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Abstract

Solar radiation management (SRM) technologies are considered one of the likeliest

forms of geoengineering. If developed, a future generation could deploy them to limit the

damages caused by the atmospheric carbon stock inherited from the current generation,

despite their negative side effects. Should the current generation develop these geoengi-

neering capabilities for a future generation? And how would a decision to develop SRM

impact on the current generation’s abatement efforts? Natural scientists, ethicists, and

other scholars argue that future generations could be more sanguine about the side effects

of SRM deployment than the current generation. In this paper, we add economic rigor

to this important debate on the intergenerational transfer of technological capabilities

and pollution stocks. We identify three conjectures that constitute potentially rational

courses of action for current society, including a ban on the development of SRM. How-

ever, the same premises that underpin these conjectures also allow for a novel possibility:

If the development of SRM capabilities is sufficiently cheap, the current generation may

for reasons of intergenerational strategy decide not just to develop SRM technologies, but

also to abate more than in the absence of SRM.
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1 Introduction

The economics of climate change have been emphasizing for a long time that concerns for

intergenerational equity imply that the current generation needs to reduce its greenhouse gas

(GHG) emissions. Such a reduction will benefit future generations by decreasing the damages

they are expected to suffer as a result of climate change (e.g. Stern 2006). Consequently, a

central concern of the literature on optimal climate policy is to determine the optimal scale of

abatement efforts vis-à-vis the business-as-usual scenario and thus to determine the optimal

intertemporal trajectory of mitigation (Stern 2006; Nordhaus 2007; Tol 2001).

Recent developments have started to challenge the almost exclusive role of emissions

reductions in climate policy. Apart from progress on the economics of adaptation to climate

change (Agrawala and Fankhauser 2008), there is growing awareness among economists of

the increasing plausibility of so-called “climate engineering” (CE). This term is a shorthand

for deliberate large-scale interventions in the Earth’s climate system with the aim of limiting

the damages of excessive atmospheric carbon stocks (Keith 2000). A variety of approaches

run under the heading of “climate engineering” or “geoengineering”. Most of the attention

focuses—due to feasibility, effectiveness, and cost—on solar radiation management (SRM)

technologies. These technologies enable an increase in the Earth’s albedo with respect to

solar radiation, e.g. by the dispersal of reflective aerosols in the stratosphere. This allows

the Earth to tolerate higher atmospheric carbon stocks while keeping global mean surface

temperatures within acceptable bounds. Merely a theoretical possibility decades ago (Fleming

2010), it is now considered feasible that an ambitious R&D program could deliver effective

SRM technologies within a few decades (Ridgwell et al. 2012).

A setting in which GHG emissions reductions are not the only option for addressing

climate change damages, but compete with or are complemented by investment in geoengi-

neering capabilities raises an entirely new set of questions. Some early assessments of climate

engineering conclude that a future generation with access to such technologies would be able

to handle the damages associated with stock pollutants at a surprisingly low direct variable

cost (Klepper and Rickels 2012; Barrett 2008). However, these technologies are not under-

stood to be “magic bullets”. The current consensus is that SRM interventions will involve

significant indirect costs through side effects, such as changes in precipitation patterns, and

that these side effects will themselves raise issues of how benefits and costs are distributed

(Klepper and Rickels 2012; Moreno-Cruz and Keith 2012; Ricke et. al. 2010). As a result, a

decision-maker will have to carefully weigh the social benefits of avoided carbon damages and

the social costs of SRM-induced side effects when making a decision on the deployment of

geoengineering measures. Some papers have started to establish the conditions under which

the deployment of SRM may or may not be meaningful (Bickel and Agrawal 2012; Goes et

al. 2011; Moreno-Cruz and Keith 2012), to consider the impacts of a geoengineering capa-

bility on international negotiations (Barrett 2008; Moreno-Cruz 2010) and how to regulate

deployment (Barrett 2008; Victor 2008).

The starting point of this paper is the observation that at the present time, the tech-

nological capabilities for a deployable SRM system do not exist. These capabilities would
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have to be created at a cost, and the costs of developing these capabilities are considered

substantial (Klepper and Rickels 2012). It would fall to the current generation to devote

some of its resources to investment into a R&D program that would make these capabilities

available, perhaps 30 years from now, to a future generation (Schelling 1996). But is it a

rational course of action for the current generation to develop these capabilities for a future

generation that can then decide on its use? And how would a decision to develop such SRM

capabilities impact on abatement efforts?

Despite agreement on the basic premises of the decision problem, the current literature

offers at least five different conjectures regarding the rational course of action. One conjecture,

termed “arming the future” argues in favor of SRM R&D since the technology would act as

some type of insurance in the event that the sensitivity of the climate system with respect

to the carbon stock turns out to be high (Moreno-Cruz and Keith 2012). This rationale of

SRM R&D has been advanced by a number of commentators (Gardiner 2010; Schneider 1996

cited in Gardiner 2011, p.9) and enjoys considerable support. Some have even gone so far as

to claim that, since SRM is an imperfect substitute for emissions abatement, a positive SRM

R&D decision will not affect GHG emissions abatement (Bunzl 2009). This conjecture, which

we dub “abatement invariance”, contrasts with a third conjecture, namely that investment

in SRM R&D detracts from mitigation and will lead to less abatement effort (Keith 2010,

Shepherd 2009). This possibility of a reduction in mitigation effort by the current generation

has been characterized as a manifestation of “moral hazard” that a rational course of action

would avoid (Shepherd 2009, Hale 2012).

In other conjectures, the concerns lie with the behavior of the future generation. Future

decision-makers may engage in climate engineering under circumstances and on a scale that

the current generation would not hold to be optimal. At least three mechanisms are thought

to explain why future generations may deviate from the judicious course of action. One is

behavioral: Given the impression of an impending or immediate “climate emergency”, there

is a belief that decision-makers will succumb to emotional factors that favor SRM deployment

as a ’quick fix’ (e.g. Bodansky 1996).1 Similarly, while sunk cost of its development should

on rational grounds be immaterial to the decision on whether to deploy SRM technology,

there is ample historical experience that use of a capability is often regarded as necessary to

justify large sunk cost (Gardiner 2011). The second mechanism lies in the political economy

of science and technology: Researchers and industry funded to carry out research on certain

technologies become interest groups in favor of technology deployment, creating a vocal and

influential lobby for SRM use (Jamieson 1996).2 The final mechanism is the potential for a

genuine change of preferences regarding SRM once its availability has become a fact of life

for a future generation.3 Irrespective of the mechanism, a bias in favor of SRM interventions,

1The American Meteorological Society, for instance, believes that “[...]geoengineering technologies, once

developed, may enable short-sighted and unwise deployment decisions, with potentially serious unforeseen

consequences.” (2009)
2This concern is also present among the general public. Mercer et al (2011) report very strong agreement

on the statement that “Research will lead to a technology that will be used no matter what the public thinks.”

among participants in a large-scale international survey of public perceptions of climate engineering.
3Already in one of the early reports by the US National Academy of Sciences on climate change, the authors
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once those technological capabilities have been created, is the argument underpinning two

additional conjectures advanced in the literature. One is that the rational course of action

for today’s generation is to rule out research on geoengineering measures in order to prevent

the future generation from acting against its own best interests (Keith et al. 2010).4 The

fifth conjecture is a different interpretation of the “moral hazard” argument by Bunzl (2009)

and turns the logic on its head. It postulates that in the face of a pro-CE bias among the

future generation, the rational course of action is to offer SRM as a backstop for a “climate

emergency” and to abate less. The reason is that in a world in which the future generation

uses SRM indiscriminately, the carbon stock damages imposed on the future generation are

consistently lower than in the absence of SRM capabilities. As a result, the current generation

would be treated more equitably if it allowed itself to emit more (Hale 2012).

Against this background of competing conjectures, this paper makes two contributions.

The first is to extend the economic literature on the intergenerational aspects of climate pol-

icy in the direction of technology transfers. To our knowledge, the transfer of a mitigating

technology, such as SRM, to a future generation that bears the damage costs of a stock pol-

lutant has not been explicitly considered before. The second contribution is to demonstrate

how simple economic analysis can provide a useful starting point for discriminating between

the different conjectures on the ’right’ course of action regarding a portfolio of both mitiga-

tion and SRM R&D activities. We provide these contributions by developing the simplest

two-generations model that captures the four joint premises that appear to underpin all con-

jectures. These common elements are (i) that the current generation cares about the future

generation sufficiently to be concerned about the stock damages of atmospheric carbon, (ii)

that there may be a pro-SRM bias in the future, (iii) that both abatement and R&D involve

a cost today and (iv) that both determine, in an environment characterized by uncertainty

about the damages associated with atmospheric carbon, the future generation’s carbon stock

and technological capabilities. Using this model, we study the subgame perfect behavior of

the current generation in order to determine which of the conjectures above can arise, and if

so, under which conditions.

Our results demonstrate that the possibility of transferring mitigating technologies into

the future both re-emphasizes important economic insights on climate policy and raises im-

portant new issues. For example, even in the absence of a pro-SRM bias, the presence of an

SRM option offsets current abatement. Far from constituting an instance of “moral hazard”

(Bunzl 2009), this is simply a result of the partial substitutability between abatement and

SRM that a current generation will rationally want to exploit. At the same time, the presence

of a pro-SRM bias will constitute an important source of potentially powerful strategic dis-

tortions between generations that support some of the conjectures, but not all. A failure to

raise the possibility that interest in CO2 may generate or reinforce a lasting interest in national or international

means of climate and weather modification; once generated, that interest may flourish independent of whatever

is done about CO2 (p. 470).
4Ruling out CE research could take the shape of the recent explicit ban on climate engineering R&D that

was declared at the Conference of the Parties of the U.N. Convention on Biological Diversity in Nagoya in

2010.
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carefully define those comparisons that are meaningful may be to blame for some of the con-

fusion. As the analysis makes clear, rising R&D costs lead ceteris paribus always to ruling out

SRM research for rational reasons. The same holds for an increasing pro-SRM bias. However,

providing no SRM R&D will always be combined with higher abatement levels than if SRM

was made available. At the same time, we find no support for the conjecture that abatement

weakens due to a distortion between generations if R&D is undertaken. Quite the opposite:

If SRM is made available, abatement will never fall below the non-distortion benchmark but

increase the higher the distortion between generations. That abatement will increase even if

SRM is provided is a new finding that has not been discussed before. The intuition is that

an altruistic current generation can and will want to partially offset a pro-SRM bias among

the future generation by providing more abatement today, thus reducing the incentives to

deploy SRM in the future.

We proceed as follows. In the following section, we develop the simple two-generations

model that captures the salient components of the SRM R&D debate in the most parsimonious

and tractable fashion. In section 3, we provide a major step in the debate by defining the

meaningful comparison point by the way of a benchmark. Section 4 derives the equilibria of

the intergenerational game and establishes the main propositions. In section 5, we conclude.

2 The Model

2.1 The setting

Here, we develop a setting that pares an intergenerational decision problem involving both

a stock pollutant and the development of an imperfect backstop technology down to its very

essentials. Figure 1 provides a graphical representation of the setting, which features four

periods. While the building blocks on stock pollution, abatement, and damages are taken

from the mainstream literature, the novel aspects are the inclusion of the climate engineering

option and the associated intergenerational issues so as to capture the common narrative

elements described in the introduction.

R&D 
Choice  

 
Abatement 
Choice 
 

Climate 
Sensitivity 
Revealed 

Climate  
Engineering 
Choice 

Outcomes 

Current  
Generation Nature Future  

Generation 

A∈ 0,∞)#
$Θ∈ 0,1{ } λ ∈ λ,λ{ } D ∈ 0,∞)#

$

Figure 1: Timing of the game.

The basic set-up consists of two non-overlapping generations, termed “current” and “fu-

ture”. The current generation decides in period 1 on whether to invest in R&D for future

SRM capabilities (Θ = 1) or not (Θ = 0) and chooses pollution abatement level A in period
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2.5 R&D of SRM involves technological as well as regulatory and institutional costs that will

allow the future generation to use the climate engineering technology. These costs could be

significant (Klepper and Rickels 2012). In period 3, nature resolves the key scientific uncer-

tainty about climate change (Roe and Baker 2007), namely the climate sensitivity parameter

λ that in turn determines the marginal damages associated with the future global carbon

stock. In period 4, the future generation decides whether to deploy the SRM technology in

order to counteract the damages T from the unabated pollution stock. If it deploys SRM

(D > 0), the future generation reduces damages from the carbon stock, but suffers environ-

mental damages G associated with the use of SRM, e.g. in the form of disruptions of the

hydrological cycle. If no SRM is used (D = 0), future society faces the full temperature

damages T .

As other tractable economic models of climate change, we specify the damages associated

with the global carbon stock as caused by increased temperatures above historical averages.

We employ the temperature damage function T by Moreno-Cruz and Keith (2012) of the

form

T = λ2 (R0 −A)2 . (1)

The damage function consists of two arguments: The first argument is the squared carbon

sensitivity of the climate to a doubling of CO2, λ. The second argument is the square of the net

deviation in the carbon stock from historical levels (R0 −A), which consists of the business-

as-usual increase in the carbon stock R0 minus the abatement effort A.6 From the vantage

point of the current generation, i.e. in periods 1 and 2, the carbon sensitivity is a random

variable with two possible realizations: a carbon-sensitive value of λ̄ > 0 with probability

p and a carbon-insensitive value λ (0 < λ < λ̄) with probability (1− p). As expression (1)

makes clear, abatement is productive as it reduces the expected value of pollution damages

associated with climate change. Along with all moves {Θ, A}, the pollution damage function

(1) is common knowledge.

Abatement costs are usually assumed to be convex in abatement efforts. As a simple

approximation, we model the abatement cost function of the quadratic type

X = αA2 , (2)

with increasing marginal abatement cost 2αA. The R&D process is modeled in a deterministic

fashion, following Goeschl and Perino (2007): R&D for a functioning SRM technology requires

payment of a fixed amount K in period 2 and delivers the climate engineering technology by

period 4. The cost of not providing the SRM technology (Θ = 0) is zero.

The second option to counteract temperature damages, which can be combined with

abatement, is the deployment of SRM. Like the abatement level A, we measure the amount

D of deployed SRM in terms of compensated carbon stock (cf. Moreno-Cruz and Keith 2012)

such that temperature damages read T = λ2 (R0 −A−D)2. In that sense, abatement and

5The sequentiality of the decisions on Θ and A is purely for ease of presentation. A simultaneous choice of

Θ and A leads to identical results.
6Temperature damages are assumed to be quadratic in temperature increases. The latter are assumed to

be linear in the pollutant stock change
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SRM are equivalent regarding temperature damage compensation. They differ, however, in

terms of timing and costs.

The use of SRM involves negligible direct costs (Barrett 2008), but causes collateral

damages because of unintended negative impacts. These negative impacts comprise changes

in the hydrological cycle and increase in air pollution, according to current assessments (Ricke

et al. 2010; Kravitz et al. 2009). The general form of the damages G from SRM is a higher-

order polynomial involving the volume of aerosol injected into the stratosphere (D), the net

carbon stock increase (R0 −A), and various particle characteristics (Bala et al. 2010; Caldeira

and Wood 2008; Ricke et al. 2010). Recent simulations with general circulation models have

shown, however, that the changes in temperature and precipitation are disproportionately

driven by the linear term attached to the volume of SRM (Ban-Weiss and Caldeira 2010;

Moreno-Cruz et al. 2012). A first approximation of the current generation’s assessment of

SRM damages would therefore specify an essentially linear relationship between damages and

the amount D of SRM of the form

G = ρD (3)

with ρ denoting the constant marginal value of SRM damages. An immediately obvious

economic viability condition for SRM is that ρ < 2αR0. Otherwise, the marginal cost of even

the last unit of abatement is lower than the marginal damage of SRM, implying that SRM

is never a competitive substitute for abatement.

The final component to make the setting reflect the current literature is a device that

captures the possible presence of a bias of the future generation in favor of SRM deployment.

The bias implies that unit for unit, the future generation values SRM damages generally

less than the current generation for reasons of behavioral mechanisms, political economy, or

genuine preference shifts. As a shorthand for this divergence between current and future

generations, we introduce a bias parameter β ∈ [0, 1] such that from the future generation’s

vantage point, damages are G̃ = (1− β)ρD. If there is no bias (β = 0), then the current and

the future generation have an identical relative valuation between temperature damages and

SRM damages.

2.2 Objectives and equilibrium concept

Against this background, we now define the objective functions, payoffs, and strategies of

both generations. The future generation’s objective is to minimize the sum of pollution

damages and SRM damages, taking the choices of the current generation on abatement and

R&D and the realization of climate sensitivity λ as given. Given R&D on SRM, the future

generation can determine its optimal volume of SRM, D∗, that is how much of the inherited

carbon stock should be compensated for by means of SRM. The optimal volume of SRM is a

function of the abatement level A, the realized climate sensitivity λ and the bias parameter

β. The future generation’s problem is therefore

min
D∈[0,R0−A]

{
λ2(R0 −A−D)2 + (1− β)ρD

}
. (4)
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It is both intuitively obvious and clear from the first-order conditions that use of SRM requires

that (1−β)ρ < 2λ2(R0−A), i.e. the marginal damage of the first unit of SRM must be below

the temperature damages thus avoided. Otherwise, the corner solution D∗ = 0 is optimal.

For D∗ > 0, the optimal amount is given by D∗(A, λ, β) = R0 −A− (1−β)ρ
2λ2 .

From the vantage point of the current generation, the combination of the two possible

realizations of climate sensitivity λ and the conditions on corner and interior solutions give

rise to three possible deployment profiles. One profile, Duncond, implies use of SRM by the

future generation irrespective of whether the climate turns out to be sensitive or insensitive

to carbon. Another, Dnever, features no use of SRM, even if the climate turns out to be

sensitive to carbon. The third, Dcond, conditions the use of SRM on the climate sensitivity,

using SRM for a sensitive outcome and not using SRM for an insensitive one. The profiles

are defined by

Duncond =

R0 −A− (1−β)ρ

2λ̄2 if λ = λ̄

R0 −A− (1−β)ρ

2λ2 if λ = λ
, Dcond =

R0 −A− (1−β)ρ

2λ̄2 if λ = λ̄

0 if λ = λ

Dnever =

0 if λ = λ̄

0 if λ = λ .
(5)

Due to a decrease of perceived damages caused by SRM, an increase in the bias β increases

the SRM amount deployed. For β = 1, which refers to future generation attributing no

damages to the use of SRM, temperature damages will be fully compensated, T = 0.

A quick inspection of the deployment profiles shows that the current generation, given its

belief about the future generation’s β, determines which profile will be chosen in the future

through its choice of abatement A. More specifically, there is a lower and an upper threshold

on abatement, with Acrit = R0 − (1−β)ρ

2λ2 and Ācrit = R0 − (1−β)ρ

2λ̄2 respectively, such that

D∗ =


Duncond if A ≤ Acrit ≤ Ācrit

Dcond if Acrit ≤ A ≤ Ācrit

Dnever if Acrit ≤ Ācrit ≤ A .

(6)

Through sufficiently high abatement, therefore, the current generation can ensure that

SRM will never be used. Conversely, by abating little, available SRM would always be used at

some positive level, even if the climate turns out to be relatively insensitive to carbon stocks.

Finally, abatement levels between the two critical thresholds give rise to SRM deployment

that is conditional on the realization of carbon sensitivity of the climate. Here, SRM would

only be used in the eventuality of a sensitive climate.7

The optimal choice of costly SRM R&D Θ in period 1 and abatement A in period 2 con-

stitute the essence of the current generation’s problem. In its choice, the current generation

takes into account both the costs to itself (in the form of R&D and abatement costs) and

the costs borne by the future generation (in the form of damages). The cost minimization

7Note that the deployment profiles Duncond and Dcond become indistinguishable at the abatement level

Acrit. The same holds for Dcond and Dnever at Ācrit.
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objective requires that current and future costs need to be made comparable through an

appropriate discount factor δ. The objective function is then given by

min
Θ,A

C(Θ, A |β) = min
Θ,A

{
ΘK + αA2+

δ(1− p)
(
λ2(R0 −A−D(A, λ, β))2 + ρD(A, λ, β)

)
+

δp
(
λ̄2(R0 −A−D(A, λ̄, β))2 + ρD(A, λ̄, β)

)}
. (7)

For ease of exposition, we set δ = 1 (no discounting). Also note that the objective function

of the current generation makes explicit reference to β since the bias determines profile

and amount of SRM deployment. We thus analyze functions of the form C(Θ, A |β) or,

equivalently, the form C(Θ, A |D) where D denotes a certain deployment profile.

The optimal abatement levels differ depending on whether there is R&D on SRM or not.

If no SRM R&D is carried out, Θ = 0, the future generation cannot deploy the technology.

This simplifies the objective function since D = 0 for all A, λ and β. The associated optimal

abatement level is

ANoR&D =
pλ̄2 + (1− p)λ2

α+ pλ̄2 + (1− p)λ2R0 > 0 , (8)

which is a fraction of the business-as-usual increase in the carbon stock R0. In line with

intuition, abatement in the absence of SRM increases with a higher probability of a carbon-

sensitive climate ( ddpANoR&D > 0) and for higher levels of sensitivity ( d
dλ̄
ANoR&D > 0,

d
dλANoR&D > 0). The higher marginal abatement costs (higher α), the lower the abate-

ment level: While costless abatement (α = 0) leads to full compensation, ANoR&D = R0,

abatement goes down to zero if marginal abatement costs tend to infinity.

If SRM R&D is carried out, Θ = 1, the choice of the optimal A is more intricate because a

change in A influences the future generation’s discrete decision which of the three deployment

profiles to choose. The objective function is therefore only piecewise differentiable and the

optimal abatement level in each segment is not necessarily an interior solution. At the same

time, note that the bias parameter β influences the choice of A only through its impact

on the deployment profile; within one profile β has no impact on the abatement choice as
d
dβ

(
d
dAD(A, λ, β)

)
= 0. This is an interesting property that results from the dominance of

the linear component in SRM damages and that will be exploited in section 4.

From an abstract point of view, the model set-up and objectives that capture the nar-

ratives on whether the current generation should develop SRM capabilities for the future

generation define a sequential game with incomplete information. Its basic structure, in

particular the technology transfer decision, is a variant of the trust game by Kreps (1990).

However, the intergenerational decision problem here features two important differences: One

is the availability of the second instrument in the form of abatement, the other the presence

of exogenous uncertainty in the form of the random variable λ. The proper solution concept

for determining the equilibrium played by the current and future generation is that of sub-

game perfection (SP). The current generation, looking forward, employs backward induction

to solve problem (7): By determining the optimal play of future generation (D∗|A, λ, β) in

period 4 contingent on current generation’s choices in periods 1 and 2 and nature’s move in
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period 3, it identifies its own optimal play {Θ∗, A∗} in periods 1 and 2. However, it has to do

so not knowing λ (see Figure 1). The equilibrium concept of SP will admit some combina-

tions of abatement and R&D choices but not others, and thus impose elementary consistency

checks on current society’s rational course of action.

3 The Benchmark

Using the framework presented above, the purpose of the following two sections is to explore

the consistency of different conjectures regarding the current generation’s rational course of

action.

We proceed by constructing and establishing, as the first building block, a suitable bench-

mark case. Such a case is one in which (i) the bias of the future generation with respect to

damages from SRM is set to zero by assumption and (ii) where equilibrium play features the

current generation engaging in SRM R&D and the future generation adopting a conditional

deployment profile. This choice of a benchmark has three benefits: The first is that in the

comparisons in section 4 with situations involving a bias, the strategic distortions introduced

by the bias will be clearly identifiable. The second benefit is that this benchmark case demon-

strates the consistency of the “arming the future” conjecture for a given parameter set and

thus establishes one of the five conjectures as a candidate for the rational course of action.

Thirdly, the benchmark case also demonstrates that even in the absence of the bias, the

rational course of action involves certain subtleties that the discussion on developing SRM

technologies has so far failed to identify.

In the spirit of keeping notation clutter to a minimum, we assign values to some parame-

ters. We restrict the level of abatement to the unit interval by setting R0 = 1. Furthermore,

marginal temperature and SRM damages will be regarded in terms of abatement costs by

assuming α = 1 such that abatement costs are simply A2. Finally, we set λ = 1 such that

λ̄ > 1 captures temperature damages for high carbon sensitivity, relative to a fixed baseline.

These restrictions preserve the relevant degrees of freedom of the model and simplify the

analysis substantially.

The benchmark case assumes the absence of a bias of the future generation with respect

to SRM damages, β = 0.8 To fix notation, equilibrium play in the benchmark case is

characterized by current generations SRM R&D decision Θ̂ and abatement level Â as well as

the future generation’s deployment profile D̂. For the conjecture of “arming the future” to

survive the consistency check then requires that equilibrium play can give rise to a decision to

conduct R&D on SRM, Θ̂ = 1, and an abatement level Â that induces the future generation

to choose the conditional deployment profile of the SRM technology: D̂(Â, β = 0) = Dcond.

Under these conditions, the current generation will make SRM capabilities available to the

future generation alongside an optimal abatement effort to be determined, and the future

generation will use SRM technologies only in case that the climate system turns out to be

8In terms of interpretation, β = 0 could mean that the future generation has the same preferences as

current generation or that current generation is just ignorant of an existing asymmetry.
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carbon sensitive. The future generation, in other words, will be “armed” against inadvertent

outcomes in the climate system.

We begin the construction of the benchmark case with the convenient assumption that the

abatement level associated with equilibrium play in the “arming the future” conjecture ought

to be an interior solution. The interior solution to the current generation’s cost-minimization

problem (7) assuming a conditional SRM deployment profile is given by

Acond =
2(1− p) + pρ

2(2− p)
. (9)

What parameter restrictions follow from designating Acond as our solution Â? These param-

eter restrictions can be summarized as restrictions on the marginal damage from SRM, ρ,

and on the R&D cost of SRM, K. Note first that designating Acond as Â requires that the

abatement level Acond chosen by the current generation actually gives rise to a conditional

deployment profile by the future generation. Formally,

Acrit(β = 0) < Acond < Ācrit(β = 0) . (10)

The level of abatement therefore has to lie in the middle segment defined in equation (6).

Designating Acond as Â therefore translates into a condition on the parameter ρ: The marginal

damages of SRM ρ have to fulfill that 1 < ρ < 2λ̄2

2+p(λ̄2−1)
. Together with the economic viability

condition for SRM ρ < 2αR0 = 2 (cf. section 2.1), this requires that the marginal damages

of SRM fulfill

ρ ∈
(

1 , min
{

2,
2λ̄2

2 + p(λ̄2 − 1)

})
(11)

in order for Acond to be feasible as Â. The intuition is straightforward: If ρ < 1, SRM

damages are too small to give rise to conditional deployment of SRM and an unconditional

deployment profile would be optimal instead. On the other hand, if ρ > 2λ̄2

2+p(λ̄2−1)
damages

caused by SRM are too large and the optimal deployment profile would be to never use the

technology. In this last case the amount of abatement would be larger than Ācrit.
9

The restrictions on ρ ensure that the deployment profile chosen will indeed be conditional

on the realization of λ. Since these restriction cannot by themselves guarantee that there

is not some other abatement level that involves lower cost than Acond, restrictions on K

are also required. To do so, we compare the total costs of the conditional profile, and

associated abatement level Acond, with the costs of the profile without SRM deployment

and the unconditional deployment profile (see section 2.2), with their respective optimal

abatement levels. First, the total costs of the conditional profile have to be lower than those

of the unconditional deployment profile. That is,

C(Θ = 1, Acond |Dcond) < C(Θ = 1, Acrit |Duncond) , (12)

9It should not come as a surprise that the upper bound increases with λ̄; that is, if the climate system is

more climate sensitive, SRM damages can be larger and still allow for a conditional use profile. Less obvious is

the fact that the upper bound decreases with p. An increase in p makes the upper limit more stringent because

Acond increases with p, but Ācrit does not (whether the future generation deploys SRM does not depend on

ex-ante probabilities). As p increases, the current generation has an incentive to increase Acond and minimize

now higher expected future costs which in turn reduces the need for SRM deployment.
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where C(Θ = 1, Acrit |Duncond) are the minimum costs under the indiscriminate use of SRM.10

This is equivalent with (ρ−1)2

2−p > 0, which is always satisfied. Restrictions on K therefore need

to come from the second comparison between the total costs of the conditional profile and

those of the no SRM deployment profile, taking into account that conditional deployment

requires investing in SRM R&D. For conditional deployment to involve lower cost requires

that

C(Θ = 1, Acond |Dcond) < C(Θ = 0, ANoR&D) |Dnever) . (13)

This requirement translates into a limit on how costly SRM R&D can be:

K < K̄ :=
p
(
ρ(2 + p(λ̄2 − 1))− 2λ̄2

)2
4(2− p)λ̄2(2 + p(λ̄2 − 1))

. (14)

Taking the above restrictions on ρ and K together, the parameter requirements for the

benchmark case are thus fully characterized. More importantly still, there is no evidence

of logical contradictions that would rule out equilibrium play according to the “arming the

future” conjecture if there is no bias among the future generation: There is nothing inherently

contradictory about the current generation providing both abatement and SRM R&D to the

future generation such that this technology can be used as a backstop in the event of a

carbon-sensitive climate.

Before exploring the impact of a bias regarding SRM use among the future generation, it

is useful to point out two features of the benchmark equilibrium. One is the abatement level:

The abatement level Â = Acond is smaller than the abatement level which would be optimal

without SRM, Acond < ANoR&D. From an economic perspective, this is not surprising: Since

abatement is costly, the ability to counteract the adverse effects of a pollutant implies that a

a higher pollution stock can be tolerated. Contrary to the characterization as “moral hazard”

(see introduction), this reduction in abatement is therefore an optimal response. Whether

the “moral hazard” argument has traction in a setting in which there is a bias among genera-

tions is a key question of the following section: it is conceivable that strategic considerations

may lead to a suboptimal reduction on abatement, that is a level of abatement that is lower

than Acond. The second instructive feature of the benchmark are its comparative statics.

The benchmark abatement level Acond responds in a predictable fashion to an increasing

likelihood of a “climate emergency” as well as higher marginal damages of SRM. In both

cases, we see higher levels of abatement since d
dpAcond > 0 and d

dρAcond > 0. The threshold

level of R&D costs also responds predictably to stronger climate damages (the willingness to

equip future generation with the technology increases) and higher marginal damages of SRM

(opposite effect) since K̄ reveal d
dλ̄
K̄ > 0 and d

dρK̄ < 0 where the inequalities follow from

(14). Its response to an increase in the probability of a “climate emergency” is less intuitive,

however: the sign of d
dpK̄ is ambiguous. Increases in p at small levels of p tend to increase

the threshold K̄ while the opposite is true at high levels of p. The intuition behind this result

is that if the “climate emergency” is a low-probability event, the backstop characteristic of

10The function C(Θ, A |Duncond) is a convex quadratic function in A with first derivative −2(ρ − 1) at

A = Acrit. This is negative due to the benchmark condition (4). This shows that Acrit is the minimizer of

C(Θ = 1, A |Duncond) in [0, Acrit]
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SRM dominates. An increase in the probability in this region strengthens the incentives to

provide SRM irrespective of R&D costs. It would not make sense here to sacrifice too much

in abatement cost but rather provide the option to counteract climate damages if these turn

out to be high. If, however, a certain threshold for p is reached the “climate emergency” is

more prevalent and, in order to minimize expected damages, the current generation draws

larger levels of abatement. But with higher abatement levels, the role for SRM is reduced and

with it, the incentives to pay for R&D. This intuition is reflected in ANoR&D being a concave

function in p with large increases for small p while Acond is convex in p, thus featuring higher

increases for higher levels of the p. The surprising result here is that there is no monotonic

relationship between the severity of the responsive climate and the willingness to develop the

technology. While the incentives to provide the future generation with SRM increase in the

marginal damages λ̄, that is not necessarily the case in terms of increases in the likelihood p

of the “climate emergency”.

4 Strategic distortions

Having established the benchmark equilibrium, we can now study how the rational course

of action is impacted when the current generation anticipates a bias of the future genera-

tion when assessing SRM damages from geoengineering technologies relative to temperature

damages from the carbon stock. In particular, we are interested in the effects on the current

generation’s R&D decision and abatement choice {Θ̂, Â}. In the interest of space, we immedi-

ately proceed to a full characterization of the intergenerational carbon stock and technology

transfer game in β-K-space before providing the analysis that underpins this characteriza-

tion. We then relate this characterization to the question of which of the five conjectures on

current society’s rational course of action survive the consistency test. We find that only some

conjectures pass this test. However, a sixth conjecture that has so far not been discussed in

the literature emerges as a candidate for how current society could rationally approach this

intergenerational decision.

4.1 The full characterization

Figure 2 depicts the subgame perfect equilibria of the intergenerational carbon stock and

technology transfer game in β-K-space. The x-axis is defined by the bias parameter β,

which denotes the degree to which the future generation discounts SRM damages vis-à-vis

temperature damages relative to the current generation. The y-axis is defined by the cost

parameter K, which denotes how much the current generation has to sacrifice to provide the

future generation with SRM technologies. The upper bound of the x-axis, β = 1, refers to

a level of bias at which the future generation attaches no damages to SRM deployment and

therefore compensates temperature damages completely through geoengineering. The upper

bound of the y-axis, K̄, derives from expression (14) of the benchmark case and is the level

of R&D costs at which the current generation is indifferent between providing the technology

12



and not.

The benchmark case can be seen in Figure 2 as the line for which β = 0, the y-axis.

The area to the right of the benchmark consists of four distinct zones. The north-east of

the area is taken up by zone I in which no R&D is provided for the future generation, i.e.

Θ = 0. This zone is associated with a fixed abatement level ANoR&D irrespective of the bias

β because the future generation’s relative valuation of SRM damages is immaterial when

no SRM technology is provided. On the y-axis, the boundary of this zone, KBan, naturally

starts at K̄ for β = 0 (see above) and decreases as β increases. As a result, zone I takes up

an increasing amount of parameter space for higher levels of bias β. The other three zones,

namely zones II, III, and IV, are all associated with the provision of R&D by the current

generation, i.e. Θ = 1, but differ with respect to the abatement levels chosen by the current

and the deployment profiles chosen by the future generation. The boundaries between zones

II and III and zones III and IV are each defined by a critical threshold condition on β and

do not depend on K.

Figure 2: Equilibria in the intergenerational decision problem. The axes are the bias of the

future generation β and the costs of SRM R&D K.

4.2 Equilibria under SRM R&D (Θ = 1)

With these basic features of Figure 2 established, we now proceed to explain how its geometry

depends on the bias parameter β and the cost of R&D, K. To do so, assume for the moment

that R&D is always carried out, i.e. Θ = 1.
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Small bias (zone II) Then, starting from the benchmark case (β = 0), we can analyze

what happens to abatement and deployment as β increases. Recall that in the benchmark

case, equilibrium play consists of abatement of amount Â = Acond by the current gener-

ation and of a conditional deployment profile Dcond by the future generation. Also recall

from section 2.2 that as long as the conditional deployment profile is the future generation’s

best response, the current generation will find it optimal to stick to the benchmark level of

abatement Â even at higher levels of β.

Expression (6) in section 2 defined the conditions under which sticking to the conditional

deployment profile is no longer a best response for the future generation. These conditions

were set by two thresholds regarding the current generation’s abatement, Acrit and Ācrit.

Observe now that both thresholds increase in β. As a result, the abatement level Â that

gave rise to conditional deployment at low levels of β can now give rise to unconditional

deployment as a best response. This is the case if β exceeds some critical value βcrit. The

critical value is the level of β at which Acrit(β) exceeds Â = Acond and is given by

βcrit :=
2(ρ− 1)

(2− p)ρ
. (15)

Formally, the best-response deployment profile follows

D∗(Â, β) =

Dcond 0 ≤ β ≤ βcrit

Duncond βcrit < β ≤ 1 .
(16)

A straightforward implication of (16) and the assumption of an interior equilibrium for the

benchmark case, which is associated with ρ > 1 in equation (11), is the existence of a non-

empty interval of β ∈ [0, βcrit] for which the benchmark solution will be the equilibrium play

despite the presence of a bias. For the geometry of Figure 2, βcrit defines the boundary

between zones II and III and implies that zone II always exists and that equilibrium play

within zone II follows the benchmark case.

Large bias (zone IV) Starting from the opposite end of the interval of bias, as announced

in the beginning of this section, we now examine optimal play for the case of β = 1 when

Θ = 1. Again, from expression (6) and (5) in section 2, it is clear that the future generation

will always deploy SRM in a way to fully offset the temperature damages. Deployment will

therefore be D = 1−A irrespective of λ. The current generation’s best response to this is to

choose abatement level Auncond = ρ
2 because Auncond minimizes the total cost to the current

generation in the face of unconditional deployment in the future, given that R&D is carried

out. This abatement level is strictly greater than that which is optimal under conditional

deployment, which reflects that it is cheaper for the current generation to counteract the

future generation’s “abuse” of SRM technologies through increased abatement, and hence

less SRM deployment. Just as with the benchmark case, the question arises over what

interval of β this equilibrium play persists, now going in the opposite direction (decreasing

β). In the benchmark case, we observed that as long as conditional deployment remained the

best response of the future generation, the current generation did not adjust its abatement.
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The same logic applies here: As long as unconditional deployment remains the best response

of the future generation, the current generation does not deviate from Auncond. How low

can β be for unconditional deployment to remain the best response to Auncond? Broadly

analogously to the previous case, the critical value now is the level of β at which Acrit(β) falls

below Auncond and is given by

β̄ :=
2(ρ− 1)

ρ
. (17)

Casual inspection makes clear that there is always a non-empty interval of β ∈ [β̄, 1] for

which a combination of abatement at Auncond by the current generation and unconditional

deployment by the future generation will be the equilibrium play when Θ = 1. For the

geometry of Figure 2, β̄ defines the boundary between zones IV and III and implies that zone

IV always exists.

Medium bias - abatement as a strategic instrument (zone III) The strategically

subtlest case arises for degrees of bias between the two boundaries βcrit and β̄. This is always

a non-empty interval (except for the degenerate case that p = 1) as is obvious from inspecting

the boundary expressions. Zone III therefore exists. In order to understand equilibrium play

in this interval, recall that βcrit denoted the threshold for values of β above which Acond no

longer induced conditional deployment as a best response and that β̄ denoted the threshold

for values of β below which Auncond no longer induced unconditional deployment as a best re-

sponse. To find the amount for abatement that is both cost-minimizing and subgame-perfect

in this interval, it is helpful to start from the threshold Acrit which separates those abate-

ment levels that induce unconditional (to the left of Acrit) from those that induce conditional

deployment (to the right of Acrit). It should be clear that for unconditional deployment, if

subgame perfection was not a requirement, the cost-minimizing level of abatement Auncond

would lie to the right of Acrit. Subgame perfection in this β-zone, however, requires an

abatement level not above Acrit and thus smaller than Auncond. At Acrit, marginal total costs

are still decreasing. Therefore, Acrit must be the cost-minimizing subgame perfect choice of

abatement if the current generation wants to induce unconditional deployment.

The case of the current generation wanting to induce conditional deployment is a mirror

image of the case above: If subgame perfection was not a requirement, the cost-minimizing

level of abatement Acond would lie to the left of Acrit. However, subgame perfection in this

zone requires an abatement level not below Acrit and thus greater than Acond. At Acrit,

marginal total costs are already increasing. Therefore, Acrit must be the cost-minimizing

subgame perfect choice of abatement if the current generation wants to induce conditional

deployment. Taken together, Acrit is the cost-minimizing subgame perfect choice of abatement

in zone III. At Acrit, the conditional and unconditional deployment profiles become indistin-

guishable because the level of unconditional deployment in the case of carbon-insensitive

climate becomes zero. Note that in contrast to the cost-minimizing subgame perfect abate-

ment levels in zones II and IV which are independent of β, equilibrium play in zone III

features abatement that increases in β.

We now have a complete picture of equilibrium abatement and SRM deployment in zones
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II, III, and IV, i.e. under the assumption that R&D is carried out by the current generation.11

What remains to be shown is under what conditions the provision of R&D indeed constitutes a

rational course of action by the current generation. Given the presence of strategic distortions

in equilibrium play in zones II, III, and IV depending on the degree of the bias β, not providing

SRM technologies in the first place may be the cost-minizing choice. The key determinant of

this decision is the cost of R&D. To this we turn now.

4.3 Equilibrium R&D decision (Θ = 0 vs. Θ = 1)

Recall from above that if no R&D is carried out (Θ = 0), then there is a unique abatement

level ANoR&D chosen by the current generation. The future generation is forced into never

deploying SRM. Therefore, D = 0. The expected total costs from this course of action

are C(Θ = 0, ANoR&D|Dnever). For equilibrium play under Θ = 1 to be selected as the

rational course of action, it needs to feature lower cost than C(Θ = 0, ANoR&D|Dnever) despite

involving R&D cost K. What is required therefore is to compare total expected costs in each

of the zones II, III, and IV with the total expected costs from not carrying out R&D and to

determine the condition on K for R&D still to be provided. The condition that results for

each zone each constitutes a segment of the boundary KBan in Figure 2 that separates the

no-R&D zone I from the three R&D zones II, III, and IV.

We first compare the boundary between zone II and zone I. The costs we have to compare

are C(Θ = 1, Acond|Dcond) and C(Θ = 0, ANoR&D|Dnever). We are looking for a condition

under which no R&D involves lower cost than providing R&D together with abatement of

amount Acond. Simple algebraic operations translate this comparison into a condition on K

of the form

K > KBan
II (β) = K̄ − pρ2

4λ̄2
β2. (18)

The boundary between zone III and zone I involves a comparison of costs C(Θ = 1, Acrit|Dcond),

which are by the definition ofAcrit equal to C(Θ = 1, Acrit|Duncond), and C(Θ = 0, ANoR&D|Dnever).

For no R&D to be cost-minimizing requires that

K > KBan
III (β) = K̄III −

(
p+ (2− p)λ̄2

)
ρ2

4λ̄2
(β − βIII)2 (19)

with βIII = ρ−1
ρ

2λ̄2

2λ̄2−p(λ̄2−1)
and K̄III = K̄ − p(ρ−1)

(2−p)(2λ̄2−p(λ̄2−1))
. It is easy to show that

βIII ∈ [0, βcrit].

The boundary between zone IV and zone I involves a comparison of costs C(Θ = 1, Auncond|Duncond)

and C(Θ = 0, ANoR&D|Dnever). For no R&D to be cost-minimizing requires that

K > KBan
IV (β) = K̄IV −

p+ (1− p)λ̄2

4λ̄2
β2 (20)

11An interested reader might ask how the thresholds that separate zones II, III and IV, βcrit and β̄, depend on

model parameters. We have d
dp
βcrit > 0 and d

dρ
βcrit > 0. Increasing technology damages and likelihood of bad

outcomes thus both expand the first region. The intuition is that both changes lead to a higher benchmark

level Â which is then more robust to deviations in SRM damage assessment β. The second threshold, β̄,

depends only on ρ. The derivative is d
dρ
β̄ > 0 and larger than d

dρ
βcrit because higher SRM damages reduce

its desirability stronger if it is to be always deployed compared to conditional deployment. Thus, increasing

damages of the technology make region IV smaller and enlarge both region II and region III.
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where K̄IV = K̄ + (1−p)(ρ−1)2

2−p .

Note that the segments derived above form a continuous boundary KBan since KBan
II =

KBan
III and KBan

III = KBan
IV at the relevant thresholds βcrit and β̄, respectively. Also note

that KBan varies monotonously in the bias β since d
dβK

Ban
i < 0 for all segments i. This

confirms our earlier intuition that for the same level of R&D costs K, an increase in the

bias β renders not carrying out R&D a relative more attractive course of action because the

strategic distortions between the generations increase in β.12

4.4 Surviving conjectures

In this final substantive section of the paper, we relate the full characterization of the in-

tergenerational carbon stock and technology transfer game back to the conjectures about

the rational course of action for current society that appear in the current literature and

that we reviewed in the introduction. Based on the preceding analysis, it is now possible to

make statements about the degree to which different conjectures can be replicated in a simple

model that captures the four common elements of (i) intergenerational altruism, (ii) possible

pro-SRM bias, (iii) costly abatement and R&D, and (iv) intergenerational transmission of

carbon stocks and technology under uncertainty about the climate system.

We identified five conjectures that share these common elements, yet differ markedly in

their conclusions. One conjecture termed “arming the future” postulates that current soci-

ety will find it rational to provide SRM technologies as a backstop for inadvertent climate

outcomes while providing significant abatement. We were able to replicate this conjecture

without problems and used it as the benchmark case for understanding the strategic distor-

tions introduced by anticipating a bias among the future generation that implicitly favors

the deployment of SRM. By contrast, the “abatement invariance” conjecture, namely that

abatement should be unaffected by the decision to conduct R&D into SRM (Bunzl 2009),

does not pass the consistency check of our model. The common elements that underpin all

conjectures make it almost inevitable that abatement will change as soon as a decision in

favor of SRM is taken since both abatement and SRM address the same problem, but feature

different cost structures. We also fail to find support for the hypothesis that the anticipation

of a large bias among the future generation that favors SRM deployment leads to the current

generation slashing abatement. The reason is that if the current generation cares sufficiently

for the future generation to take abatement action today, then it will also care sufficiently

to take into account the negative side effects of large-scale geoengineering that would result

from slashing abatement.

12An interested reader might again ask how the boundary KBan depends on key model parameter. While

the comparative statics are algebraically messy, we can build on the continuity and monotonicity of the

boundary observed above using a simple trick. This trick involves examining the comparative statics of point

KBan
IV (β = 1), i.e. the point at which the boundary coincides with the upper bound on the bias β. By continuity

and monotonicity, the comparative statics of this point are qualititively the same as the comparative statics

of the entire boundary. The comparative statics are that d
dp
KBan
IV (β = 1) > 0, d

dλ̄
KBan
IV (β = 1) > 0 and

d
dρ
KBan
IV (β = 1) < 0. A greater likelihood or severity of a “climate emergency” increase the relative size of

those zones that involve R&D into SRM while higher SRM damages have the opposite effect.
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On the same grounds that challenge the last two conjectures, the model generates a much

more upbeat view about the link between SRM R&D and abatement in the presence of a bias.

As zone II in Figure 2 illustrates, if the bias is sufficiently weak (β < βcrit), the benchmark

abatement level Â will be maintained in equilibrium. In zone III with βcrit < β ≤ β̄, the bias

is strong enough to render the initial abatement level Â inconsistent with conditional use

by future generation. Anticipating that the technology will be used indiscriminately, current

generation reacts by increasing abatement to the level Acrit(β) at which Dcond and Duncond

merge. The larger the bias β, the larger the necessary increase in abatement in order to

induce the future generation into this specific use of the SRM technology. Finally, in zone

IV (β > β̄), a further increase of β has no additional impact on the abatement level which

remains at Auncond, irrespective of β.

Interestingly, Auncond can be even higher than the technology denial abatement level

ANoR&D. We have

Auncond > ANoR&D if and only if ρ >
2 + 2p(λ̄2 − 1)

2 + p(λ̄2 − 1)
. (21)

This is, of course, only meaningful if this condition does not preclude technology provision

equilibria with Θ = 1. We can actually find equilibria in zone IV that feature “overabatement”

relative to ANoR&D.13 Figure 3 summarizes the abatement level over all equilibria.

Figure 3: Abatement in case of Θ = 1 as a function of the bias β. Whether Auncond is larger

or smaller than the optimal abatement level under no technology provision, ANoR&D, depends

on model parameter.

In addition to this new equilibrium with SRM R&D provision and abatement increases,

Figure 2 captures another consistent conjecture supported by the premises of the model. This

13Even though ρ > 2+2p(λ̄2−1)

2+p(λ̄2−1)
implies that KBan

IV (β = 1) < 0 and thus a higher abatement level Auncond >

ANoR&D will not realize for β = 1, there are equilibria with β < 1. Take, for instance, p = 1
10

, λ̄ = 2 and

ρ = 1.15. This leads to Auncond > ANoR&D; at the same time KBan
IV (β̄) > 0, implying that the proposed

equilibrium with Θ = 1 and A = Auncond > ANoR&D exists in zone IV.
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is that current society will rationally choose not to engage in SRM R&D activities, i.e. a ban

on SRM R&D is another course of action that our model confirms in a robust fashion (zone

I). This course of action becomes particularly relevant for a large anticipated bias and for

high development costs associated with SRM technologies.

We reserve a final comment on the conjecture that investment in SRM R&D will reduce

abatement and thus give rise to “moral hazard”. As we point out in section 3, comparing

abatement levels under positive and no R&D in the benchmark case shows that abatement in

the presence of SRM R&D is smaller. However, rather than constituting a situation where an

economic party is imposing a risk burden on some other party without proper compensation,

this is an efficient decision that reflects a rational readjustment of its abatement efforts by

the current generation.

In sum, our model is able to successfully replicate three out of the five conjectures reviewed

in the introduction. “Arming the future”, a R&D ban, and abatement reductions relative

to a situation with no SRM R&D all constitute courses of action for current society that

a model capturing the common elements among the conjectures can generate as consistent

conclusions. Two conjectures, one postulating ”abatement invariance” with respect to SRM

R&D decisions and one postulating a drastic abatement reduction by current society, cannot

be replicated and appear inconsistent with the basic premises in the literature. At a minimum,

this means that auxiliary hypotheses and assumptions are necessary in order to demonstrate

the consistency of these conjectures. At a maximum, the conclusion is that these conjectures

are erroneous. In addition to the replication test of five existing conjectures, our model also

shows that the same four common elements that underpin these conjectures give rise to a

novel conjecture: It can be a rational course of action of current society to provide more

abatement the higher the degree of anticipated bias. In fact, it is possible for this optimal

abatement level to even exceed the level that society would rationally provide in the absence

of SRM R&D.

5 Concluding discussion

If feasible, human interventions into the Earth’s climate system would represent a novel

method for future generations to limit the damages of the atmospheric carbon stock that

they will inherit from current society. Such interventions, running under the term of ”geo-

engineering” or ”climate engineering”, would create undesirable side effects of their own,

but could conceivably be considered a realistic option. Solar radiation management (SRM)

technologies are considered one of the likeliest forms of geoengineering to be developed and

deployed.

R&D into SRM raises the possibility of passing on to the next generation not just abate-

ment efforts in the form of a carbon stock that is below business-as-usual. In addition, or

instead, the current generation could pass on a technology that can partially remedy the

damages of excessive atmospheric carbon stocks. Natural scientists, philosophers, ethicists,

and other scholars have started to develop several conjectures on how current society should

decide on the right combination of SRM R&D and abatement efforts. By contrast, economists
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have so far not examined the intergenerational issues implicit in this technological possibil-

ity. This is despite the fact that economics has the potential to contribute substantially to

the discussion thanks to its powerful conceptual tools for the analysis of intergenerational

transfers. It is also despite the fact that the issue of intergenerational technology transfers to

address the intergenerational transfer of stock pollution has so far attracted little attention

in economics, in contrast to other types of intergenerational transfers.

The results of the present paper are a first step towards addressing the intergenerational

issues of SRM R&D in the context of climate change. By developing a simple analytical

model that formalizes several common elements in the wider debate about the correct course

of action for the current generation in this intergenerational game, we harness the powers

of game theoretic analysis for the purpose of understanding more about the problem. The

comparison of the diverse conjectures about the rational course of action to develop SRM

capabilities and the attempts to replicate their logic in a tractable model adds rigor to the

debate and allows distinguishing between consistent conjectures and those that require either

auxiliary hypotheses or correction. The same rigor allows us to identify solutions that have so

far escaped attention, such as our finding that abatement may actually be higher when SRM

capabilities are developed, and challenges loose argumentation, such as the claim regarding

the presence of “moral hazard”.

For the economic debate, this paper represents a starting point for considering more sys-

tematically than before how to integrate the development of technological capabilities into

intergenerational models. This integration is far from complete. It also adds to an emerging

literature that examines the potential role of behavioral factors such as hyperbolic discount-

ing, paternalism, and bounded rationality in the context of interactions across generations.

The context of geoengineering provides a conducive and potentially consequential setting for

more research of this type.
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