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Abstract

This paper analyzes volatility spillovers in multivariate GARCH-type models.

We show that the cross-effects between the conditional variances determine the

persistence of the transmitted volatility innovations. In particular, the effect of a

foreign volatility innovation on a conditional variance is even more persistent than

the effect of an own innovation unless it is offset by an accompanying negative

variance spillover of sufficient size. Moreover, ignoring a negative variance spillover

causes a downward bias in the estimate of the initial impact of the foreign volatility

innovation. Applying the concept to portfolios of small and large firms, we find that

shocks to small firm returns affect the large firm conditional variance once we allow

for (negative) spillovers between the conditional variances themselves.
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1 Introduction

The investigation of volatility spillovers in multivariate GARCH models has recently at-

tracted considerable attention. A specification that is particularly suited for the analysis

of volatility spillovers is the extended constant conditional correlation (ECCC) GARCH

model proposed in Jeantheau (1998). In this model the conditional variance of one vari-

able can be affected not only by its own lagged squared residuals and conditional variances

but also by the lagged squared residuals and conditional variances of the other variables in

the system. In the following, we will refer to the former as an ARCH spillover and to the

latter as a GARCH spillover. For the ECCC GARCH model, He and Teräsvirta (2004) de-

rive the fourth moments and correlation structure of the squared residuals, Nakatani and

Teräsvirta (2009) suggest a Lagrange multiplier test for volatility transmission, Woźniak

(2012) provides restrictions for second-order noncausality and Francq and Zaköıan (2012)

consider quasi-maximum likelihood estimation of an asymmetric version of the model.

Nakatani and Teräsvirta (2008) and Conrad and Karanasos (2010) consider the possibil-

ity of negative GARCH spillovers within the ECCC GARCH framework. In particular, for

the N -dimensional model Conrad and Karanasos (2010) derive necessary and sufficient

conditions for guaranteeing the positive definiteness of the conditional covariance matrix

in the presence of ARCH and potentially negative GARCH spillovers.1 They term this

flexible multivariate specification the unrestricted ECCC (UECCC) GARCH model.

From an empirical perspective, in a seminal paper Conrad et al. (1991) analyze the

existence of volatility spillovers in equity portfolios of small and large firms. They find

‘asymmetric predictability of conditional variances’ in the sense that the lagged squared

residuals of large firms matter for the conditional variances of small firms, but the reverse

effect remains insignificant. That is, the asymmetric predictability refers to the obser-

vation of one-directional ARCH spillovers from large to small firms but not vice-versa.

Conrad et al. (1991, p.620) provide a potential explanation for this finding by referring to

the argument in Ross (1989) that the variance of asset price changes is directly related to

the rate of flow of information: “aggregate information first affects large firms and is then

impounded with a lag in the prices of small capitalization companies”. Although Conrad

et al. (1991) employ a two-step estimation strategy, their model can be considered as a

version of the UECCC GARCH model which allows for ARCH – but not for GARCH

– spillovers. Subsequently, many other studies provided evidence for ARCH spillovers

in a variety of financial market applications: e.g. Koutmos and Booth (1995), Laopodis

(2003), Chelley-Steeley and Steeley (2005), Wong et al. (2005), Skintzi and Refenes (2006)

1The constraints derived in Conrad and Karanasos (2010) are a direct extension of the results for the

univariate GARCH model in Tsai and Chan (2008).
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and Savva et al. (2009). More recent studies that allow for ARCH as well as GARCH

spillovers are McAleer and da Veiga (2008), Chang et al. (2010), Hakim and McAleer

(2010), Weber (2010a), Arouri et al. (2011) and Rittler (2012).

At first sight, a somewhat puzzling finding in studies that allow for both ARCH and

GARCH spillovers is that the GARCH spillover coefficients often take negative values

(see, e.g., Nakatani and Teräsvirta, 2008, or Weber, 2010a). Conrad and Karanasos (2010)

interpret this phenomenon simply as a trade-off between volatilities, i.e. an increase in

one conditional variance leads to a decrease in another conditional variance. However, we

show that there is a more appropriate explanation for the existence of negative GARCH

spillovers. Throughout the paper we consider the case of a bivariate UECCC GARCH(1,1)

model in order to simplify our arguments. This model has also received the most attention

in empirical applications.

We first derive the univariate representation of each conditional variance in terms of its

own and the foreign volatility innovation. Following Conrad and Karansos (2006) we then

define the impulse response function of an own and foreign volatility innovation as the

sequence of coefficients that describe how a shock in period t affects the forecast of the con-

ditional variance in period t+k, for k = 1, 2, . . .. In this representation the ARCH spillover

coefficients simply measure the initial effect of the own and foreign volatility innovations

on the conditional variances. Next, we show that GARCH spillovers can be interpreted as

determinants of the persistence of volatility innovations that are transmitted between the

variables. Our main result states that in the UECCC GARCH model a negative GARCH

spillover is a necessary condition for ensuring that an own volatility innovation has a

more persistent effect on a conditional variance than a foreign volatility innovation. More

specifically, the necessary and sufficient condition requires that the initial effect of the

foreign volatility innovation is subsequently offset by a negative GARCH spillover of at

least the same size. Given this result we should consider the finding of negative GARCH

spillovers as the rule rather than the exception in most empirical applications. Clearly,

neglecting GARCH spillovers imposes a model property that is unintended in most cases.

Our theoretical result has another important implication. A neglected but relevant

GARCH spillover evidently represents an omitted variable in the conditional variance

equation. Since the omitted lagged conditional variance is clearly positively correlated

with the lagged squared residual, the estimate of the ARCH spillover will be biased.

Specifically, in cases of erroneously omitting a negative GARCH spillover, the size of

the ARCH spillover will be underestimated. In sum, both the size and persistence of

cross-effects of volatility innovations are not appropriately determined.

As an alternative to the UECCC GARCH model we also consider the multivariate
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exponential GARCH (EGARCH) model which – in contrast to the UECCC model –

ensures the positive definiteness of the conditional covariance by construction without

imposing any constraints on the model parameters. In case of the EGARCH model, we

show that a negative GARCH spillover directly implies that the effect of an own volatility

innovation is more persistent than the one of a foreign volatility innovation.

Finally, we follow Conrad et al. (1991) and apply both models to the returns of two

equity portfolios consisting of large and small firms. In a preliminary step, we neglect

potential GARCH spillovers and confirm their result of one-directional ARCH spillovers

from large to small firms but not in the opposite direction. However, once we allow

for GARCH spillovers the results clearly change. In the UECCC GARCH model we

find strong evidence for bi-directional ARCH spillovers in combination with a negative

GARCH spillover from small to large firms, which is strong enough to offset the initial

effect of the small firm volatility innovation on the large firm conditional variance. That

is, our results suggest that small firm volatility innovations do affect large firm volatility,

but the effect is less persistent than in case of own large firm volatility innovations. On

the other hand, we do not find a GARCH spillover from large to small firms. This suggests

that the effect of large firm volatility innovations on the small firm conditional variance

is even more persistent than the effect of own small firm volatility innovations. Finally,

the results from the EGARCH estimation reconfirm our findings. We argue that these

outcomes underline the importance of allowing for adequate flexibility in volatility models.

Showing that optimal portfolio weights of small and large firm stocks depend substantially

on including or excluding GARCH spillovers further strengthens our argument.

The remainder of the article is organized as follows. In the next section, we introduce

the multivariate GARCH and EGARCH models, derive the persistence properties and

discuss the consequences of neglecting relevant GARCH spillovers. Section 3 presents the

application to stock portfolio returns. The last section concludes.

2 The Model

Let yt = (y1,t y2,t)
′ represent a 2 × 1 vector of stock returns. Further, let Ft−1 =

σ(yt−1,yt−2, . . .) be the filtration generated by the information available up through time

t− 1. We consider the bivariate process

yt = E[yt|Ft−1] + εt, (1)

where the residual vector εt = (ε1,t ε2,t)
′ is defined as

εt = zt ⊙ h
∧1/2
t , (2)
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with ht = (h1,t h2,t)
′ being Ft−1 measurable and the symbols ⊙ and ∧ denote the Hadamard

product and the elementwise exponentiation respectively. The stochastic vector zt =

(z1,t z2,t)
′ is assumed to be independently and identically distributed (i.i.d.) with mean

zero, finite second moments, and 2 × 2 correlation matrix R = [ρij ]i,j=1,2 with diagonal

elements equal to one and off-diagonal elements less than one in absolute value. Thus, we

have E[εt|Ft−1] = 0 and Ht = E[εtε
′
t|Ft−1] = diag{ht}

1/2 R diag{ht}
1/2. The constant

conditional correlation is given by ρ12 = h12,t/
√

h1,th2,t.
2 A meaningful specification for

the conditional variances hi,t, i = 1, 2, must ensure that Ht is positive definite almost

surely for all t. Since Rt is positive definite by assumption, the specification for the

conditional variances has to guarantee that hi,t > 0 for all t. In Section 2.1, we model the

conditional variances as a UECCC GARCH process and in Section 2.2 as an EGARCH.

2.1 UECCC GARCH

In the first specification we impose the UECCC GARCH(1,1) structure introduced in

Conrad and Karanasos (2010) on the conditional variances:

ht = µ+Aε
∧2
t−1 +Bht−1, (3)

where µ = [µi]i=1,2, A = [aij]i,j=1,2 and B = [bij ]i,j=1,2. The UECCC specification allows

for non-zero off-diagonal elements in the A and B matrices. The coefficients a12 and a21

measure the ARCH spillovers, i.e. the effects of the squared shocks ε22,t−1 and ε21,t−1 on

the conditional variances h1,t and h2,t, respectively. Similarly, the coefficients b12 and b21

represent the GARCH spillovers, i.e. the effects of the conditional variances h2,t−1 and

h1,t−1 on h1,t and h2,t, respectively.

In Bollerslev’s (1990) original CCC model, A and B are assumed to be diagonal

matrices and, hence, the model does neither allow for ARCH nor for GARCH spillovers.

Conrad et al. (1991) employ a formulation of the model which allows for non-zero off-

diagonal elements of the A matrix, but restricts B to be diagonal. That is, their model

allows for ARCH but not for GARCH spillovers.3 Finally, the specification considered in

Jeantheau (1998) allows for both ARCH and GARCH spillovers, but under the constraint

that aij ≥ 0 and bij ≥ 0. While these non-negativity restrictions on the entries of the A

2Although, for simplicity, we focus on the case of a constant conditional correlation, our results on

the persistence of the effects of volatility innovations also hold for specifications which allow for dynamic

conditional correlations.
3More precisely, Conrad et al. (1991) employ a two-step procedure. In the first step, they estimate

univariate GARCH models for each return series. In the second step, they use the squared fitted residual

from the first (second) return series as an additional regressor in the second (first) return’s conditional

variance equation.
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andBmatrices ensure that the conditional covariance matrixHt is positive definite almost

surely for all t, they rule out the possibility of negative GARCH spillovers. However, as

shown in Conrad and Karanasos (2010), this is only a sufficient but not a necessary

condition for the positive definiteness of Ht. Conrad and Karanasos (2010) assume that

the model is identified in the sense of Jeantheau (1998, Definition 3.3) and invertible.

Defining B(L) = I−BL and β(L) = det[B(L)] = 1− β1L− β2L
2, where β1 = b11 + b22,

β2 = b12b21 − b11b22, L denotes the lag operator and I is the 2 × 2 identity matrix, the

invertibility condition requires that the inverse roots of β(z), denoted by φ1 and φ2, lie

inside the unit circle and without loss of generality are ordered as |φ1| ≥ |φ2|. Under these

two assumptions Conrad and Karanasos (2010) derive the following result:

In the bivariate UECCC GARCH(1,1) the necessary and sufficient conditions for hi,t >

0, i = 1, 2, almost surely for all t are given by: (i) (1−b22)µ1+b12µ2 > 0 and (1−b11)µ2+

b21µ1 > 0, (ii) φ1, φ2 are real and φ1 ≥ |φ2|, (iii) A ≥ 0 and (iv) [B−max(φ2, 0)I]A ≥ 0.

Note that condition (iii) implies that only positive ARCH spillovers are possible. How-

ever, as shown in Conrad and Karanasos (2010), Corollary 4, at least one of the two

GARCH spillover parameters can take a negative value.4 In the following derivations we

consider a situation with b12 being this unrestricted parameter.

Assumption A1 (GARCH spillover) We assume that b11 > 0, b22 > 0, b21 ≥ 0, while

b12 is unrestricted. Moreover, we assume that det(B) 6= 0.

The assumption that det(B) 6= 0 is required by Jeantheau’s (1998) identifiability condi-

tion. Since det(B) = −β2 this condition ensures that φ2 6= 0.

Next, it is important to distinguish between the squared shocks ε∧2t and the volatility

innovations vt which we define as the squared shock minus its conditional expectation,

i.e. vt = ε
∧2
t − ht, such that E[vt|Ft−1] = 0. That is, a squared shock ε2i,t either implies

a positive or negative volatility innovation depending on whether it is bigger or smaller

than expected. Using this definition we can rewrite the model as

C(L)ht = µ+Avt−1, (4)

where C(L) = I − CL and C = [cij]i,j=1,2 = A + B. Next, we define the polynomial

γ(L) = det[C(L)] = 1 − γ1L − γ2L
2 with γ1 = c11 + c22 and γ2 = c12c21 − c11c22. The

following assumption guarantees the weak and strict stationarity of the UECCC GARCH

process (see He and Teräsvirta, 2004, or Conrad and Karanasos, 2010, p.859).

4In models of dimension higher than two this restriction is further relaxed.
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Assumption A2 (Stationarity GARCH) The inverse roots θ1 and θ2 of γ(z) are real,

satisfy the condition |θ1| < 1, |θ2| < 1 and without loss of generality are ordered as

|θ1| ≥ |θ2|.
5

Under Assumption A2, the model can be rearranged as

γ(L)ht = adj[C(1)]µ+ adj[C(L)]Avt−1, (5)

where adj[C(L)] denotes the adjoint of the matrix C(L) and we use that adj[C(L)] =

γ(L)[C(L)]−1. The unconditional variances of the elements of εt are then given by

E[ε∧2t ] =
1

γ(1)
adj[C(1)]µ. (6)

Next, the univariate GARCH(2,2) representation of the bivariate UECCC GARCH model

in terms of the volatility innovations vt is obtained as

γ(L)ht = adj[C(1)]µ+ α
(1)vt−1 +α

(2)vt−2, (7)

where

α
(1) =

(
a11 a12

a21 a22

)
(8)

α
(2) =

(
a21(a12 + b12)− a11(a22 + b22) a22b12 − a12b22

a11b21 − a21b11 a12(a21 + b21)− a22(a11 + b11)

)
. (9)

Note that in the univariate representation, h1,t (h2,t) depends on the first and second lag

of the volatility innovations v1,t, v2,t and on two lags of h1,t (h2,t). However, h1,t (h2,t)

does no longer depend on the lagged values of h2,t (h1,t) as it was the case in equation (3).

Definition 1 In analogy to Conrad and Karanasos (2006), we define the impulse response

function (IRF) as the effect of an own, vi,t−k, or foreign, vj,t−k, volatility innovation in

t−k on the conditional variance, hi,t, i.e. as the sequence of impulse response coefficients

λ
(k)
ii =

∂hi,t

∂vi,t−k
and λ

(k)
ij =

∂hi,t

∂vj,t−k
(10)

for k = 1, 2, . . ..

5The assumption that the roots are real is not necessary for the stationarity of the process. However,

it is realistic in most empirical applications and simplifies the subsequent analysis.
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The impulse response coefficients can be obtained from the expansion

ht = γ(1)−1adj[C(1)]µ+Λ(L)vt, (11)

where Λ(L) = [λij(L)]i,j=1,2 with

λij(L) =
α
(1)
ij L+ α

(2)
ij L

2

γ(L)
=

∞∑

k=1

λ
(k)
ij Lk. (12)

Note that each λij(L) takes the form of a GARCH(2,2) kernel. For illustrative purposes

we compare the effects of an own, v1,t−k, and a cross, v2,t−k, volatility innovation on h1,t.

The first two impulse response coefficients are given by

λ
(1)
11 = α

(1)
11 = a11 and λ

(2)
11 = γ1α

(1)
11 + α

(2)
11 = (a11 + b11)a11 + a21(a12 + b12) (13)

λ
(1)
12 = α

(1)
12 = a12 and λ

(2)
12 = γ1α

(1)
12 + α

(2)
12 = (a11 + b11)a12 + a22(a12 + b12). (14)

From equation (7) the interpretation of λ
(2)
12 , for example, is straightforward. A one unit

shock in v2,t−2 affects h1,t directly by α
(2)
12 . In addition, it affects h1,t indirectly via h1,t−1

with γ1α
(1)
12 . The combined effect is given by λ

(2)
12 = γ1α

(1)
12 + α

(2)
12 .

Hence, we can think of the ARCH parameters aij as determinants of the size of the ini-

tial impacts or first-order effects of the innovations v1,t−1, v2,t−1 on h1,t and h2,t. Similarly,

the GARCH spillovers bij can be thought of as part of the second-order effects of v1,t−2,

v2,t−2 on h1,t and h2,t. For example, if Assumption 1 is satisfied and all ARCH spillovers

are non-negative (as required by the conditions in Conrad and Karanasos, 2010), the effect

of v2,t−2 on h1,t will be dampened if b12 < 0 (see λ
(2)
12 in equation (14)).

In general, we can recursively express each λ
(k)
ij sequence as

λ
(k)
ij = γ1λ

(k−1)
ij + γ2λ

(k−2)
ij for k ≥ 3, (15)

where λ
(1)
ij = α

(1)
ij and λ

(2)
ij = γ1α

(1)
ij + α

(2)
ij (see Conrad and Karanasos, 2010, p.846).

Note that in Bollerslev’s (1990) diagonal model (a12 = a21 = b12 = b21 = 0) we have

α
(1)
ii L + α

(2)
ii L2 = (1 − cjjL)aiiL, α

(1)
ij L + α

(2)
ij L2 = 0, γ(L) = (1 − c11L)(1 − c22L) and,

hence, the IRFs in equation (12) reduce to

λ
(k)
11 = a11(a11 + b11)

k−1, λ
(k)
22 = a22(a22 + b22)

k−1 and λ
(k)
12 = λ

(k)
21 = 0 (16)

for k = 1, 2, . . .. That is, the cross IRFs are equal to zero and the own IRFs correspond

to the ones in the univariate case with rate of decay being governed by aii + bii. The

Lagrange multiplier test suggested in Nakatani and Teräsvirta (2009) considers exactly

this case in which A and B are diagonal matrices under the null hypothesis.
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As discussed before, we can view a GARCH spillover as a second-order effect of the

initial ARCH spillover. Since we have assumed that b12 is the unrestricted parameter in

the B matrix, in the following we assume that a12 > 0. In addition, it is meaningful to

make an assumption about the relation between the size of the initial impacts aij of the

different volatility innovations. It would be natural to assume that the initial impact of

a one unit v1,t innovation on the own conditional variance h1,t+1 is at least as strong as

its initial impact on the cross conditional variance h2,t+1. Similarly, the initial impact of

v2,t on h2,t+1 should be at least as strong as its initial impact on h1,t+1:

a21
a11

≤ 1 ≤
a22
a12

. (17)

For deriving our main result, we impose a slightly modified condition.

Assumption A3 (Initial Impact) We assume that a11 > 0, a22 > 0, a12 > 0 and

a21 ≥ 0. In addition, the ARCH coefficients satisfy the following condition:

a21
a11

<
a22
a12

. (18)

The strict inequality is due to Jeantheau’s (1998) identifiability condition which requires

that det(A) 6= 0.

If a12 > 0 and a21 > 0, we can consider the ratios a11/a21 and a22/a12 as ‘impact

ratios’.6 Then, Assumption A3 can be interpreted as requiring that the geometric mean

of the impact ratios, i.e. the average impact ratio, is greater than one:

0 <

√
a22
a12

·
a11
a21

− 1 (19)

Since in most empirical applications the size of a12 will be quite small in comparison

to the size of a11 and these two coefficients determine the initial level of the IRFs λ
(k)
11 and

λ
(k)
12 , it is inconvenient to directly compare the own and cross IRFs. Instead, we introduce

the concept of a relative IRF.

Definition 2 The relative IRFs for the effect of v1,t−k and v2,t−k on h1,t are given by

λ̃
(k)

11 = λ
(k)
11 /λ

(1)
11 and λ̃

(k)

12 = λ
(k)
12 /λ

(1)
12 for k = 1, 2, . . ..

The relative IRFs measure the volatility response in relation to the initial impact

of a volatility innovation. Alternatively, we can think of a relative IRF as normalizing

the size of the own and foreign volatility innovations such that the initial impact is one.

6By the same arguments as before, a21 = 0 would only make sense if b21 = 0 as well. This case would

imply that there is no second-order causality from the first to the second equation (see Woźniak, 2012).
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That is, λ̃
(k)

11 represents the volatility response to a normalized shock ṽ1,t−k of size 1/a11.

Similarly, λ̃
(k)

12 represents the volatility response to a normalized shock ṽ2,t−k of size 1/a12.

By definition, we have that λ̃
(1)

11 = λ̃
(1)

12 = 1.

In analogy to the interpretation of the λ
(2)
ij , the λ̃

(2)

11 and λ̃
(2)

12 measure the second-

order effects of the standardized shocks ṽ1,t−2 and ṽ2,t−2 on h1,t. It is then natural to say

that the second-order effect of the own volatility innovation, ṽ1,t−2, on h1,t is at least as

strong as the second-order effect of the foreign volatility innovation, ṽ2,t−2, if λ̃
(2)

11 ≥ λ̃
(2)

12 .

Next, we define a measure for comparing the persistence of the effects of own and foreign

(standardized) volatility innovations.

Definition 3 We say that the (relative) effect of an own volatility innovation, v1,t−k, on

h1,t is at least as persistent as the (relative) effect of a foreign volatility innovation, v2,t−k,

iff λ̃
(2)

11 > 0 and λ̃
(k)

11 ≥ λ̃
(k)

12 as long as λ̃
(k)

11 stays positive.

Intuitively, the definition of persistence requires that – starting from the initial impact

of unity – the effect of the own volatility innovation is positive on the second-order, i.e. does

not vanish immediately, and – as long as it stays positive – is stronger than the effect of

the foreign volatility innovation. For the UECCC GARCH it is straightforward to show

that the non-negativity conditions derived in Conrad and Karanasos (2010) directly imply

that λ
(2)
11 > 0 and, hence, λ̃

(2)

11 > 0.7

Conrad and Karanasos (2010) interpreted a negative GARCH spillover, say b12 < 0,

simply as a situation in which an increase in h2,t leads to a decrease in h1,t+1. Such

a relationship can be meaningful if, for example, economic theory suggests that there

should be a trade-off between the volatilities of two variables such as the trade-off be-

tween inflation and output volatility considered in the empirical example in Conrad and

Karanasos (2010). Nevertheless, empirically negative GARCH spillovers have been ob-

served in many situations in which a trade-off between volatilities does not appear to be

the most plausible explanation.

The following theorem states our main result for the UECCC GARCH model and

allows for a new interpretation of negative GARCH spillovers.

Theorem 1 If Assumptions A1, A2, A3 and the non-negativity conditions hold, then in

the UECCC GARCH model the effect of an own volatility innovation v1,t−k on h1,t is at

least as persistent as the effect of a foreign volatility innovation v2,t−k on h1,t, iff

a12 + b12 ≤ 0. (20)

7The non-negativity conditions imply that all ARCH(∞) coefficients are non-negative. The ARCH(∞)

coefficient that corresponds to λ
(2)
11 is given by ψ

(2)
11 = a11b11 + a21b12. Since λ

(2)
11 = a211 + a12a21 + ψ

(2)
11 ,

it follows that λ
(2)
11 > 0 if ψ

(2)
11 ≥ 0.
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The proof of Theorem 1 shows that the condition a12 + b12 ≤ 0 is already required to

ensure a stronger second-order effect of the own volatility innovation, i.e. λ̃
(2)

11 ≥ λ̃
(2)

12 .

Then, λ̃
(2)

11 ≥ λ̃
(2)

12 combined with the other assumptions implies that λ̃
(k)

11 ≥ λ̃
(k)

12 for all k

– independent of the sign of λ̃
(k)

11 .

Since a12 > 0 by assumption, the condition a12 + b12 ≤ 0 can only be satisfied if

b12 < 0. That is, in the UECCC GARCHmodel a negative GARCH spillover is a necessary

condition for ensuring that the effect of an own volatility innovation is at least as persistent

as the effect of a foreign one. Since this is a quite natural situation, Theorem 1 provides

a justification for the common finding of negative GARCH spillovers.

In order illustrate our result, we discuss an empirical example taken from Nakatani

and Teräsvirta (2008).

Example 1 Nakatani and Teräsvirta (2008) assume that the conditional variances of two

Japanese stock return series can be modeled as a bivariate UECCC GARCH(1, 1) process.

They obtain the following estimates of the A and B matrices

Â =

(
0.0394 0.0341

0.0350 0.1018

)
and B̂ =

(
0.9627 −0.0467

0.0353 0.8093

)
, (21)

where, in order to be in line with our notation, we have interchanged the ordering of

the variables. Standard errors are omitted but can be found in Nakatani and Teräsvirta

(2008). The estimated parameters clearly satisfy the non-negativity conditions provided

in Conrad and Karanasos (2010) and, at the same time, we observe a negative GARCH

spillover. Figure 1 shows the corresponding IRFs and relative IRFs. Since â12 + b̂12 < 0,

the v1,t−k innovation should have a more persistent (relative) effect on h1,t than the v2,t−k

innovation. This is confirmed by the behavior of the relative IRFs λ̃
(k)

11 and λ̃
(k)

12 in Figure 1,

upper right. On the contrary, since b̂21 > 0, the v2,t−k innovation has a less persistent

(relative) effect on h2,t than the v1,t−k innovation. Hence, in Figure 1, lower right, λ̃
(k)

22 is

always below λ̃
(k)

21 .

We conclude this section by considering four specific cases.

Case 1: b12 = 0. This is the type of model considered in Conrad et al. (1991)

which allows for an ARCH spillover, a12 > 0, but not for a GARCH spillover. The

model possesses the unpleasant property that – by construction – foreign volatility

innovations are more persistent than own volatility innovations. In addition, if in

the true model b12 6= 0, then imposing the restriction b12 = 0, i.e. omitting h2,t−1

from the first equation, will lead to an omitted variables bias in the estimate of a12.

Since ε22,t and h2,t are positively correlated, the estimate of a12 will be downward

11
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Figure 1: IRFs (upper and lower left figure) and relative IRFs (upper and lower right

figure) for the empirical example from Nakatani and Teräsvirta (2008).

biased if the true b12 is negative. We will discuss this case in more detail in the

empirical application in Section 3.

Case 2: a12 + b12 = 0. In this situation the IRFs in equation (12) reduce to

λ
(k)
11 = a11(a11+ b11)

k−1 – which is the same as in Bollerslev’s (1990) diagonal model

– and λ
(k)
12 = a12(a11 + b11)

k−1. Obviously, the two relative IRFs are the same,

i.e. λ̃
(k)

11 = λ̃
(k)

12 for all k, meaning that the effect of an own volatility innovation is

exactly as persistent as the effect of a foreign volatility innovation. Interestingly,

although we have ARCH as well as GARCH spillovers, the unconditional variance

of ε1,t is the same as without any spillovers from the second to the first equation

(a12 = 0, b12 = 0), i.e. the first element in equation (6) reduces to

E[ε21,t] =
µ1

1− a11 − b11
.

Case 3: a12 = a11. That is, the initial impact of the foreign volatility innovation

v2,t on h1,t+1 is the same as the initial impact of the own volatility innovation v1,t.

In this case we can directly compare the original IRFs λ
(k)
11 and λ

(k)
12 since they differ

from the two relative IRFs only by the same factor.

Case 4: a21 = 0 and b21 = 0. Under these conditions there are no spillovers from

12



the first to the second equation. This case is equivalent to assuming no second-

order causality from the first to the second equation (see Woźniak, 2012). As in

Case 2, the λ
(k)
11 IRF in equation (12) reduces to the one of the diagonal model

a11(a11+ b11)
k−1. While λ

(1)
12 and λ

(2)
12 remain as in equation (14), the recursion given

by equation (15) now holds with γ1 = c11 + c22 and γ2 = −c11c22.

2.2 EGARCH

As an alternative to the UECCC GARCH process, we now consider a bivariate EGARCH

specification. The EGARCH model has the advantage that it does not require any re-

strictions on the parameters to ensure the positive definiteness of Ht. The EGARCH

structure, as suggested by Weber (2010b), is given by

h̃t = µ+A(|zt−1| −E[|zt−1|]) +Bh̃t−1, (22)

where h̃t = [ln(hi,t)]i=1,2 and µ, A and B are defined as before. The absolute value

operation is to be applied element by element. Note that the original univariate EGARCH

formulation of Nelson (1991) additionally includes a term which depends on the sign

of zt−1 and, hence, allows to model a leverage effect. For reasons of parsimony and

comparability with the UECCC GARCH model we abstract from this asymmetric term in

the following. Note that in equation (22), h̃t directly depends on the volatility innovations

vt = |zt−1| − E[|zt−1|], which simplifies the subsequent derivations in comparison to the

UECCC GARCH case.

Next, recall from Section 2.1 that we have defined B(L) = I − BL and the cor-

responding polynomial β(L) = det[B(L)] = 1 − β1L − β2L
2 with β1 = b11 + b22 and

β2 = b12b21 − b11b22. Since the EGARCH model does not require non-negativity con-

straints, both EGARCH spillover parameters can now remain unrestricted. That is, the

EGARCH model does not exclude the possibility of negative volatility spillovers in both

directions. We modify Assumption A1 as follows:

Assumption A4 (EGARCH spillover) We assume that b11 > 0 and b22 > 0. The

spillover parameters b12 and b21 are unrestricted. Moreover, we assume that det(B) 6= 0.

The following assumption states the stationarity condition for the EGARCH model.

Assumption A5 (Stationarity EGARCH) The inverse roots φ1 and φ2 of β(z) are

real, satisfy the condition |φ1| < 1, |φ2| < 1 and without loss of generality are ordered as

|φ1| ≥ |φ2|.

13



Assumption A5 ensures the existence of the ARCH(∞) representation of the EGARCH

process. As an intermediate step, we first derive the univariate representation of the

bivariate EGARCH(1,1) in terms of the volatility innovations:

β(L)h̃t = adj[B(1)]µ+ adj[B(L)]A|vt−1|

= adj[B(1)]µ+α1|vt−1|+α2|vt−2|, (23)

with

α
(1) =

(
a11 a12

a21 a22

)
and α

(2) =

(
a21b12 − a11b22 a22b12 − a12b22

a11b21 − a21b11 a12b21 − a22b11

)
. (24)

As for the UECCC GARCH model, we obtain the impulse response functions

λ
(k)
ii =

∂ ln hi,t

∂vi,t−k
and λ

(k)
ij =

∂ lnhi,t

∂vj,t−k
(25)

from the coefficients in the expansion

h̃t = β(1)−1adj[B(1)]µ+Λ(L)|vt|, (26)

where Λ(L) = [λij(L)]i,j=1,2 with

λij(L) =
α
(1)
ij L+ α

(2)
ij L

2

β(L)
=

∞∑

k=1

λ
(k)
ij Lk. (27)

Note that the IRF of the EGARCH differs from the one of the UECCC GARCH because

we now measure the effect of a volatility innovation on the log of the conditional variance.

In addition, in equation (27) we divide by β(L) instead of γ(L) and, further, the diagonal

elements of α(2) are different. Hence, the first two impulse response coefficients for the

effects of v1,t−1 and v2,t−1 on h1,t and h1,t+1 are now given by

λ
(1)
11 = a11 and λ

(2)
11 = a11b11 + a21b12 (28)

λ
(1)
12 = a12 and λ

(2)
12 = a12b11 + a22b12. (29)

That is, the initial impacts λ
(1)
11 and λ

(1)
12 of an own and foreign volatility innovation are

formally the same as in the UECCC GARCH model. However, for k ≥ 2 the effects are

different. Similarly as before, we can recursively express each λ
(k)
ij sequence as

λ
(k)
ij = β1λ

(k−1)
ij + β2λ

(k−2)
ij for k ≥ 3, (30)

where λ
(1)
ij = α

(1)
ij and λ

(2)
ij = β1α

(1)
ij + α

(2)
ij .
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In the EGARCH specification h̃t directly depends on vt and equation (22) allows

for an interpretation of the effect of the volatility innovations. For example, a volatility

innovation v2,t affects h̃1,t+1 directly with a12 and h̃2,t+1 with a22. Hence, it affects h̃1,t+2

via h̃1,t+1 with a12b11 and via h̃2,t+1 with a22b12. The combined effect is given by: λ
(2)
12 =

a12b11 + a22b12.

Since the initial effects are the same as in the UECCC GARCH model, we maintain

Assumption A3 for the EGARCH model as well. Similarly, the definition of the relative

IRFs remains as before. Since the EGARCH model does not require non-negativity con-

ditions, in principle, it is possible that λ̃
(2)

11 ≤ 0, even if this case does not seem to be

practically relevant. However, in order to be able to apply our definition of persistence

we assume that λ̃
(2)

11 > 0. Next, we present the theorem for the EGARCH model.

Theorem 2 If Assumptions A3, A4 and A5 hold and λ̃
(2)

11 > 0, then in the EGARCH

model the effect of an own volatility innovation v1,t−k on h1,t is at least as persistent as

the effect of a foreign volatility innovation v2,t−k on h1,t, iff

b12 ≤ 0.

Note that for the EGARCH it suffices that b12 ≤ 0. This is in contrast to the UECCC

GARCH case where we need that a12 + b12 ≤ 0.

Again, we close this section by considering some specific cases of interest.

Case 1: b12 = 0. This is the EGARCH version of the Conrad et al. (1991) model

with an ARCH but no GARCH spillover. The two impulse response functions reduce

to λ
(k)
11 = a11b

k−1
11 and λ

(k)
12 = a12b

k−1
11 for k = 1, 2, . . .. Clearly, the two relative IRFs

are the same. That is, in the EGARCH model the restriction of no GARCH spillover

is equivalent to assuming that the persistence of a foreign volatility innovation is the

same as the persistence of an own one. On the contrary, in the UECCC GARCH

model b12 = 0 implies that the effect of the foreign innovation is more persistent.

Finally, note that if b12 = 0 and/or b21 = 0, we have β(L) = (1 − b11L)(1 − b22L)

and, hence, φ1 > 0 and φ2 > 0 by Assumption A4.

Case 2: a12 = a11. Since in this case v2,t and v1,t have the same initial impact on

h1,t+1, we can directly compare the IRFs.

Case 3: a21 = b21 = 0. If there are neither ARCH nor GARCH volatility spillovers

from the first to the second equation, then λ
(k)
11 = a12b

k−1
11 as in Case 1. The λ

(k)
12

remain as in equation (30) but with β(L) = (1− b11L)(1− b22L).
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3 Empirical Application

3.1 Data

We apply our methodological considerations to a research field particularly occupied with

variance spillovers: the literature on stock market transmission between small and large

firms (Conrad et al. 1991, amongst others). For this purpose we employ the Fama-French

size-sorted portfolios available at Kenneth French’s homepage. These are constructed

annually at the end of June by sorting all NYSE, AMEX, and NASDAQ stocks according

to their June market equity. We obtained daily returns for the portfolios consisting of the

bottom and top 30%, respectively. Furthermore, we conduct some robustness analysis for

the bottom and top 20% and 10%. The sample is July 1, 1963 until December 31, 2009.

As argued by Conrad et al. (1991), data at the daily frequency might still be subject

to microstructure effects like nontrading and bid-ask bounce. Therefore, these authors

aggregated the daily series to weekly returns, where these issues can be safely ignored.

We follow them in this point, but we use the daily data for robustness checks. Table 1

shows summary statistics of the weekly 30% quantiles.

Table 1: Summary statistics of Fama-French size-sorted weekly 30% portfolio returns.

Return Mean St.Dev. Skewness Kurtosis ACF(1)

Small cap 0.227 2.404 −1.005 8.818 0.219

Large cap 0.195 2.165 −0.450 10.254 −0.036

We encounter well-known stylized facts: slightly higher mean and standard deviation of

small firm returns, considerable excess kurtosis, clearly positive first-order autocorrelation

(ACF(1)) of small cap and slightly negative autocorrelation of large cap returns. Figure 2

provides a graphical impression of the weekly data. The presence of pronounced volatility

clustering is clearly visible.

3.2 UECCC GARCH Results

We specify E[yt|Ft−1] as a VAR(p) and estimate the VAR-UECCC GARCH equations si-

multaneously by numerical quasi-maximum likelihood (QML) using the BHHH algorithm

(see Bollerslev and Wooldrigde, 1992). The Schwarz criterion prefers one lag in the VAR.

First, in order to replicate conventional findings such as in Conrad et al. (1991), we set

b12 = b21 = 0 in the B matrix. Estimation of the bivariate VAR(1)-UECCC(1,1) GARCH

model with large firm returns as the first variable leads to the following result for the
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Figure 2: Returns of 30% portfolios of small (left) and large (right) firms.

conditional variance equations (numbers in parentheses are robust standard errors):

(
hL,t

hS,t

)
=



0.116
(0.031)

0.217
(0.057)


+



0.142
(0.028)

−0.011
(0.008)

0.036
(0.018)

0.137
(0.027)



(
ε2L,t−1

ε2S,t−1

)
+



0.853
(0.030)

0
(−)

0
(−)

0.799
(0.033)



(
hL,t−1

hS,t−1

)
. (31)

While a21 is positive and significant at the 5% level, the point estimate of a12 is

slightly negative (which would violate the non-negativity constraints concerning the A

matrix) but clearly insignificant. This tends to confirm the standard outcome that ARCH

spillovers are running from large to small firms, but not vice versa. Next, we turn our

attention to the model including GARCH spillovers:

(
hL,t

hS,t

)
=



0.184
(0.039)

0.315
(0.080)


+



0.117
(0.019)

0.027
(0.014)

0.041
(0.021)

0.168
(0.030)



(
ε2L,t−1

ε2S,t−1

)
+



0.890
(0.016)

−0.062
(0.019)

0
(−)

0.747
(0.039)



(
hL,t−1

hS,t−1

)
. (32)

In a preliminary step, the GARCH spillover b21 was eliminated due to clear insignifi-

cance. Based on the QML standard errors, both ARCH spillover coefficients are significant

at the 10% level. However, we avoid relying exclusively on numerical QML standard er-

rors by additionally conducting likelihood ratio (LR) tests. Both the null hypotheses of

a12 = 0 and a21 = 0 are clearly rejected with LR statistics of 15.19 and 9.85, respec-

tively. This shows that ARCH spillovers are indeed bi-directional, whereas the bulk of

the literature failed to establish spillovers from small to large firms. Most importantly,

b12 is highly significant and negative, highlighting two facts established in this paper:

First, since â12 + b̂12 < 0, the persistence of small firm volatility innovations to large firm

volatility is lower than the persistence of own large firm volatility innovations. Second,

it is likely that the absence of empirical evidence in favor of small to large firm ARCH

spillovers in the literature is due to an omitted variable bias caused by ignoring GARCH
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spillovers. Finally, the fact that b21 = 0 in combination with â21 > 0 shows another

important result: large firm volatility innovations have a more persistent effect on small

firm volatility than small firm volatility innovations themselves.

It should be mentioned that the parameter estimates in model (32) violate the non-

negativity conditions provided in Conrad and Karanasos (2010). This implies that fore-

casts based on these parameter estimates may generate conditional covariance matrices

that are not positive definite. In order to avoid such problems, we prefer to rely on a

model that guarantees positive definiteness of the covariance matrix by construction. For

that purpose we also consider the EGARCH approach, to which we turn next.

3.3 EGARCH Results

Again, we begin with the restricted EGARCH model, setting b12 = b21 = 0.8

(
h̃L,t

h̃S,t

)
=



0.063
(0.022)

0.106
(0.031)


 +



0.268
(0.073)

0.008
(0.036)

0.091
(0.044)

0.257
(0.058)



(
|zL,t−1|

|zS,t−1|

)
+



0.956
(0.015)

0
(−)

0
(−)

0.938
(0.018)



(
h̃L,t−1

h̃S,t−1

)
(33)

We obtain the same result as in the UECCC GARCH case: a significant large to small

firm ARCH spillover (LR=9.71), but an insignificant small to large firm ARCH spillover

(LR=0.10). Figure 3 shows the corresponding IRFs and relative IRFs.

In accordance with the insignificant a12 small firm volatility innovations have a negli-

gible effect on large firm volatility (λ
(k)
12 , Figure 3, upper left), while large firm volatility

innovations have a considerable effect on small firm volatility (λ
(k)
21 , Figure 3, lower left).

Since â21 < â22 the initial impact of small firm innovations on small firm volatility is

stronger than the initial impact of large firm innovations. Finally, since b12 = b21 = 0 by

assumption, the persistence of own and foreign volatility innovations is the same in both

equations (Figure 3, upper and lower right).

Estimating the general system, where the insignificant b21 is again set to zero, leads

to

(
h̃L,t

h̃S,t

)
=



0.105
(0.027)

0.144
(0.037)


+



0.208
(0.047)

0.106
(0.044)

0.101
(0.059)

0.284
(0.059)



(
|zL,t−1|

|zS,t−1|

)
+



0.986
(0.005)

−0.053
(0.017)

0
(−)

0.913
(0.022)



(
h̃L,t−1

h̃S,t−1

)
. (34)

Now, the null hypotheses of a12 = 0 and a21 = 0 are clearly rejected with LR statistics

of 15.63 and 10.68. This reconfirms the presence of bi-directional ARCH spillover effects.

The GARCH spillover from small firm to large firm volatility, b12, is again significantly

8Assuming normally distributed zi,t we redefine the constant as µ̃ = µ−AE[|zt−1|] = µ−Ai
√
2/π,

where i = (1, 1)′.
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Figure 3: IRFs (upper and lower left figure) and relative IRFs (upper and lower right

figure) for EGARCH estimates from equation (33).

negative. That is, own volatility innovations to the large firm portfolio are more persistent

than small firm volatility innovations. The IRFs and relative IRFs in Figure 4, upper left

and right, indeed show that a small firm volatility innovation first has a positive effect

on the volatility of large firms, and that this effect vanishes rapidly. Furthermore, the

effect even turns negative subsequently. Evidently, the existing literature did not only

impose identical persistence (b12 = 0) of different volatility shocks, but it also neglected

the possibility of negative dynamic responses.

3.4 Optimal Portfolio Choice

The empirical investigation has established the econometric relevance of our theoretical

considerations on GARCH spillovers. In this section we shall corroborate the economic

significance of our results. Since equity markets consist of firms of very different size,

portfolio managers have a natural interest in finding an optimal mixture of stocks. This

leads us to the problem of computing optimal fully invested portfolio holdings, where we

impose the no-shorting constraint. We focus on the second moments and do not attempt

to forecast returns themselves. Thus, we assume expected returns to be zero, making the

problem equivalent to determining conditional risk-minimizing portfolio weights.
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Figure 4: IRFs (upper and lower left figure) and relative IRFs (upper and lower right

figure) for EGARCH estimates from equation (34).

Given a mean-variance utility function, one can derive the following optimal portfolio

holdings wt for the large firm (sub-)portfolio: wt = 0 if w∗
t < 0, wt = 1 if w∗

t > 1 and

wt = w∗
t else. Therein, w∗

t is given by

w∗
t =

hS,t − hLS,t

hL,t − 2hLS,t + hS,t

, (35)

with hLS,t denoting the conditional covariance between the small and large firm port-

folios. The optimal holdings of the small firm portfolio are 1− wt.

We compare the choice of portfolio weights made by an investor using the misspecified

EGARCH model (33) to the optimal choice based on the correctly specified model (34).

Figure (5) plots the estimated weights against each other. While the positive relationship

is not surprising, we see considerable deviations from the 45◦-line. This implies that port-

folio choices based on the two specifications of the volatility model are often substantially

different. In particular, GARCH spillovers and small firm influences clearly prove to be

relevant for decision-making in financial markets.

3.5 Robustness Analysis

As mentioned above we conducted several robustness checks:
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Figure 5: Optimal large firm portfolio weights with and without GARCH spillovers

• We corroborate the established effect in daily data, i.e. small to large firm ARCH

spillovers can only be detected once the model takes the (negative) GARCH spillover

into account.

• The results are confirmed taking the top and bottom deciles and quintiles from the

Fama-French database instead of the 30% portfolios.

• Instead of the CCC specification we employed the DCC model of Engle (2002), thus

allowing for time-varying correlations. The results for the volatility equations, and

especially the spillovers, were qualitatively unchanged.

• Above, following the Schwarz criterion, we preferred a parsimonious VAR(1) speci-

fication for the mean equations, while other criteria, i.e. Hannan-Quinn and Akaike,

naturally choose higher lags. This leaves the volatility equations largely unaffected.

The detailed estimation results are omitted for reasons of brevity, but are of course avail-

able from the authors upon request.

4 Conclusion

We reconsider the existence of volatility spillovers in multivariate GARCH models. In

particular, we show that the existence of negative GARCH spillovers can be rationalized

by the fact that a negative GARCH spillover is a necessary (and sufficient) condition in a

multivariate GARCH (EGARCH) model to guarantee that the effect of an own volatility

innovation is at least as persistent as the effect of a foreign volatility innovation. If the
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GARCH spillover is constraint to be zero this imposes an unintended condition on the

relation between the persistence of the effects of own and foreign volatility innovations.

In addition, it leads to a bias in the estimate of the initial impact of the corresponding

ARCH spillover.

We conclude that our main result represents a robust empirical fact: allowing for neg-

ative GARCH spillovers uncovers a significant impact of small firm volatility innovations

on large firm portfolio volatility. While small to large firm volatility innovations have

a less persistent effect than own large firm innovations, large to small firm innovations

have a more persistent effect than own small firm innovations. As a general device, we

suggest that investigations of volatility interactions should therefore always start from

unrestricted multivariate models.
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[10] Francq, C., J.-M. Zaköıan (2012): QML estimation of a class of multivariate asym-

metric GARCH models. Econometric Theory, 28, 179-206.

[11] Hakim, A., M. McAleer (2010): Modelling the interactions across international stock,

bond and foreign exchange markets. Applied Economics, 42, 825-850.
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A Proofs

Proof of Theorem 1.

We denote the difference in the two relative impulse response functions by δ12(L) =

λ̃11(L)− λ̃12(L). Using Assumption 2, we obtain the following expression

δ12(L) = λ̃11(L)− λ̃12(L) =
α
(1)
11 L+ α

(2)
11 L

2

α
(1)
11 γ(L)

−
α
(1)
12 L+ α

(2)
12 L

2

α
(1)
12 γ(L)

(36)

=

(
α
(2)
11

α
(1)
11

−
α
(2)
12

α
(1)
12

)
L2

(1− θ1L)(1− θ2L)
(37)

=
1

(1− θ2L)

(
α
(2)
11

α
(1)
11

−
α
(2)
12

α
(1)
12

)
L2

∞∑

k=0

θk1L
k (38)

=
1

(1− θ2L)
δ
(1)
12 (L), (39)

where we define

δ
(1)
12 (L) =

∞∑

k=0

δ
(1)
12,kL

k (40)

with δ
(1)
12,0 = 0, δ

(1)
12,1 = 0 and

δ
(1)
12,2 =

(
α
(2)
11

α
(1)
11

−
α
(2)
12

α
(1)
12

)
(41)

δ
(1)
12,k = θ1δ

(1)
12,k−1 = . . . = θk−2

1 δ
(1)
12,2 for k ≥ 3. (42)

In the next step we obtain a recursive representation of the coefficients, δ12,k, in

δ12(L) =

(
∞∑

k=0

θk2L
k

)
δ
(1)
12 (L) =

∞∑

k=0

δ12,kL
k

with

δ12,k =
k∑

l=0

θl2δ
(1)
12,k−l.

The recursive representation is given by

δ12,k =
k∑

l=0

θl2δ
(1)
12,k−l =

k∑

l=1

θl2δ
(1)
12,k−l + δ

(1)
12,k

= θ2

k−1∑

l=0

θl2δ
(1)
12,k−l−1 + δ

(1)
12,k

= θ2δ12,k−1 + δ
(1)
12,k. (43)
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Next, we show that under the Assumptions stated in Theorem 1 all δ12,k are non-

negative.

Consider the sequence δ
(1)
12,k for k = 2, 3, . . .. Using equation (8) we can simplify δ

(1)
12,2

to

δ
(1)
12,2 =

(
α
(2)
11

α
(1)
11

−
α
(2)
12

α
(1)
12

)
=

[
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a11
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]
−

[
a22
a12

b12 − b22

]

=

(
a21
a11

−
a22
a12

)
(a12 + b12). (44)

Since a21/a11 − a22/a12 < 0 by Assumption A3, δ
(1)
12,2 ≥ 0 if and only if

c12 = a12 + b12 ≤ 0.

Note that Assumptions A1 and A3 imply that γ1 = c11+c22 > 0 and c21 ≥ 0. In addition,

if c12 = a12 + b12 ≤ 0 then γ2 = c12c21 − c11c22 < 0. Since γ1 = θ1 + θ2 and γ2 = −θ1θ2,

it follows that θ1 > 0 and θ2 > 0 in this case. Because θ1 > 0, it directly follows that

δ
(1)
12,k = θk−2

1 δ
(1)
12,2 ≥ 0 for k ≥ 3.

Finally, note that δ12,0 = δ12,1 = 0 and δ12,2 = δ
(1)
12,2 ≥ 0. Hence, the recursive

representation

δ12,k = θ2δ12,k−1 + δ
(1)
12,k

with θ2 > 0 implies that δ12,k ≥ 0 for k ≥ 3.

Proof of Theorem 2.

Theorem 2 can be proven analogously to Theorem 1 when three small adjustments

are made. First, replace γ(L), θ1 and θ2 by β(L), φ1 and φ2. Second, because the α
(2)

matrix is now given by equation (24), equation (44) changes to

δ
(1)
12,2 =

(
α
(2)
11

α
(1)
11

−
α
(2)
12

α
(1)
12

)
=

[
a21b12
a11

− b22

]
−

[
a22b12
a12

− b22

]

=

(
a21
a11

−
a22
a12

)
b12. (45)

Hence, under Assumption A3, in the EGARCH δ
(1)
12,2 ≥ 0 if and only if

b12 ≤ 0.

Note that Assumption A4 implies that β1 = b11 + b22 = φ1 + φ2 > 0. In combination

with Assumption A5 it is clear that φ1 > 0 and, hence, δ
(1)
12,k = φk−2

1 δ
(1)
12,2 ≥ 0 for k ≥ 3.

Since in the EGARCH model b21 is unrestricted, we now have to distinguish two cases.
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Case 1: If b12 ≤ 0 and b21 ≥ 0, then β2 = b12b21 − b11b22 < 0. Since β2 = −φ1φ2, this

implies that φ2 > 0 and we can proceed as in the proof of Theorem 1.

Case 2: If b12 ≤ 0 and b21 < 0, then the sign of β2 is unclear. If φ2 > 0, i.e. β2 < 0,

we are back in Case 1. If, on the other hand, φ2 < 0, i.e. β2 > 0, we rewrite the recursion

in equation (43) for k ≥ 3 as

δ12,k = φ2δ12,k−1 + δ
(1)
12,k = φ2δ12,k−1 + φ1δ

(1)
12,k−1

= φ2δ12,k−1 + φ1(δ12,k−1 − φ2δ12,k−2)

= (φ1 + φ2)δ12,k−1 − φ1φ2δ12,k−2

= β1δ12,k−1 + β2δ12,k−2.

Since β1 > 0, β2 > 0, δ12,0 = δ12,1 = 0 and δ12,2 = δ
(1)
12,2 ≥ 0 it follows that δ12,k ≥ 0 for all

k.
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