework. The previous subsection
introduced a moderate modification of this framework to circumvent this anomaly.
In this subsection, I follow a different line of thought.

Reevaluation, that is the rejection of theories after observing a signal history, is
not part of the standard Bayesian updating procedure. Clearly, an seu decision-
maker does not reevaluate its initial prior. She does not replace her initial prior
by a more plausible one to update the latter. Rather, the initial prior (the uniform
distribution in this paper) is the prior to be updated for all t and all conceivable
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signal histories. The information obtained over the learning process is reflected in
the posterior and not used to reevaluate the initial prior.

I argue to keep this characteristic in the multiple prior setting. That is, I argue
for defining the set of posteriors Mt, under all conditions, as the update of the full
initial prior set M0. In other words, I argue for extending the es framework to
α = 0 and rule out all α > 0. Reevaluation of initial priors is not necessary as the
information provided by the signal history is reflected in the set of posteriors. This
will become apparent below.

The price for this simple fix of the es anomaly is that I have to avoid the trivial
learning dynamics mentioned above. The solution is just the restrictionM0 6= ∆

(k)
0 .

The price of this restriction, however, is low. Please recall that the axiomatization
of maxmin preferences of Gilboa and Schmeidler (1989) regards the set of beliefs
as an endogenous component of the ambiguity averse preferences. In other words,
the set of beliefs, instead of reflecting objective uncertainty, reflects how strong
the ambiguity averse preferences of the decision-maker are. With the inflexible
and extreme maxmin rule the set of beliefs is basically the only way to express
different degrees of ambiguity aversion. In that sense, the full initial prior set ∆

(k)
0

would correspond to the most extreme uncertainty aversion possible. It seems not
problematic to rule ot this extreme form of ambiguity aversion.

Due to the non-rejection of theories, one might suspect this modification α = 0
to produce very large sets of posteriors. Figure 6, however, demonstrates that this is
actually not the case. Even large prior sets narrow down substantially as the signals
get more and more informative.

ε = 1/20 ε = 2/20 ε = 3/20

Figure 6: Simple alternative without theory rejection. Initial priors Mα
0 (st) (top

panel), the history of standard seu beliefs (black line in the bottom panel) and the
set of es beliefs Mα

t (st) (shaded area in the bottom panel).

Figure 6 shows the set of non-rejected priors M0, the seu posteriors and set of
es posteriors for different initial prior setsM0 6= ∆

(k)
0 . The set M0 is, by definition

of α = 0, constant over time. The attractive features of this modification of the es
framework for applications are that (i) the procedure is simple, (ii) that the set of
posteriors Mt follows a similar trajectory like the seu posterior and yet (iii) the
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contraction of the set reflects the increased information about the true parameter θ.
The belief dynamics in Figure 6 make the impression of being more ”smooth” than
those in Figure 5, let alone Figure 2. As this impression is further underpinned by the
theoretical argument that the rejection of initial priors may be per se problematic,
I argue to use this modification of the es setting in applications.

7 Concluding discussion

The intertemporal maxmin framework of Epstein and Schneider (2007) involves
the rejection of initial priors that have become implausible in light of the observed
signal history. In this comment, I have demonstrated that these specific belief
dynamics potentially give rise the so called es anomaly, namely a problematic switch
in ambiguity preferences. Those who apply the framework of Epstein and Schneider
(2007) to model intertemporal ambiguity aversion should be aware of the potential
switch in preferences and aim to avoid it.

I have offered two modifications of the es framework. The first solution to the
es anomaly is to declare a set of priors essential and thus immune to rejection. To
avoid the switch in ambiguity preferences, the uniform distribution would be such an
essential prior. The second alternative, which seems the simpler and more appealing
solution, abstains from the rejection of initial priors in any case and thus avoids the
preference switch right from the start. As I have demonstrated, this modification
leads to well-behaved belief dynamics if the set of initial priors is not the full set.

It is important to note that I have essentially focused in this comment on a
reduced version of Epstein and Schneider (2007). Apart from multiple initial priors
captured by the set M0, es also allow for multiple likelihoods L. The rejection of
”theories” in es does apply to initial priors in M0 and likelihoods in L. The es
anomaly already occurs in the reduced setting with L being a singleton; a similar
anomaly, however, may occur with multiple likelihoods when a standard likelihood
is rejected over the course of the learning process. Future research ought to isolate
the conditions for such a switch in detail. Both modifications of the es framework
presented in this paper, however, seem to be promising candidates to also fix the
potential anomalies that may occur due to the reevaluation of multiple likelihoods.
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A Proof of the theorem

Proof. For both statements of the theorem I have to construct a suited signal history
st. Without loss of generality, consider the bet 1B0. Accordingly, I construct the
signal history to generate the es anomaly in the form of constantly observing s = B,
st = (B, . . . , B). The task then is to construct an appropriate t. For M0 = ∆

(k)
ε ,

the maximal plausible prior after observing only black signals is (ε, . . . , ε, 1 − kε).
The uniform distribution (1/(k + 1), . . . , 1/(k + 1)) is rejected if its plausibility is
lower than α times the maxmimal plausibility. This condition, after multiplying
with (2n+ k)t, reads

k∑
i=0

(n+ i)t < (k + 1)α

(
ε
k−1∑
i=0

(n+ i)t + (1− kε) (n+ k)t
)

. (10)

For part (i), I have to construct, for given n and k, a suited rejection parameter
0 < α ≤ 1. The condition for the existence of such a rejection parameter is

α > α :=

∑k
i=0 (n+ i)t

(k + 1)
(
ε
∑k−1

i=0 (n+ i)t + (1− kε) (n+ k)t
) . (11)

The existence of a rejection parameter α giving rise to the es anomaly is ensured if
α < 1. Simple algebra leads to the equivalent condition

(1− (k + 1)ε)
k−1∑
i=0

(n+ i)t < (1− (k + 1)ε) k (n+ k)t . (12)

By definition of ∆
(k)
ε , (k + 1)ε < 1. Furthermore,

∑k−1
i=0 (n+ i)t < k(n + k)t. This

proves α < 1. In particular, there are no further restrictions on t. This implies
that for every urn there is a rejection parameter α such that the ambiguity loving
behavior occurs already after observing one signal, t = 1.

For part (ii), α ∈ (0, 1] is given and I have to construct an urn (n, k), a set of

initial prior ∆
(k)
ε and signal history st that fulfills (8). As will become clear, it is

helpful to choose ε = 1
k(k+1)α

, for which ε < 1
k+1

if k > 1
α

. With that, condition (8)
reads

k∑
i=0

(n+ i)t < 1
k

k−1∑
i=0

(n+ i)t + ((k + 1)α− 1) (n+ k)t . (13)

Sufficient for this, by neglecting the first positive expression on the right hand side,
is

k∑
i=0

(
n+ i

n+ k

)t
< (k + 1)α− 1 . (14)
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As ((n+ i)/(n+ k))t tends to 0 for t → ∞ for all 0 ≤ i < k, there is a t such
that ((n+ i)/(n+ k))t < 1/k for all 0 ≤ i < k. Thus, a sufficient condition for the
existence of a parameter k giving rise to the esanomaly is the condition 1 + k · 1

k
<

(k + 1)α− 1. This is equivalent with

k > k(α) =
3

α
− 1 . (15)

In particular, under this condition also k > 1/α and thus the ε-value I defined above
is actually feasible.

I have shown the existence of a problematic urn for all rejection parameter α. It
is intuitive that smaller α make higher k necessary. It is interesting that there are
no restrictions on n, the number of known black and white balls, respectively.
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