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Abstract

A well—known result from the theory of finitely repeated games states

that if the stage game has a unique equilibrium, then there is a unique

subgame perfect equilibrium in the finitely repeated game in which the

equilibrium of the stage game is being played in every period. Here I

show that this result does in general not hold anymore if players have

social preferences of the form frequently assumed in the recent litera-

ture, for example in the inequity aversion models of Fehr and Schmidt

(1999) or Bolton and Ockenfels (2000). In fact, repeating the unique

stage game equilibrium may not be a subgame perfect equilibrium at

all.
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1 Introduction

A well—known result from the theory of finitely repeated games states that

if the stage game has a unique equilibrium, then there is a unique subgame

perfect equilibrium in the finitely repeated game in which the equilibrium of

the stage game is being played in every period. This result has been much

used in applied theory, in particular in industrial organization with the most

prominent example being the chain—store paradox of Selten (1980). It is also

frequently being invoked in experimental economics when a stage game is

played amongst the same set of players (partner or fixed matching) for a

finite number of periods.

The purpose of this note is to point out that the result described above

does in general not hold anymore if players have social preferences of the

form frequently assumed in the recent literature, for example in the inequity

aversion models of Fehr and Schmidt (1999) or Bolton and Ockenfels (2000).

In fact, repeating the unique stage game equilibrium may not be a subgame

perfect equilibrium at all in some examples. The logic is simple. In the

standard case of selfish preferences, payoffs are separable across periods in

the sense that the optimal choice in the last period does not depend on

anything that has happened in previous periods. For most models of social

preferences, this no longer holds. What has happened in previous periods

influences the relative payoffs and therefore also the optimal choice in the

last period, which makes it impossible to treat the last period as independent

from the rest of the game.1

2 Examples

Example 1 (Dictator game) As a simple illustration consider the follow-

ing example of a dictator game with three options for the proposer: (0 100)

(40 40), (100 0), where  in ( ) denotes the the amount of money al-

located to the dictator and  denotes the amount of money allocated to

the other player, the recipient. Choose your favorite model of social prefer-

1 In other words, the game is now a stochastic game.
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ences and parametrize it such that the proposer ranks (40 40) Â (100 0) º
(0 100) In all examples in this section, preferences depend on average pay-

offs across periods as is usually assumed in the theory of finitely repeated

games. Assume further that preferences are monotone in the sense that

( ) Â ( ) for   .

Clearly, the unique Nash equilibrium of the stage game is to allocate the

money (40 40). However, in the twice repeated game there are two subgame

perfect equilibria (SPE) that yield the sequence of allocations (100 0) →
(0 100) or (0 100)→ (100 0) respectively. Since (50 50) Â (40 40), repeat-
ing the unique stage game equilibrium twice is not a SPE of the repeated

game.

Example 2 (Ultimatum game) This example shows that the inefficiency

of the outcome with equal payoffs from the previous example is not a nec-

essary condition. Consider a twice repeated ultimatum game, in which the

proposer can make offers of  ∈ [0 100] to the responder. Suppose the re-
sponder is known to be inequity averse as in the Fehr and Schmidt (1999)

model such that he will reject any offer   30. For a proposer, who is

supposed to care only about his own payoff, the unique best reply is to

choose  = 30. Hence, all SPE of the stage game result in  = 30 which

is accepted by the responder. Yet, in the twice repeated ultimatum game,

all offers 1 2 in the two periods with (1 + 2)2 = 30 would be part of a

SPE.

Example 3 (Trust game) Consider a 5 times repeated trust game. The

stage game payoffs of the investor and the trustee are (   ) = (2 0) if the

investor does not invest. If he invests, the trustee can split the pie equally

(4 4) or keep everything for himself (0 8). Suppose players are inequity

averse but not too strongly if it is to their advantage. In particular, suppose

that (2 0) Â (0 8) (16 16) Â (2 0), (16 16) Â ( ) if   16  ,

and ( −  ) Â ( − 0 0) for all  and   0.2 The unique subgame
perfect equilibrium of the stage game entails no investment. Yet, all subgame

perfect equilibria of the 5 times repeated game entail investment in one of

2This would be the case, for example, in the Fehr and Schmidt (1999) model if  in

equation (2) is such that 02    05 for both players.
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the 5 rounds. Suppose there was no investment in the first 4 rounds. By

investing in the last round, the investor can equalize average payoffs to

(16 16) which is preferred by him to (2 0), which would result from not

investing in the last period.

3 Model and main result

In the following I shall consider a (normal form) stage game  = { ()

()},3 where  = 1   is the set of players,  is a set of pure actions

for player  and ( −) is player ’s payoff function given his action and
the action profile of all other players −. An  ∈  := × is referred to

as an outcome of . The finitely repeated game ( ) results when  is

successively played  times and players are informed about the outcome 

after each period .

The crucial assumption is how players evaluate the outcome sequences

() ∈  . The standard assumption in the theory of finitely repeated games

is that player  evaluates () according to his average payoff,

Π :=
1



X
=1

(
) (1)

(cf. Benoit and Krishna, 1985, and Osborne and Rubinstein, 1994).

When applying the theory to social preferences, there are (at least) two

possibilities of how to evaluate payoffs. Given that in finitely repeated games

(and in almost all experiments) the payoffs are paid out to players at the end

of the game, it seems reasonable that players should evaluate an outcome

sequence () based on the profile of average payoffs of all players, (Π).

Assumption 1 Social preferences in a finitely repeated game can be repre-

sented by a utility function (ΠΠ−)

Likewise, one can assume that  depends on the sum of payoffs,
P

=1 (
),

which does not affect the main results. The crucial thing is that payoffs

3With slight modifications the analysis can also be applied to sequential stage games

with a unique SPE.
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for each player are first aggregated over periods and then compared across

players. An alternatively way would be to assume that payoffs are compared

period by period without allowing for compensation across periods. This

assumption is sometimes made for infinite games (see Duffy and Monoz—

Garcia, 2010), however mainly for reasons of tractability. It seems less

reasonable for the case of finitely repeated games. After all, why should a

player fail to consider the payoffs from different periods as substitutes when

in the end all that matters is the average or total payoff over all periods?

Several prominent social preference models can be applied in accordance

with Assumption 1. The inequity aversion model of Fehr and Schmidt (1999)

can be specified as

(ΠΠ−) = Π− 1

− 1
X
 6=
max [Π −Π 0]−

1

− 1
X
 6=
max [Π −Π  0] 

(2)

with 0 ≤   1 and  ≤ .

The model of Bolton and Ockenfels (2000) can be written as

(ΠΠ−) =  (Π )  (3)

where  := Π
P

 Π Bolton and Ockenfels (2000) assume that  is

strictly concave in  and assumes a maximum for given Π if  = 1.

Furthermore, for given ,  is strictly increasing in Π.

Charness and Rabin (2002) assume a payoff function of the form

(ΠΠ−) = (1− )Π + 

⎡⎣min{Π1 Π}+ (1− )
X


Π

⎤⎦


(4)

Finally, models of linear altruism or spite can be written as

(ΠΠ−) =
X


Π  (5)

For selfish preferences, the following result is well known (see e.g. Propo-

sition 157.2 in Osborne and Rubinstein, 1994).4 It is instructive to follow

4As Osborne and Rubinstein (1994, Definition 137.1) point out, the crucial assumption

for the standard result is “weak separability” of preferences.
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the steps of its proof to see why the result breaks down for most forms of so-

cial preferences. Suppose Assumption 1 holds. Suppose further that (· ·)
is a linear mapping and hence

(ΠΠ−) = 

Ã
1



X
=1

(
)
1



X
=1

−()

!

=
1



X
=1

((
) −()) (6)

Obviously, (6) is satisfied if  is given by (1) or (5) but not if it is given

by (2), (3), or (4). This is the reason why for most of the popular social

preference models the following proposition does not hold.

Proposition 1 Suppose payoffs in ( ) are evaluated by a utility function

(ΠΠ−) that satisfies (6). If the strategic game  has a unique Nash

equilibrium payoff profile, then for any value of  the action profile chosen

after any history in any subgame perfect equilibrium of ( ) is a Nash

equilibrium of .

Proof. Consider the optimal action in period  . If (6) holds, then

argmax


(ΠΠ−) = argmax


1



X
=1

((
) −())

= argmax


((
 ) −( ))

The optimization problem in the second line is the same as the one in the

stage game. This implies that players’ payoffs in  are independent of

the history of play. Thus, in all subgames of ( ) starting in period  , the

outcome is a Nash equilibrium of . Therefore, also in all subgames starting

in period  − 1, the outcome is a Nash equilibrium of . The result follows

then by induction. ¤

If (· ·) is non—linear (e.g. because of the strict concavity with respect to
 in the model of Bolton and Ockenfels, 2000, or the max—operators in the

model of Fehr and Schmidt, 1999), the naive application of the backward—

induction argument fails.
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Thus, when applying social preference models to finitely repeated games,

care has to be taken. It will depend on the specifics of the game whether

the —fold repetition of the unique stage game equilibrium is still a SPE of

the repeated game. Uniqueness of SPE will in general be lost.
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