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Abstract

Incentives often fail in inducing economic agents to engage in a de-
sirable activity; implementability is restricted. What restricts imple-
mentability? When does re-organization help to overcome this re-
striction? This paper shows that any restriction of implementability
is caused by an identification problem. It also describes organizations
that can solve this identification problem and provides conditions un-
der which such organisations exist. Applying the findings to estab-
lished and new moral hazard models yields insights into optimal orga-
nization design, uncovers the reason why certain organization designs,
such as advocacy or specialization, overcome restricted implementabil-
ity, and formalizes a wide-spread type of multi-tasking problem.
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Arguably, one of the most important roles of a manager (be it in the private
or public sector) is to ensure that production occurs in a desired manner and
that policies are implemented as intended. To this end, the manager relies
on agents (employees, public servants, production units, departments) who
take decisions, e.g., on how much to work or on what input to use. Typically,
agents’ activities cannot be observed directly but have to be deduced from
signals, which may be manipulated, influenced by others, or affected by fac-
tors beyond agents’ control. These signals can be used to provide incentives
and influence the activity. In numerous examples, however, the imperfect
nature of signals means that incentives cannot induce the desired activity.1

Anecdotal evidence as well as theoretical models suggest that in these
cases organization design, in particular the partition of tasks amongst agents,
can help to obtain those activities.2 A prominent example is Dewatripont and
Tirole’s advocates model (1999). In this model, two tasks conflict: exerting
effort to find incriminating evidence increases the probability of conviction
while searching for exonerating evidence reduces it. A single investigator
cannot be motivated to do both, but with advocates, this becomes possible.
The effect of organization is usually attributed to the conflicting nature of
tasks (see e.g. Dewatripont, Jewitt, and Tirole, 2000). However, Ratto and
Schnedler (2008) provide an example in which tasks do not conflict: the
stability of a computer program increases with programming and debugging
effort. Only the program’s stability is observable but the manager prefers if
stability is achieved by better programming rather than by a lot of debugging,
e.g., because this facilitates maintenance at a later stage. With a single agent,
who prefers debugging, the desired emphasis on programming cannot be
induced. With two specialists, a programmer and a debugger, any activity
can be implemented. Task conflict is thus not necessary for organization
design to overcome restricted implementability and induce desired activities.
So what restricts implementability? When does organization design help to
overcome this restriction, and if so, how?

The main finding is the following. Restricted implementability is driven
by a specific signal imperfection, which is best described by adapting an idea

1A classical example is AT&T, who paid programmers by the number of code lines to
increase productivity but only obtained longer code. Similar examples can be found in
the survey articles on incentives by Gibbons (1998) and Prendergast (1999).

2For example, Ciba Vision achieved its goal to generate more innovative products
by separating research for new contact lens products from research to improve existing
products (see “The Ambidextrous Organization” by O’Reilly and Thushman in Harvard
Business Review April 2004).
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from econometrics: any activity choice can be implemented if and only if
agents’ choices are (conditionally) identified. The relevant notion of identifi-
cation is considerably weaker than that in econometrics. It is not necessary
to deduce the whole activity from signals, rather it suffices that each agent’s
behavior could theoretically be inferred if the behavior of other agents were
known.

Organization designs such as Dewatripont and Tirole’s advocacy can over-
come restricted implementability precisely because this weaker form of iden-
tification suffices. To see why, re-consider the program stability example. A
single employee can produce a given stability in many ways. He will select
the for him cheapest way, which is not necessarily the one desired by the
manager. Accordingly, implementability is restricted. Now take two special-
ists, a programmer and a debugger, and suppose that the debugger engages
in the desired amount of debugging. Then, the programmer can only produce
a given stability in one specific way. In particular, the stability associated
with the desired choices can only be generated if the programmer exerts the
desired programming effort. The programmer’s activity can be deduced from
the stability given the debugger’s choice and vice versa. Both agents’ activity
is (conditionally) identified. As a result, it becomes possible to attach incen-
tives to stability outcomes such that the desired effort is the programmer’s
best response if the debugger carries out the desired amount of debugging.
For example, the programmer’s marginal rewards can be adjusted such that
they equal his marginal costs if and only if he exerts the desired effort. Simi-
larly, one can ensure that the desired amount of debugging is a best response
to the desired programming effort. As a result, desired activity choices form
a Nash equilibrium.

The main result is based on two propositions that are interesting in their
own right. First, an activity can be implemented if and only if the activity’s
marginal effect on agent’s costs are a linear combination of that on signals
(Proposition 1). This characterization extends results by Hermalin and Katz
(1991), Feltham and Xie (1994) and Corts (2007). Interestingly, details of
either the signal distribution or the agents’ preferences, such as their degree
of risk-aversion, are irrelevant.

Second, activities are identified if and only if each agent faces at least as
many independent signals as tasks (Proposition 2). This simple characteri-
zation implies that re-organization can overcome restrictions on implementa-
tion whenever the underlying identification problem is caused by agents who
decide on more than one dimension of the activity (Proposition 3). In other
words, the identification problem and with it the restricted implementabil-
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ity must be caused by multi-tasking. As will become clear, this type of
multi-tasking problem is very different from that described by Holmström
and Milgrom (1991) in their classical article. The paper also provides simple
conditions for when multi-tasking causes identification problems (Proposi-
tion 4, 5 and 6).

The next section introduces the class of moral hazard (or hidden action)
models to which results apply and formally defines implementability and
identification. Section 2 then presents the main result, namely that any ac-
tivity can be implemented if and only if it is identified. Section 3 provides
conditions when organization designs can overcome identification problems
and hence restricted implementability. Section 4 applies the findings to es-
tablished and new moral-hazard models. Section 5 explains how the findings
extend and complement the existing literature and Section 6 concludes.

1 Framework

This section introduces a general analytical framework and definitions to dis-
cuss implementability and identification.

Activity and partition. Take a generic non-contractible activity that should
be implemented for some exogenous reason. The activity involves n tasks
i ∈ N := {1, . . . , n} for each of which there is a choice to be made a =
(a1, . . . , an), where the choices are from some open and convex set A ⊆ Rn.
Let P be some partition (disjoint decomposition) of the set of tasks N and
label the elements of P by l = 1, . . . ,m. These elements, N l ∈ P , represent
the set of tasks for which the choices {ai}i∈N l are determined by the same
agent l. Denote agent l’s choice vector by al. Observe that tasks can always
be re-labeled such that the first |N l| tasks belong to agent l. So, a = (al, a−l),
where a−l are the choices by other agents.

Agents’ utility. Given activity a, agent l incurs costs cl(a), where cl : Rn → R
is twice continuously differentiable and strictly convex. Since the meaning of
agent l changes with the task partition, agents’ costs are allowed to change
with the task partition. Agents can be rewarded in some form. For sim-
plicity, let rewards be monetary and denote any payments to agent l by wl.
Overall, agent l’s utility is strictly increasing in payments wl and decreasing
in costs: ul(wl, cl), where ul is twice continuously differentiable and jointly
concave in wl and cl. Denote agent l’s outside option by ul. Since any desired
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marginal effect of the activity on the utility can be modeled by adjusting cl,
it is without loss of generality to assume that the marginal effect of costs on
the utility is bounded: 0 > ∂ul

∂cl
≥ −1.

Signal structure. The signal structure S encompasses three objects: a vector-
valued function, S = (S1, . . . , Sk), that represents k signals, a vector-valued
function, µ = (µ1, . . . , µk), that reflects the activity’s effect on signals, and
continuously distributed random variables ε = (ε1, . . . , εk) with cumulative
distribution function, Fε, that describe influences beyond agents’ control.
Signal Sj is a (measurable) function of the realizations ej of εj and the real-
valued parameter, µj :

Sj : R2 → R
(µj, ej) 7→ Sj(µj, ej).

Sj(µj, εj) is a random variable with realizations sj = Sj(µj, ej); this random
variable is assumed to be almost everywhere twice continuously differentiable
and have constant support in µj. The parameter µj itself is a twice continu-
ously differentiable and concave function of the activity a:

µj : Rn → R
a 7→ µj(a).

Normalize signals to stochastically increase in µj, i.e., Sj(µj, εj) first-order
stochastically dominates Sj(µ

′
j, εj) for µj > µ′j. This is without loss of gen-

erality because any desired effect of activities on the signal can be modeled
using the relationship between a and µj. In particular, µj could fall in ai. In
addition, assume that Sj(µj, ej) is concave in µj for almost all ej.

3

Incentives. Agents’ utility and the signal structure are assumed to be com-
mon knowledge. So, the mechanism designer can influence agents’ activ-
ity by tying rewards to signals—either formally or in a self-enforcing man-
ner. For simplicity, assume that signals are verifiable and wl is a real-
valued (measurable) function wl : Rk → R, that assigns a payment to
agent l, wl(s), for each realization s = (s1, . . . , sk) of the random vector

3Jewitt (1988) shows that requiring concavity is milder than the assumption that the
cumulative distribution function be convex in the parameter, which is typically evoked in
moral-hazard models (see e.g. Rogerson 1985). In a recent contribution, Conlon (2009)
discusses and extends Jewitt’s results.
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Figure 1: Sequence of Events.

S = (S1, . . . , Sk). A specific case are payments that are linear in realizations:
wl(s) = wl0 + wl1s1 + . . .+ wlksk.

Separability of activities from noise and payments. A restriction imposed by
this framework is that agent l’s utility as well as the signal do not directly
depend on the activity vector, a, but indirectly via the one-dimensional cost
function, cl, and parameter functions, µj, respectively. This precludes that
components of the activity vector interact individually with payments in the
utility function, e.g., ul(w, a) =

√
w
a1
− a2, and individual interactions with

the noise term, e.g., S1(a, ε1) = a1 + a2 · ε1. However, it does not rule out
that marginal effects of activities are random, e.g., S1(µ1(a), ε1) = µ1(a) · ε1.
The separability allows us later to determine the marginal effect on agents’
expected utility with the chain rule. Apart from this restriction, which is met
by utility and signal functions in most moral-hazard models,4 the setting
is relatively flexible. For example, it allows for costs to change with the
partition, for discretely distributed signals, and for the agents’ choices to be
simultaneous or sequential —this generality proves useful for applications,
later.

Figure 1 gives an overview of the main elements of the model and the
sequence of events. Once incentives are determined, agents l = 1, . . . ,m play
a game5 and activities are implementable if they form a Nash-equilibrium of
this game.

Definition 1 (Implementability). Given a signal structure S and a par-
tition P, an activity choice a = (a1, . . . , an) is implementable if there are
payments {wl}l=1,...,m such that the activity is a Nash equilibrium.

Although inducing an activity is not an inference problem, one can ask
whether it is possible to recover the activity from the signal distribution.
Since the parameter vector, µ(a), uniquely determines this distribution, pa-
rameters can be inferred from sufficiently many (possibly infinitely many)

4The only exception I am aware of is the specific knowledge model by Raith (2008).
5Whether moves in this game are sequential or simultanous is immaterial for the later

argument.
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signal realizations. The question then boils down to whether activity choices
a can be deduced from parameters µ(a).

Definition 2 (Identification problem). Given partition P and holding con-
stant the activity of other agents, the activity of agent l is not identified if
two distinct choices by this agent lead to the same signal distribution:

al 6= ãl but µ(al, a−l) = µ(ãl, a−l) for some a−l.

There is an identification problem if some agent’s activity is not identified.

Identification is defined entirely in terms of the parameter vector, µ; the
stochastic part plays no role. In particular, identification is not affected
by the interdependence of errors, e.g., the variance-covariance matrix of the
error vector ε. Moreover, identification imposes no restrictions on the inter-
action between different tasks—neither in the agents’ cost function nor in the
production of signals. All that matters is that there is an injective mapping
from each agent’s decision al to µ conditional on a−l.

The next section examines the link between implementability and identi-
fication.

2 Implementability and Identification

The central aim of this section is to prove that implementability is limited if
and only if there is an identification problem. For this proof, it is helpful to
first characterize which activities are implementable (Proposition 1). Given
this characterization, limited implementability can be traced back to the
rank of the marginal effect matrix Dalµ(a) (Corollary 2). On the other
hand, identification problems are also related to this rank (Proposition 2).
Combining both results yields that implementability is restricted if and only
if there is an identification problem.

Given some partition, signal structure and incentives, each agent l chooses
activity al such that it maximizes his expected utility given a−l :

al ∈ argmaxãl∈AEε

[
ul
(
wl
(
S
(
µ(ãl, a−l), ε

))
, cl(ãl, a−l)

)]
. (1)

For an inner maximizer to this problem, the first-order conditions must hold.
Using the separability assumption and the chain rule, the marginal effect of
activities on the expected gains can be decomposed into two factors: the
parameter’s marginal effect on the expected value and that of the activity on
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the parameter. The same holds for the activity’s marginal effect on costs, so
that first-order conditions become:

DµEε

[
ul(wl(S(µ, ε)), cl)

]
·Dalµ(a)

= − d

dcl
Eε

[
ul(wl(S(µ, ε)), cl)

]
·Dalc

l(a). (2)

These first-order conditions imply a simple necessary condition. For each
agent, some linear combination of his activities’ marginal effect on signals
must be equal to that on costs—see Lemma 1 in Appendix B. It is noteworthy
that this condition is independent of agents’ utility functions and hence does
not depend on their degree of risk aversion, the interaction between payments
and activity costs, etc. More interestingly, the condition is not only necessary
but also sufficient.

Proposition 1 (Implementable activities). Given signal structure S and
partition P, activity å can be implemented if and only if for each agent,
some linear combination of his activities’ marginal effect on signals equal
that on costs given å:

λl Dalµ(a)|a=å = Dalc
l(a)
∣∣
a=å

with some λl ∈ Rk for all l. (3)

The proof uses linear payments: wl(s) = wl0 + wl1s1 + . . .+ wlksk and can be
found with the proofs for all other results in Appendix A. The intuition is
that the marginal gains to each agent can be set equal to marginal costs using
the wage rates wlj. The difficulty in the proof is that adjusting wlj may affect
agent l’s marginal utility because he becomes richer (or poorer). This can be
avoided by selecting a base wage w0 dependent on wlj such that the agent’s
participation constraint binds. Then, his expected utility is constant and
his marginal utility from payments is bounded away from zero. Repeating
this exercise for all agents, yields that their first order conditions are only
met at the desired activity. By showing that agents’ utility is concave when
payments are linear, the first-order conditions are not only necessary but also
sufficient, and the activity indeed maximizes agents’ expected utility.

Proposition 1 offers a general characterization of implementable activities
for a given task partition amongst several agents. It emphasizes the funda-
mentals that matter for implementability: the marginal effects of activities
on signals, Dalµ(a), and costs, Dalc

l(a). Apart from the assumption that the
agents’ problems be concave, very little restrictions are placed on µ(a) and
cl(a). In particular, it does not matter whether tasks are conflicting in signal
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generation or whether marginal costs of one task increase in the choice at

another task, i.e., ∂2cl(a)
∂ai∂ai′

> 0. Since the proof uses linear payments to show

that condition (3) suffices for implementation, we immediately obtain the
following corollary.

Corollary 1. Any activity å that can be implemented can also be imple-
mented with linear payments.

The corollary shows that imposing linearity when trying to find out which
activities are implementable is without loss of generality. It thus justifies the
approach by Feltham and Xie (1994) and Corts (2007) of restricting attention
to linear payments when examining implementation.

Proposition 1 is also helpful from a technical point of view because it
reduces the question of implementability to that of the existence of a solution
to a linear equation system. This means that standard results from linear
algebra can be used to check for implementability. For example, the result
that a linear equation system has a solution if the rank of the extended
coefficient matrix is equal to the rank of the coefficient matrix itself yields
the following corollary.

Corollary 2 (Rank characterization for implementable activities). Given
signal structure S and partition P, activity å is implementable if and only if
for all agents, marginal costs are in the row-space of the matrix describing
their marginal effects on signals:

rank (Dalµ(a))

∣∣∣∣
a=å

= rank

(
Dalµ(a)
Dalc

l(a)

) ∣∣∣∣
a=å

for all l. (4)

This characterization of implementable activities is useful because it ex-
presses implementability using the rank of the marginal effect matrix, Dalµ(a).
As the next proposition shows, the same rank also matters for identification.

Proposition 2 (Identification and signal independence). Given signal struc-
ture S and partition P, agents’ activity is not identified if and only if some
agent l faces less independent signals than tasks:

rank (Dalµ(a)) < |N l| for some l and a.

The intuition for the result is the following. Suppose there are less inde-
pendent signals than tasks for some agent or more formally that the rank
of the marginal effect matrix is not large enough for some choice a. Then,
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there is a direction in which a change of the agent’s decision does not affect
the parameter vector. Choices along this direction can hence not be identi-
fied and the mechanism designer faces an identification problem. Conversely,
having sufficiently many independent signals, i.e., a sufficiently large rank
of the marginal effect matrix, means that any direction leads to a different
parameter vector, so that the agent’s activity is identified.

The rank condition is somewhat weaker than invertibility of the agents’
marginal effect matrix. Invertibility would in addition require that the ma-
trix is quadratic, i.e., the number of signals would have to be the same as the
number of tasks. The proposition can also be re-interpreted as a characteri-
zation of organization designs that are free from identification problems. In
the next section, this interpretation is used to derive necessary and sufficient
conditions for organization designs to solve identification problems.

Using that implementation and identification depend on the rank of the
same matrix yields the following central result.

Theorem 1 (Implementability and identification). Given signal structure S
and partition P, implementability is limited if and only if there is an identi-
fication problem.

The logic of the proof is the following. Whenever there is no identification
problem, there are at least as many independent signals as tasks for all agents
and activities by Proposition 2. The central step in the proof is to show that
this is fulfilled whenever the rank condition (4) in Corollary 2 holds.

The proof is indirectly based on Proposition 1, which uses linear pay-
ments. Linear payments are problematic in the canonical hidden-action
model with limited liability and a risk-neutral agent, i.e., ul(wl, cl) = wl − cl
with the additional restriction wl ≥ 0, because linearity implies that the
agent may lose money for some (possibly rare) signal realizations.6 Still,
identification also leads to implementability in this setting. Since activities
are identified, there are signal realizations which are most likely when each
agent selects the desired choice; tying a finite bonus to these realizations then
induces the desired activity (see Proposition 7 in Appendix C).

The theorem pins down the signal imperfection that hampers imple-
mentability: the lack of identification. Interestingly, only the signal struc-
ture matters for implementability and not, for example, agents’ preferences.
Moreover, it is only the systematic effect of the activity on signals that mat-
ters and not the distribution of the error terms.

6For a textbook treatment see, for example, Macho-Stadler and Perez-Castrillo (1997).
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The theorem suggests looking at limited implementability through the
lens of an inference problem. While this analogy is helpful, it is not entirely
correct. If the activity is identified according to Definition 2, an econome-
trician needs a sufficient number of independent realizations s of the signal
vector S to deduce activity al from signals (possibly infinitely many). More-
over, the econometrician has to know the choices of the other agents a−l. On
the other hand, knowing choices a−l is not required and only one realization
of S suffices in order to induce the desired activity. The reason is that condi-
tioning payments on this realization provides the correct marginal gains and
hence ex-ante incentives for agents to engage in this activity, i.e., to choose
the desired å. Given these incentives, the mechanism designer knows that
agents choose correctly and there is no need to deduce choices from signals.

3 Identification by Organization Design

The previous section has shown that implementability is limited whenever
there are identification problems. Moreover, Proposition 2 introduced a sim-
ple characterization for organization designs that are free of such problems.
Building on this proposition, the present section provides general condi-
tions under which organization design can overcome identification problems
(Proposition 3 and Proposition 4) and more specific conditions on the number
of agents, independent signals, and tasks (Proposition 5 and Proposition 6).
The next proposition links multi-tasking to the question whether organiza-
tion design can solve identification problems.

Proposition 3 (Identification problems, organization design, and multi–
tasking). Given signal structure S, identification problems can be solved by
some organization design P if and only if they are caused by an agent who
carries out more than one task (multi-tasking).

The finest partition {{1}, . . . , {n}}, i.e., assigning a different agent to each
task, is an example of an organization design. If the problem is caused by
multi-tasking, this partition solves the problem. Conversely, an identification
problem that can be solved by some partition can also be alleviated with the
finest partition. The intuitive reason is that the finest partition leaves agents
less scope to generate signals than any other partition (the formal proof is
with all other proofs in Appendix A). With Proposition 3, it becomes simple
to determine whether identification by organization design is possible: we
only need to check whether the finest partition can solve the identification
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problem. This insight allows us to characterize when organization design
helps with identification.

Proposition 4 (Identification by organization design). Given signal struc-
ture S, some organization design P solves any identification problems if and
only if different choices at some task i lead to different signal distributions
(holding constant the choices at all other tasks):

for all i and ai 6= ãi : µ(a1, . . . , ai, . . . , an) 6= µ(a1, . . . , ãi, . . . , an).

For the proof, recall that by Proposition 3, it suffices to examine whether the
finest partition solves an identification problem in order to know whether
identification by organization design is possible. Given that each task is
carried out by a different agent, identification boils down to the condition
that the parameter is affected by each ai when other choices remain the same.
Re-phrasing the proposition, identification by organization design works if
the parameter vector is an injective function of each decision ai for given
constant choices at all other tasks. Notice that conditional injectivity is
sufficient. In particular, µ does not have to be injective in a. It may thus
be impossible to infer a from signals and still organization design overcomes
the identification problem–as seen in the program stability example in the
introduction.

According to Proposition 3, organization design can only overcome iden-
tification problems if they are caused by multi-tasking. Also, we know from
Proposition 2 that entirely eliminating multi-tasking is not necessary to over-
come identification problems: an agent may well carry out more than one
task if there are sufficiently many independent signals. The rest of this sec-
tion provides necessary and sufficient conditions on the number of workers,
independent signals and tasks such that identification problems can be alle-
viated.

Proposition 5 (Necessary condition). Given signal structure S, identifica-
tion problems can only be alleviated by some partition P if the total number
of independent signals, k̃, exceeds the average number of tasks per agent:

k̃ ≥ n

m
,

where k̃ := mina rank(Daµ(a)).

The result is based on Proposition 2. The number of independent signals
for some agent l can at most be the overall number of independent signals,
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k̃. If an agent is assigned more tasks than the total number of independent
signals, this will lead to an identification problem. The maximal number of
tasks that can possibly be assigned to each agent is thus k̃. With m agents,
the maximal possible number of tasks that may still lead to identification
(and implementability) is hence m · k̃.

While the condition in the proposition is necessary, it is not sufficient. As
a counter-example, consider a situation in which four tasks affect two signals
but only the second reflects the fourth task: Sj(µj, εj) = µj + εj for j = 1, 2
with µ1 = a1 + a2 + a3 and µ2 = a1 + a2 + a3 + a4. Then, the marginal effect
matrix is:

Da(µ(a)) =

(
1 1 1 0
1 1 1 1

)
.

The minimum rank of the matrix is two because the two rows are lin-
early independent. With two agents, the average number of tasks per
agent is likewise two and the necessary condition in Proposition 5 is met:
k̃ = 2 = 4/2 = n/m. Still, the identification problem cannot be eliminated by
any partition among the two agents. Consider the first three tasks {1, 2, 3}.
At least two of these tasks have to be carried out by the same agent l. For
this agent, rank(Dalµ(a)) = 1 while he carries out two tasks. By Propo-
sition 2, there is thus an identification problem and the condition that the
average number of tasks per agent must be larger than the total number of
independent signals is necessary but not sufficient. A sufficient condition is
given in the next result.

Proposition 6 (Sufficient condition). Given signal structure S and an iden-
tification problem that is caused by multi-tasking, the identification problem
can be alleviated by some partition P if the number of agents and independent
signals strictly exceeds the number of tasks:

m+ k̃ > n,

where k̃ := mina rank(Daµ(a)).

The intuition behind this result is the following. With a total number of k̃
independent signals, k̃ tasks can be carried out by one agent without causing
an identification problem. To guarantee that the remaining n − k̃ tasks are
not resulting in such a problem, they have to be assigned to n − k̃ agents.
Thus, n− k̃ + 1 agents are sufficient to avoid the identification problem.

The condition, m + k̃ > n, is sufficient but not necessary. To see this,
suppose again that there are four tasks but that each task only affects one

13



of two signals: Sj(µj, εj) = µj + εj with µ1(a) = a1 + a3 and µ2(a) = a2 + a4

The marginal effect matrix is:

Da(µ(a)) =

(
1 0 1 0
0 1 0 1

)
,

so that k = k̃ = 2. At the same time, there are two agents, m = 2, so
that m + k̃ = 4, which is not strictly larger than the number of tasks, n =
4. However with partition {{1, 2}, {3, 4}}, each agent has two independent
signals and activities are identified because each agent carries out only two
tasks.

4 Applications

This section exploits the generality of the framework and applies the results
to established and new moral-hazard models in order to derive insights into
identification and implementability in these models.

4.1 Advocates, Specialists, and Joint Accountability

Three contributions that particularly emphasize the beneficial effects of or-
ganization design on implementation are the advocates model (Dewatripont
and Tirole, 1999), the specialization model (Ratto and Schnedler, 2008),7

and the accountability model (Corts, 2007). These models differ in various
dimensions (e.g., number and character of tasks, number of signals, flexibil-
ity of number of agents). Despite these differences, results are driven by the
same fundamental principle: identification by organization design.

All three contributions start out with an organization structure that is
plagued by an identification problem (single investigator, single worker, in-
dividual accountability) and limited implementability. Moreover, signals are
injective in activity choices at all tasks, so that these identification prob-
lems are caused by multi-tasking (by Proposition 4) and can be overcome by
organization design (Proposition 3). The proposed alternative organization
designs (advocacy, specialization, joint accountability) exploit this opportu-
nity by increasing the number of independent signals relative to the number
of tasks, so that activity choices become identified (by Proposition 2) and
implementability is no longer limited (by Theorem 1).

7Inderst and Ottaviani (2009) discuss an application similar to Ratto and Schnedler
(2008) in which specialization overcomes restricted implementability.
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In all three contributions, identification involves moving from a situation
in which each signal is determined by only one agent to one in which multiple
agents affect the same signal. This suggests that identification comes at the
price of joint instead of individual accountability.8 This, however, is not
the case. Even if agents are already jointly accountable to begin with, re-
organization may lead to identification.

In order to see this, consider the following variation of the program sta-
bility example. Suppose that in addition to programming effort, a1, and
debugging effort, a2, there is also sales effort, a3. The stability of the pro-
gram, µ1, which positively depends on the first two efforts, can be measured
in form of some signal, say, a test run S1 that may be successful or not. In
addition, the client’s inclination to buy the product, µ2, increases with the
program’s stability µ1 as well as sales effort and leads to a sales signal, S2,
which reflects whether the client buys the program or not.

First, take the following task assignment: a production agent is respon-
sible for (a1, a2) and a sales agent decides on a3. With this assignment, both
agents are jointly responsible for the sales signal, i.e., they both determine
the distribution of signals.9

Now consider a different partition of tasks, where one agent is responsi-
ble for programming only, while the other chooses debugging and sales effort
(a2, a3). Both agents affect both signals and are hence jointly responsible. On
the other hand, the new partition exhibits no identification problem. Given
programming effort a1, the signal distributions, parameterized by (µ1, µ2),
reflect any change in debugging and sales effort and vice versa. Thus chang-
ing from one partition to the other yields identification and unrestricted
implementation—although the former does not involve individual account-
ability. The introduction of joint accountability is hence not a necessary
condition for identification.

4.2 Complementarities versus Control

Although fine partitions of tasks facilitate identification and thus give man-
agers better control, real production typically involves task bundling. Per-

8While joint accountability has a smack of a free-rider problem, such problems are
absent from all three models because the principal acts as a budget breaker–see Holmström
(1982).

9Enriching the model with respective assumptions on risk-aversion and signals, both
agents are optimally paid on the basis of both signals given this task assignment and hence
their pay depends on the other agents’ activity.
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haps the main reason for task bundling are complementarities, either for
technical reasons or because agents like variety.10 The gains from comple-
mentarities then need to be traded off against the gains from control. Ar-
guably, optimal organization design results from this fundamental trade-off
and is hence driven by two parameters: (i) the degree of complementarity
and (ii) the importance of influencing activity choices. In the following, this
argument is formalized in a simple model, which is another variation of the
(two-task) program stability example from the introduction.

Suppose programming and debugging exhibit complementarities and that
the gains of complementarities only manifest if both tasks are carried out by

the same agent. Let costs amount to cB(a) =
a2
1+a2

2−γa1a2

2
if tasks are bundled

and to cj(a) =
a2
j

2
if each task j = 1, 2 is carried out by a different agent j,

so that γ ∈ [0, 2) describes the extent of complementarities. Standardize the
agents’ outside option to zero. The only observable variable is the program’s
stability, µ. For simplicity, let µ be linear in both efforts: µ(a) = a1 + a2. In
order to model the importance of control, assume that the principal’s utility
is not only determined by stability but that she has a larger benefit from
programming: uP (a) = µ(a) + δa1 − w, where w stands for any wages paid
to agents and δ ≥ 0 captures the degree to which control matters to the
principal.

The following analysis proceeds in three steps. First, the optimal contract
and maximal surplus under task bundling is determined. Second, the same
is done for task separation. Finally, surpluses are compared to show that
bundling is optimal whenever the principal wants to influence the agent’s
decision (large δ) and gains from complementarity are limited (small γ). In
the analysis, attention is restricted to linear contracts. This is without loss of
generality because the only friction in the model is that some activities may
not be implementable and linear contracts suffice to overcome this friction
(see Corollary 1).

Task bundling leads to an identification problem because the first agent
faces two tasks but only one signal (by Proposition 2) and implementability
is restricted (by Theorem 1). The principal’s program is:

max
w0,w1

(1 + δ)a1 + a2 − w0 − w1(a1 + a2)

such that (a1, a2) ∈ arg max
ã
w0 + w1(ã1 + ã2)− cB(ã) (IC)

and w0 + w1(a1 + a2)− cB(a) = 0. (PC)

10Other reasons could be insurance or hiring costs (see e.g. Corts, 2007).
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The incentive constraint (IC) boils down to the implementability condition
from Proposition 1:

w1D(a1,a2)µ(a) = D(a1,a2)c
B(a) or w1(1, 1) = (a1 −

γ

2
a2, a2 −

γ

2
a1).

Eliminating w1 in this equation system yields that only identical choices on
both tasks are implementable, i.e., a1 = a2. Plugging this condition as well
as the participation constraint (PC) into the maximization program yields

max
a1

(1 + δ)a1 + a1 −
a2

1 + a2
1 − γa1a1

2
. (5)

From this, the optimal activity choices under task bundling can be computed
to be aB

1 = aB
2 = 2+δ

2−γ . The respective surplus is

πB :=
1

2

(2 + δ)2

(2− γ)
.

Task separation leads to conditionally identified activities because each agent
faces as many independent signals as tasks (by Proposition 2) and imple-
mentability is unrestricted (by Theorem 1). Plugging in the participation
constraints, we get the following maximization program:

max
a1,a2

(1 + δ)a1 + a2 −
a2

1

2
− a2

2

2
(6)

This program leads to the optimal activity choices: aS
1 = (1 + δ) and aS

2 = 1,
which yields a surplus of

πS :=
(1 + δ)2

2
+

1

2
.

The analysis implies that task separation is optimal whenever

πS > πB or
(1 + δ)2 + 1

(2 + δ)2
>

1

2− γ
.

The left-hand side increases in δ and the right-hand side in γ. So, sepa-
rating tasks becomes relatively more attractive if control is important and
complementarities are small.
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4.3 Implementability in Single-Task Models

In the pioneering works on the moral-hazard model by Holmström (1979,
1982) and Shavell (1979) and many ensuing contributions, the agent faces
only one decision: how much effort, a ∈ R, to exert. The focus of this litera-
ture is not on implementability but on the trade-off between incentives and
insurance. The results from the present paper provide an explanation why
this might be the case: in these models, any activity can be implemented.11

The intuition as to why any activity choice can be implemented is the
following. More effort is assumed to stochastically increase output Y in the
sense of first-order stochastic dominance: Ga(y) > Gã(y) for ã > a, where
Ga(y) is the cumulative distribution function of Y given a. This so-called Mir-
rlees representation can to be transformed to the state-space representation
used here12 by setting µ(a) = a for all a and an appropriate choice of Sj and
εj (see Lemma 6 in Appendix C). The parameter µ is thus injective in the
one-dimensional activity, so that the activity is identified (by Propositions 2
and 4) and implementation is not limited (by Theorem 1).

4.4 Multi-Tasking Problems

Corts (2007) claims that in large parts of Holmström and Milgrom’s seminal
paper on multi-tasking (1991) “there is no multi-task problem.” This sec-
tion clarifies, supports and extends Corts’ claim: Holmström and Milgrom’s
article features no identification problem that is caused by the fact that one
agent carries out more than one task. This observation seems to contradict
that Holmström and Milgrom’s article is known for having provided the first
formal analysis of multi-tasking problems. The seeming contradiction results
from the fact that the term ‘multi-tasking problem’ refers to two very dif-
ferent phenomena. On the one hand, multi-tasking can negatively affect the
trade-off between insurance and incentives,13 which is the problem described
by Holmström and Milgrom. On the other hand, we have seen here that
multi-tasking can lead to identification problems and limit implementability,
which is probably the multi-tasking problem referred to by Corts (2007).

The following substantiates the claim that multi-tasking causes no re-

11See Section 4.6 for an example of a single-task model with restricted implementability.
12In using the state-space representation, I follow the tradition of Spence and Zeckhauser

(1971), Ross (1973), Jewitt (1988), and Conlon (2009)
13See Prendergast (1999, 2002) for a critical empirical overview on the evidence con-

cerning this trade-off.
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strictions on implementability in any of the model variations discussed in
Holmström and Milgrom’s article. These variations employ either what Corts
(2007) calls the one-signal-per-task assumption or what may be called a no-
signal-for-some-task assumption.14 The first assumption describes that for
each task i, there is a signal j that strictly increases in the agent’s choice at
that task and is unaffected by other choices:

∂µj
∂ai

> 0 if i = j and
∂µj
∂ai

= 0
otherwise. This assumption implies that there are as many independent sig-
nals as tasks: rankDaµ = n. So even if a single agent is responsible for all
n tasks, this agent’s activity is identified (by Proposition 2) and any activity
choice can be implemented (by Theorem 1). The second assumption means

that some task i affects no signal j:
∂µj
∂ai

= 0 for all j. This assumption clearly
leads to an identification problem. However, this problem cannot be allevi-
ated by eliminating multi-tasking or any other form of re-organization (by
Proposition 4).

The models discussed in Holmström and Milgrom (1991) thus concern two
extreme situations: those in which any and those in which no assignment of
tasks leads to identification. Examining only these extremes, identification
by organization design cannot be studied. Accordingly, Holmström and Mil-
grom’s results on optimal job design are not driven by the desire to induce
new activities.

4.5 Multi-Tasking with Linear Signals

Holmström and Milgrom (1991) inspired a burgeoning literature in account-
ing (see e.g. Feltham and Xie, 1994; Datar, Cohen Kulp, and Lambert, 2001)
and some contributions in labor economics (Baker, 2000, 2002; Schnedler,
2008), which examine multi-tasking in a particularly tractable framework.
Among other things, this framework assumes that signals are linear in ac-
tivity choices. The literature starts with the observation that the principal’s
power to implement activities is restricted and proceeds to examine how
congruency between signals and the principal’s benefit affect optimal (lin-
ear) contracts. It neither identifies the source of restricted implementability
nor does it consider whether and when organization design may solve the
problem.

With the tools introduced here, this gap can be closed. Given linear

14For example, Holmström and Milgrom’s job design model uses the one-signal-per-task
assumption, while their home contractor model or asset enhancement models employ the
no-signal-for-some-task assumption.
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signals, organization design can solve identification problems unless there is
no signal for some task. The reason is the following. Since signals are linear
in activities, µj(a) = µj1a1 + . . .+ µjnan, the parameter vector µ is injective
in the activity choice at each task i as long as there is some signal j for
each task i with µji 6= 0. If such signals exist, the identification problem is
hence due to multi-tasking (Proposition 3) and can be solved by organization
design (Proposition 4).

4.6 Identification with Biased Reports

In many circumstances, incentives are based on subjective evaluations or re-
ports. Experts writing these reports rarely evaluate behavior in exactly that
way which is required to induce the desired activity choice; in short, reports
are biased. Under these circumstances, a second report can be valuable even
if it is more biased.

In order to support this claim, consider a risk-neutral agent whose activity
choice, a ∈ R, affects the probability of report j being favorable (Sj = 1)
or not (Sj = 0) with j = 1, 2. More specifically, let the probability of
a favorable report, P (Sj = 1|µj), decrease in the distance µj between the
activity a and some benchmark αj : µj(a) = (a − αj)

2. For simplicity, let
the principal’s benefit from the activity be the activity itself and the agent’s
cost be quadratic. Then, the joint surplus amounts to: a − c(a) = a − a2

2

and is maximized at a = 1. In order to reflect that both reports are biased
and the second even more so, suppose that the two benchmarks are too low:
0 < α2 < α1 < 1. Which report is used in optimal contracts and when is a
second report valuable?

Each of the two signals alone is not injective in the activity choice. For
example, å : = αj + 1 and ã := αj − 1 both lead to µj = 1. With only
one signal, the agent’s activity is thus not identified and implementation is
limited. Moreover, the problem is not due to multi-tasking and organization
design offers no viable identification strategy. Activity choice å can only be
induced if some linear combination of the marginal effect on the signal, λ,
equals marginal costs: λ(−2(̊a − αj)) = å (by Proposition 1). Solving for å
yields: å(λ) =

αj
1
2λ

+1
. While the activity choice increases in λ, it is bounded:

limλ→∞ å(λ1) = αj. Factoring in the agent’s participation constraint, the

principal’s net gain equals the joint surplus: a − a2

2
. This net gain strictly

increases in a for a < αj < 1 and thus attains its supremum at a = αj. If
the principal had to select one report, she would take the less biased one and
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obtain a surplus that is arbitrarily close to

π1R := α1 −
α2

1

2
.

With two reports, the identification problem is solved. In order to see this,
consider the marginal effect matrix:

Daµ =

(
−2(a− α1)
−2(a− α2)

)
.

This matrix has a minimal rank of one because one of the two entries is
always different from zero. Hence, a single agent with one task faces one
independent signal and his activity is identified (by Proposition 2). Any
activity can thus be implemented, in particular, the first-best choice, a = 1.
The surplus with both reports thus amounts to:

π2R :=
1

2
.

Accordingly, the additional report has a value of at least

π2R − π1R =
1

2
− α1 +

α2
1

2
=

1

2
(1− α1)2.

This value is independent of α2 and strictly positive (as long as the first
report is biased). The second report thus adds value irrespective of its bias
and this value becomes larger, the larger the bias of the first report, i.e., the
smaller α1.

4.7 Identification and Sufficient Statistics

The notion of identification advocated here is related to that of a sufficient
statistic. Holmström (1979) famously suggested to assess the value of an
additional signal S2 by checking whether the original signal S1 is a sufficient
statistic for activity a. An additional signal S2 that is informative in the
sufficient statistic sense, however, does not necessarily identify the activity.

Consider one agent who faces two tasks and two signals, Sj(µj, εj) =
µj + εj with µ1(a) = µ2(a) = a1 + a2 and let εj be an independently stan-
dard normally distributed error term. Using only S1 leads to the —by now
familiar— identification problem and this problem persists even if both sig-
nals are used because marginal effects of the activity on both signals are
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identical. On the other hand, signal S2 conditional on S1 is normally dis-
tributed with mean a1 +a2 and thus depends on activities. Signal S2 is hence
informative about the activity in Holmström’s sense but useless in terms of
identification and implementability.

Based on his concept, Holmström (1979) formulates the well-known suf-
ficient statistic result. This result is restricted to distributions from the
exponential class with rank one (Amershi and Hughes, 1989) and can fail if
activities are multi-dimensional (Holmström and Milgrom, 1991) or if income
affects marginal costs of effort (Schnedler, 2010). In contrast, results on iden-
tification derived here are independent of the specific distribution, hold for
single- and multi-dimensional activities, and allow for interaction between
effort and wealth.

5 Related Literature

Probably the first to analyze implementability in moral-hazard models are
Hermalin and Katz (1991). They observe that a specific choice is only im-
plementable if there is no (less costly) way for the agent to produce the same
signal distribution—see their Proposition 2. Theorem 1 in the present paper
builds on this idea and applies it to multi-dimensional activities with contin-
uous choice sets. In addition, it allows for the possibility of multiple agents,
so that organization design can be discussed.

For multi-dimensional activities, linear performance measures (signals),
normally distributed error terms, quadratic costs and either negative expo-
nential utility or risk-neutrality, Feltham and Xie (1994) find that an activity
is implementable if and only if “it is spanned by the set of performance mea-
sure coefficients”—see their Appendix B. Like Feltham and Xie (1994), Corts
(2007) restricts attention to linear signals; he allows for separable cost func-
tions and a general noise term but limits attention to linear contracts and
only considers risk-neutral agents. He finds that optimal linear contracts
induce first-best efforts whenever signals “span the [agent’s] set of tasks”
(see his Proposition 6) and observes that this is only possible if the average
number of tasks per agent is at most the number of signals. At first glance,
Corts’ finding may not concern implementability. However, it is only im-
plementability that prevents the first-best from being induced if agents are
risk-neutral.

Feltham and Xie as well as Corts’ findings are extended beyond linear sig-
nals and specific utility and cost functions in Proposition 1, which states that
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an activity is implementable if the vectors describing the activity’s marginal
effect on signals span the vector describing the activity’s marginal effect on
costs. Moreover, Corollary 1 provides a justification for Corts’ approach to
limit attention to linear contracts, while Proposition 5 tightens his necessary
condition for implementing the first-best by considering only independent
instead of all signals, and Proposition 6 adds a sufficient condition.

While the present paper focuses on whether specific ways can be induced
to produce a given observable output, the literature on partnerships is con-
cerned with the complementary question of inducing a certain (joint) output
(see e.g. Legros and Matsushima, 1991; Strausz, 1999; Battaglini, 2006). Im-
plementing this output is complicated because budgets must balance in part-
nerships. On the other hand, it is efficient if partners produce a given output
in the least-costly way and the conflict between a desired way of producing
a signal, say å, and agents’ chosen method, say ã, does not arise.

Some of the issues in the present paper, e.g., implementability or or-
ganizational structure, are also relevant for mechanism design with hidden
information.15 They are examined here from a hidden action perspective. Fi-
nally, organizational form can also be discussed outside the principal-agent
paradigm—see Borland and Eichberger (1998) for an overview.

6 Conclusion and Discussion

In the first step of their famous analysis of the principal agent-problem,
Grossman and Hart (1983) determine the least-costly way of implementing
a specific activity. They also observe that it may sometimes be prohibitively
costly to implement an activity. However, they do not examine when this is
the case. The present paper addresses this question. It advocates incorperat-
ing the notion of identification into agency theory in addition to other origi-
nally econometric concepts such as ‘likelihood ratio’ (Mirrlees, 1979; Roger-
son, 1985), ‘sufficient statistic’ (Holmström, 1979, 1982), and ‘hazard rate’
(see e.g. Gibbons, 1987). Identification describes the signal imperfection that
restricts implementability: any activity choice can be induced if activities are

15A classical problem is that of implementing a social choice rule (see e.g. Fudenberg
and Tirole, 1991, Chapter 7.1). Mookherjee (2006) provides an excellent survey on or-
ganizational structures in hidden information models, in particular on the question when
decisions should be decentralized. Alonso and Matouschek (2008) are concerned with
limiting choice sets if agents are better informed; Raith (2008) examines how to provide
incentives to work to such agents.
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identified (Theorem 1).
Dealing with performance measures in accounting, Hemmer (1998) sug-

gests that the informational content of the same performance measure sys-
tem can be altered when the organizational design changes. This idea also
applies to identification: even if the signal structure remains the same, re-
organization can lead to identification whenever a change in some dimension
of an activity affects observables (Proposition 4). The characteristics of or-
ganization designs that solve the identification problems echo Tinbergen’s
dictum (1952) that there need to be as many instruments as goals: the num-
ber of independent signals for an agent must be at least as large as his number
of tasks (Proposition 2).

Identification by organization design is driven by two crucial assumptions.
First, it must be possible to enforce decision rights. For example, agents must
be prevented from carrying out tasks that they are not supposed to, while
agents who should work on these tasks must be able to do so. This points to
one possible reason why restricted access to tools and production sites is com-
mon in many firms and organizations: it gives the management more control
over how outcomes are achieved. Second, if agents collude, then identifica-
tion problems cannot be solved by partitioning tasks. Identification becomes
possible because partitions generate a non-cooperative game in which each
agent’s equilibrium strategy can be separately manipulated. If agents were
colluding, which requires that they can (formally or informally) condition
payments on activities although the mechanism designer cannot, they would
jointly agree to chose the least-costly activity in order to produce a given
outcome; no other way of producing this outcome could be implemented.

The results from the present paper uncover why certain organization de-
signs, which are proposed in the literature, such as advocates, specialists, or
joint accountability, are advantageous: these designs overcome identification
problems and generate unlimited implementability. The findings can also
be employed to model organization design as being driven by a fundamental
trade-off between control, on the one hand, and the gains from complementar-
ities, on the other hand. Moreover, they offer an explanation why in hidden
action models (very unlike in hidden information models), implementability
has received so little attention: in the early single-task models, any activity
can be implemented. In addition, results help to pin down a specific type of
problem caused by multi-tasking. If an agent carries out more than one task,
this can create identification problems and may thus limit implementabil-
ity. This type of problem is latent in many models but very different from
that described by Holmström and Milgrom (1991). As shown, multi-tasking
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causes no identification problems in this article and hence does not restrict
which activities can be implemented. Finally, the findings imply that solicit-
ing biased reports can have a value because doing so generates identification
and thus facilitates implementation.

The present paper shows that given identification, payments can be set
such that any desired activity is induced as a Nash equilibrium. This leaves
several questions open. Can unique implementation be achieved? Can activi-
ties be implemented in dominant strategies or as an attractor of best-response
dynamics? All these questions are beyond the scope of the paper and left
for future research. While the paper links implementability, identification,
and organization design in a rather general framework, it only provides a
first-step in the analysis of implementability in moral hazard models. The
generality of the structure only permits relatively fundamental statements
about existence and form of organization designs that solve identification
problems. Finer predictions require additional assumptions, for example, on
which tasks are separable and how activities are reflected in signals.
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A Proofs

Proof Proposition 1. Fix a partition P and a signal structure S. Then, con-
dition (3) is necessary by Lemma 1 in Appendix B. In order to see that it is
also sufficient, we show first that for an appropriate choice of linear payments
wl : Rk → R, where wl(s) = wl0 + wl1s1 + . . . wlksk for all l, the first-order
conditions are met and then that agents’ expected utility is concave. First,
choose the base payment wl0 as an implicit function of (wl1, . . . , w

l
k) such that

the outside option is met for agent l at å:

Eε

[
ul(wl0 + wl1S1 + . . .+ wlkSk, c

l(a))
]∣∣
a=å

= ul. (7)

Recall that agent l’s first-order conditions are:

DµEε

[
ul(wl(S(µ, ε)), cl)

]
·Dalµ(a)

∣∣
a=å

= − d

dcl
Eε

[
ul(wl(S(µ, ε)), cl)

]
·Dalc

l(a)

∣∣∣∣
a=å

, for all l. (2)
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Since condition (3) holds for å, there is a λl such that

λlDalµ(a)|a=å = Dalc
l(a)|a=å. (8)

Suppose that the following holds:

d

dµj
Eε

[
ul(wl0 + wl1S1(µ1(a), ε1) + . . .+ wlkSk(µk(a), εk), c

l)
]∣∣∣∣
a=å

= λlj · Eε

[
− ∂

∂cl
ul(wl0 + wl1S1(µ1(a), ε1) + . . .+ wlkSk(µk(a), εk), c

l(a))

]∣∣∣∣
a=å

.

(9)

Then, λl can be replaced in equation (8), so that the first-order conditions (2)
are met at a = å. For this to be true, all that remains to be shown is that
(wl1, . . . , w

l
k) can be chosen in dependence of λlj such that for all j equation

(9) holds. Given (7), the left-hand side in this equation is continuous in
(wl1, . . . , w

l
k). Moreover, its absolute value is larger than |wlj| · κlj, for some

κlj > 0 by Lemma 2 in Appendix B. On the other hand, the right-hand
side is continuous in (wl1, . . . , w

l
k) and its absolute value is smaller than |λlj|

because wl0 is continuous and 0 > ∂u
∂cl
≥ −1. Taken together, this ensures the

existence of (ẘl1, . . . , ẘ
l
k) such that (9) is met and the first-order conditions

hold—for an illustration with positive λlj see Figure 2.
In the second and last step, it will be shown that first-order conditions are

also sufficient because agent l’s expected utility is concave in al given linear
payments. The reason is the following. By definition S(µ(a), e) is concave
in a for almost all realizations e of ε. Hence, wl(S(µ(a), e)) = wl0 + wl1S1 +
. . . + wlkSk is concave in a for almost all e. Moreover, cl(a) is convex in a
and ul(wl, cl) is concave in wl and cl by definition. Since ul(wl, cl) decreases
in c, ul(wl(S(µ(a), e)), cl(a))) is concave in a for almost all e. The concavity
is maintained when integrating over ε, so that Eε

[
ul(wl(S(µ(a), ε), cl(a)))

]
is

concave in a and consequently also in any sub-vector al.

Proof Proposition 2. First, we show that rank (Dalµ(a)) < |N l| for some l
and a implies an identification problem. Let al denote the respective activity
by agent l. Due to rank(Dalµ(a)) < |N l|, the set {âl|Dalµ(a)âl = (0, . . . , 0)′}
is not empty. Since A is an open set, there is a value ãl with ãl 6= al

but µ(ãl, a) = µ(al, a−l) and the mechanism designer faces an identification
problem.

Second, we prove that an identification problem implies rank(Dalµ(a)) <
|N l| for some l and a. By definition, an identification problem is present if
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Figure 2: Existence of a payment rate, ẘlj, such that agent l’s first-order
condition are met.

there are differing activities al and ãl for some agent l such that µ(al, a−l) =
µ(ãl, a−l). Since µ is continuously differentiable and A is convex, there is
an activity âl such that 0 = µ(al, a−l) − µ(ã, a−l) = Dalµ(â)(al − ãl). This,
however, implies that rank (Dalµ(â)) < |N l|.

Proof Theorem 1. First, we prove that an identification problem leads to
limited implementability. Observe that strict convexity of costs cl(a) and
concavity of µ(a) implies that there is a unique least costly way for agent l
to produce µ̄:

arg min
âl∈{ăl|µ(ăl,a−l)=µ̄}

cl(â)|â=(âl,a−l).

Suppose there is an identification problem, then there is some µ̄ and ãl 6= al

such that µ̄ = µ(al, a−l) = µ(ãl, a−l). Since the least costly way to produce µ̃
is unique, either al or ãl cannot be induced and implementability is limited.

Second, we show that any activity can be implemented in the absence of
identification problems. If there is no identification problem, rank (Dalµ(a)) ≥
|N l| for all l and a by Proposition 2. Take an arbitrary activity a and agent l
and let al be agent l’s decision given a. From rank(Dalµ) ≥ |N l|, it follows
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that |N l| ≤ k. Thus, min(|N l|, k + 1) = |N l| and

rank

(
Dalµ(a)
Dalc

l(a)

)
≤ |N l|. (10)

On the other hand,

rank

(
Dalµ(a)
Dalc

l(a)

)
≥ rank(Dalµ(a)). (11)

Together, (10) and (11) imply:

|N l| ≥ rank

(
Dalµ(a)
Dalc

l(a)

)
≥ rank(Dalµ(a)) ≥ |N l|,

so that

rank

(
Dalµ(a)
Dalc

l(a)

)
= rank(Dalµ(a)).

Applying Corollary 2 then yields that al can be implemented with agent l.

Proof Proposition 3. By definition, identification problems due to multi-
tasking can be solved by the finest partition of tasks {{1}, . . . , {n}}. Thus,
there exists an organization that solves the identification problem. Con-
versely, if some organization solves the identification problem, there is a par-
tition P with enough independent signals for each agent l: rank(Dalµ(a)) ≥
|N l| by Proposition 2. Consider partitioning the |N l| tasks and assigning
them to |N l| agents. Then, for each agent l̃ ∈ N l, Dal̃µ(a) is a (k, 1)−vector
and rank(Dalµ(a)) ≥ |N l| implies rank(Dal̃µ(a)) = 1. Since each of the

agents only carries out one task |N l̃| = 1 and rank(Dal̃µ(a)) = 1 = |N l̃|,
Proposition 2 implies that there is no identification problem. The identifica-
tion problem thus also disappears with the finest partition.

Proof Proposition 4. Suppose there is an identification problem given par-
tition P . Eliminate multi-tasking by considering the finest partition
{{1}, . . . , {n}}. The finest partition solves the identification problem if
and only if for all l and ãl 6= al it follows that µ(al, a−l) 6= µ(ãl, a−l).
Since each agent l carries out exactly one task i, this is true if and only
if µ(. . . , ai, . . .) 6= µ(. . . , ãi, . . .) for all i and ai 6= ãi.
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Proof Proposition 5. The proof works by contradiction. Let ã =
arg mina rank (Daµ(a)). Suppose k̃m < n, where k̃ := mina rank (Daµ(a)).
Then,

rank Daµ(a)|a=ã + . . .+ rankDaµ(a)|a=ã︸ ︷︷ ︸
m summands

< n =
m∑
l=1

|N l|.

This implies:
m∑
l=1

rank Dalµ(a)|a=ã <
m∑
l=1

|N l|. (12)

Now, take an arbitrary partition P and suppose that there is no identification
problem. By Proposition 2, it must then hold that rank (Dalµ(a)) ≥ |N l|
for all l. This, however, contradicts equation (12). Consequently, the identi-
fication problem persists for any partition.

Proof Proposition 6. Since k̃ := mina rank(Daµ), there are at least k̃ inde-
pendent columns ofDaµ for all a. Assign the tasks belonging to these columns
to the first agent. For this agent, it now holds that rank (Da1µ(a)) ≥ k̃ =
|N1| for all a and his activities are identified. Since m > n− k̃, there remain
at least n− k̃ agents who are not yet assigned to tasks. Assign each of these
agents to one of the remaining n− k̃ tasks. Since the identification problem is
caused by multi-tasking, the activities of these agents are also identified.

B Auxiliary Results

Lemma 1 (Necessary condition for implementation). Given signal structure
S and partition P, an activity å can only be implementable if the following
holds:

λl Dalµ(a)|a=å = Dalc
l(a)
∣∣
a=å

with some λl ∈ Rk for all l. (3)

Proof. Since we are looking for an inner maximizer, the first-order condi-
tions are necessary. Using the separability assumption, these conditions
are equivalent to (2). Next suppose that Condition (3) is violated and
show that first-order conditions cannot be met then. Suppose for all l and

λl : λlDalµ(a)|a=å 6= Dalc
l(a)|a=å. Now choose λ̃l := −DµEε[ul(wl(S(µ,ε)),cl)]

d

dcl
Eε[ul(wl(S(µ,ε)),cl)]

∣∣∣∣
a=å

,
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where the denominator is strictly negative because of ∂ul

∂cl
< 0. Then,

λ̃lDalµ(a) 6= Dalc
l(a),

which implies directly that the first-order condition must be violated, too.

Lemma 2. Fix µ, and c, and and consider linear payments wl(·) such that
the agents’ outside options are met. Then, there exists a κlj > 0 such that:∣∣∣∣ ddµj Eε

[
ul(wl(S), c)

]∣∣∣∣
a=å

≥ |wlj| · κlj. (13)

Proof. Define S−j := (S1, . . . , Sj−1, Sj+1, . . . , Sk) and let F−j be the respec-
tive cumulative distribution. Denote the c.d.f. of Sj given S−j by Fj(sj|µj)
and the respective density by fj(sj|µ). Let us focus on a continuously dis-
tributed Sj(µj, εj)—the analysis in the case of a discrete distribution is anal-
ogous. For given costs c, the gain in expected utility from a change from µj
to some µ̃j with µ̃j > µj can be written as:

ES

[
ul(wl(S), c)|(µ1, . . . , µj−1, µ̃j, µj+1, . . . , µk)

]
− ES

[
ul(wl(S), c)|µ

]
=

∫∫
ul(wl0 + . . .+ wljsj + . . .+ wlksk, c) · [fj(sj|µ̃j)− fj(sj|µj)] dsj dF−j

= [ul(wl(sj), c)(Fj(sj|µ̃j)− Fj(sj|µj))]sjsj (14)

−
∫∫

∂

∂w
ul(wl(s), c) · wj · [Fj(sj|µ̃j)− Fj(sj|µj)] dsj dF−j,

where sj and sj are the bounds of the support of Sj and possibly −∞ and
+∞. The last equality follows from integration by parts. Moreover the term
in (14) is zero because both c.d.f.’s are zero evaluated at the lower bound and
one at the upper bound. Dividing both sides by µ̃j−µj and letting µ̃j → µj,
we obtain the derivative of the agent’s expected utility with respect to µj for
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a given c:

d

dµj
ES

[
ul(wl0 + wl1S1 + . . .+ wljSj + . . .+ wlkSk, c)

]
= −

∫∫
∂

∂w
ul(wl(s), c) · wlj ·

∂

∂µj
Fj(sj|µj) dsj dF−j

= −
∫∫

∂

∂w
ul(wl(s), c) · wj · fj(sj|µj) ·

∂
∂µj
Fj(sj|µj)
fj(sj|µj)

dsj dF−j

= wlj · ES

[
∂

∂w
ul(wl(S), c) ·

− ∂
∂µj
Fj(Sj|µj)

fj(Sj|µj)

]

= wlj · ES

[
∂

∂w
ul(w(S), c)

]
· γlj with γlj > 0, (15)

where the last equality follows from Lemma 3. Given that the agent l’s
outside option is met, Lemma 4 implies:

ES

[
∂

∂w
ul(w(S), c)

]
≥ δl > 0

Using this in (15) yields:∣∣∣∣ ddµjEε

[
ul(wl(S), c)

]∣∣∣∣
a=å

≥ |wlj| · κlj with klj := δl · γlj > 0.

Lemma 3. Given µ, c, there is a strictly positive γj for all payments w(·)
such that:

ES

[
∂

∂w
ul(w(S), c) ·

− ∂
∂µj
Fj(Sj|µj)

fj(Sj|µj)

]
= ES

[
∂

∂w
ul(w(S), c)

]
· γlj,

where Fj(sj|µj) = Prob(Sj≤sj|Sj′=sj′ for all j′ 6= j) and fj(sj) = ∂
∂sj
Fj(sj).

Proof. Define the random variable Bj :=
− ∂
∂µj

Fj(Sj |µj)

fj(Sj |µj) . Using this notation,
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we get:

ES

[
∂

∂w
ul(w(S), c) ·

− ∂
∂µj
Fj(Sj|µj)

fj(Sj|µj)

]

= E

[
∂

∂w
ul(w(S), c) ·Bj

∣∣∣∣Bj ≥ βj

]
· Prob(Bj ≥ βj)

+ ES

[
∂

∂w
ul(w(S), c) ·Bj

∣∣∣∣Bj < βj

]
(1− Prob(Bj ≥ βj))

≥ ES

[
∂

∂w
ul(w(S), c) · βj

∣∣∣∣Bj ≥ βj

]
· Prob(Bj ≥ βj)

+ ES

[
∂

∂w
ul(w(S), c) · 0

∣∣∣∣Bj < βj

]
(1− Prob(Bj ≥ βj))

= ES

[
∂

∂w
ul(w(S), c)

]
· γj, (16)

where the existence of γj ∈ [0, βj] follows from the intermediate value theo-
rem. Moreover, the event Bj ≥ βj occurs with positive probability for some
βj > 0 because Sj is stochastically increasing in µj, so that:

Prob(Bj > βj) = Prob

(
− ∂
∂µj
Fj(sj|µj)

fj(sj|µj)
≥ βj

)
> 0.

This, however, means that γj has to be strictly larger than zero.

Lemma 4. Take a µ, c, and payments w(·) and w̃(·) such that

E
[
ul(w(S(µ, ε), c))

]
= E

[
ul(w̃(S(µ, ε), c))

]
.

Then, for some positive δl :

E

[
∂

∂w
ul(w(S(µ, ε)), c)

]
≥ δl > 0.

Proof. By Lemma 5 there exists a

ŵmin := min{ŵ|Prob(w(S(µ, ε)) ≤ ŵ) = Prob(w̃(S(µ, ε)) ≤ ŵ) > 0} ⊆ [w,w].
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Using this definition, we get:

Eε

[
∂

∂w
ul(w(S(µ, ε)), c)

]
= E

[
∂

∂w
ul(w(S(µ, ε)), c)

∣∣∣∣w(S(µ, ε)) ≤ ŵmin

]
· Prob(w(S(µ, ε)) ≤ ŵmin)

+ E

[
∂

∂w
ul(w(S(µ, ε)), c)

∣∣∣∣w(S(µ, ε)) > ŵmin

]
· Prob(w(S(µ, ε)) > ŵmin)

≥ E

[
∂

∂w
ul(w(S(µ, ε)), c)

∣∣∣∣w(S(µ, ε)) ≤ ŵmin

]
· Prob(w(S(µ, ε)) ≤ ŵmin),

where Prob(w(S(µ, ε)) ≤ ŵmin) > 0 by the definition of ŵmin. Since ul is
non-convex, ∂

∂w
ul(w, c) weakly falls in w so that

E

[
∂

∂w
ul(w(S(µ, ε)), c)

∣∣∣∣w(S(µ, ε)) ≤ ŵmin

]
≥ ∂

∂w
ul(w, c)

∣∣∣∣
w=ŵmin

,

which is strictly larger than zero because ∂
∂w
ul(w, c) > 0. Taken together,

this implies:

Eε

[
∂

∂w
ul(w(S(µ, ε)), c)

]
≥ ∂

∂w
ul(w, c)

∣∣∣∣
w=ŵmin

· Prob(w(S(µ, ε)) ≤ ŵmin)︸ ︷︷ ︸
=:δl

> 0.

Lemma 5. Take a µ, and c and consider payments w(·) and w̃(·) such that:

E [u(w(S(µ, ε), c))] = E [u(w̃(S(µ, ε), c))] .

Then, there are finite numbers w < w in the support such that for all w(·)
and w̃(·), there is a ŵ ∈ [w,w] in the support of of w(S(µ, ε)) and w̃(S(µ, ε))
with

Prob(w(S(µ, ε)) ≤ ŵ) = Prob(w̃(S(µ, ε))) ≤ ŵ).

Proof. The proof works by contradiction. If for all w there exist w(·) and
w̃(·), such that for all ŵ ≤ w it holds that

Prob(w(S(µ, ε)) ≤ ŵ) < Prob(w̃(S(µ, ε)) ≤ ŵ),

36



then w(S(µ, ε)) first-order stochastically dominates w̃(S(µ, ε)) for values be-
low w. Together with the assumption that ul increases in w, this yields:

E
[
ul(w(S(µ, ε), c))|w(S(µ, ε)) ≤ w

]
> E

[
ul(w̃(S(µ, ε), c))|w̃(S(µ, ε)) ≤ w

]
.

Since this holds for all w, it also holds if w approaches infinity, which means
that Prob(w(S(µ, ε)) ≤ w) = Prob(w̃(S(µ, ε)) ≤ w) becomes one, so that

E
[
ul(w(S(µ, ε), c))

]
= E

[
ul(w(S(µ, ε), c))|w(S(µ, ε)) ≤ w

]
> E [u(w̃(S(µ, ε), c))|w̃(S(µ, ε)) ≤ w]

= E [u(w̃(S(µ, ε), c))] , (17)

which contradicts E [u(w(S(µ, ε), c))] = E [u(w̃(S(µ, ε), c))] . Analogously,
one can show that ŵ is above some finite lower bound w.

C Additional Results

Lemma 6 (Dual representation). Let Y ∼ Gµj(y), where G is the cumu-
lative distribution function of Y and µj a real-valued parameter (Mirrlees
representation).16 Alternatively, consider the state-space representation from
Section 1, which involves Sj, µj and εj. Then, there is a state-space represen-
tation if and only if there is a Mirrlees representation.

Proof. First, show that a state-space representation for Y ∼ Gµj(y) exists.
Define G−1

µj
: R→ R with:

G−1
µj

(ej) = min
{
y|Gµj(y) = max

{
p̃|p̃ = Gµj(ỹ) ≤ ej for some ỹ

}}
.

Now, set Sj(µj, εj) := G−1
µj

(εj). Next, take εj ∼ UNIF[0; 1]. Then,

Prob(Sj(µj, εj) ≤ y) = Prob(G−1
µj

(εj) ≤ y) = Gµj(y).

To find a Mirrlees representation, set Y := Sj(µj, εj) and Gµj(y) = Prob(Y ≤
y) = Prob(Sj(µj, εj) ≤ s).

Proposition 7 (Identification and implementability with limited liability).
Consider a risk-neutral agent with utility, u(wl, cl) = wl − cl, and limited
liability. Then, any generic activity å = (al, a−l) can be implemented with a
finite bonus payment, if there is no identification problem.

16The terminology is based on Conlon (2009).
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Proof. There is no identification problem, so µ(̊al, å−l) 6= µ(ãl, å−l) for all
ål 6= ãl and l. Consequently, the distribution of S(µ(̊al, å−l), ε) differs from
that of S(µ(ãl, å−l), ε). In particular, there must be some set S1 such that for
all ãl: Prob

(
S(µ(̊al, å−l), ε) ∈ S1

)
> Prob

(
S(µ(ãl, å−l), ε) ∈ S1

)
. Define the

first probability as P (̊al) and the latter as P (ãl). Now, pay a bonus wl ≥ 0
whenever s ∈ S1 and nothing otherwise. Then, the incentive constraint of
agent l becomes wlP (̊al)− cl(̊al, å−l) ≥ wlP (ãl)− cl(ãl, å−l). This inequality

holds if the bonus wl is large enough: wl ≥ cl (̊al ,̊a−l)−cl(ãl ,̊a−l)
P (̊al)−P (ãl)

. The lower bound

is finite for ål 6= ãl. Moreover, for ãl → ål, it converges to the finite real
number Dac

l(a)â/DaP (a)â, where â is the direction from which ã = (ãl, a−l)
approaches å. Accordingly, the desired choice ål can be implemented with a
finite bonus payment, wl.
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