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1 Introduction

Population aging, i. e., the process by which older individuals become a proportion-

ally larger fraction of the total population, is an enduring phenomenon in many of

today’s developed and developing countries. Table 1 shows actual data and pre-

dictions of the United Nations concerning the old-age dependency ratio for several

countries and regions.1 Roughly speaking, between 2005 and 2050 this ratio is es-

timated to double in Europe and Northern America. In China, India, and Japan

its predicted increase is even more pronounced. Such drastic demographic develop-

ments have become a severe burden for these economies. To meet this challenge it

is essential to understand the economic consequences of population aging.

This paper studies the effect of population aging on innovation incentives and eco-

nomic growth in an environment where the direction of technical change is endoge-

nous, i. e., firms may undertake innovation investments that generate capital- or

labor-saving technical change. My starting point is Hicks’ contention according to

which innovation incentives depend on relative factor prices reflecting the relative

relative scarcity of these factors. In his book, The Theory of Wages, he asserts that

“A change in the relative prices of the factors of production is itself a

spur to invention, and to invention of a particular kind - directed to

economizing the use of a factor which has become relatively expensive.

...” (Hicks (1932), p. 124)

Since the process of population aging tends to reduce the labor force, the factor

labor becomes, ceteris paribus, scarcer relative to the factor capital. Accordingly,

its relative price may increase and labor-saving innovations become more profitable.

For the same reason, the incentive to direct innovation investments towards capital-

saving innovations declines. Hence, if Hicks’ contention applies, population aging

may affect the direction of technical change.

However, from the perspective of a dynamic general equilibrium, the validity of

Hicks’ contention does not only hinge on the evolution of the labor force. It also

depends on the ability and the willingness of an aging population to save and to

accumulate capital. Fewer workers and/or a declining real rate of return may re-

duce aggregate savings. Hence, to understand the effect of population aging on the

1These numbers appear in United Nations (2008) as the ‘medium variant’ prediction. The old-
age dependency ratio is the ratio of the population aged 65 or over to the population aged 15-64.
This ratio is stated as the number of dependants per 100 persons of working age (15-64).
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Table 1: Old-Age Dependency Ratios in Selected Countries and Regions.

Year Europe Northern China India Japan

America

2005 23 19 11 7 30

2050 47 36 38 20 74

direction of technical change one has to disentangle the intricate relationship be-

tween partial and general equilibrium effects. It is a primary purpose of the present

paper to accomplish this. Building on the insights of my analysis, I inquire into the

implications of population aging for steady-state and transitional growth.

To address these questions, I devise a new neoclassical growth model with endoge-

nous capital- and labor-saving technical change. The model is set up in discrete

time with two-period lived overlapping generations as in Allais (1947), Samuelson

(1958), or Diamond (1965). This framework allows for a straightforward represen-

tation of population aging as an increase in the old-age dependency ratio. Both, a

decline in the growth rate of the labor force and/or an increase in life expectancy

parameterized by a probability to live through the period of old age, augment this

ratio.

The production side of the economy under scrutiny is neoclassical since it maintains

the assumptions of perfect competition, of an aggregate production function with

constant returns to scale and positive and diminishing marginal products, and of

capital accumulation. It features endogenous growth since economic growth results

from innovation investments undertaken by profit-maximizing firms. To allow for

innovation investments in capital- and labor-saving technical change, I introduce two

intermediate-good sectors, one producing a capital-intensive intermediate, the other

a labor-intensive intermediate. Innovation investments increase the productivity of

capital and labor at the level of these intermediate-good firms. Moreover, they feed

into aggregate productivity indicators that evolve cumulatively, i. e., in a way often

referred to as ‘standing on the shoulders of giants’.

In this framework, I derive the following major results. First, I establish the existence

of a unique steady state with finite state variables. The properties of this steady state

are consistent with Kaldor’s famous facts (Kaldor (1961)). There is no capital-saving
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technical progress in the steady-state. Per-capita variables such as consumption,

savings, or the real wage grow at the (net) growth rate of labor-saving technical

knowledge.2 More importantly, this steady-state growth rate is pinned down by the

production side of the economy alone. Parameter changes reflecting an improvement

in the quality of the institutional framework or in the efficiency of the innovation

technology increase the steady-state growth rate. However, population aging has no

effect on the steady-state growth rate.

Second, I prove that the steady state is locally stable and study the economic con-

sequences of demographic change on transitional dynamics. Although population

aging has no steady-state growth effect, it affects the economy’s growth rate along

the transition. Arguably, with a period representing approximately 30 years, these

effects are quite relevant for those generations living through the transition. Taking

a steady state as the starting point, I capture population aging by a once and for

all decline in the growth rate of the labor force and/or by a once and for all increase

in life expectancy. In both cases, the economy leaves its steady state and embarks

on a trajectory with an increased speed of capital deepening, i. e., labor becomes

scarcer relative to capital. In line with Hicks’ contention, there is more labor- and

less capital-saving technical change.

Third, I study the effect of population aging on the evolution of gross domestic

product (GDP ) both in absolute and per-capita terms. I find that a decline in

the growth rate of the labor force may reduce GDP for two reasons. First, if the

generation with fewer offsprings rationally anticipates a lower rate of return, it may

save less. Second, a declining work force reduces aggregate output by more than

aggregate innovation investments. For reasonable parameter values, these effects

also imply a decline of per-capita GDP in response to population aging. However,

there is no first-order effect of induced technical change on GDP unless I allow

for contemporaneous knowledge spillovers as in Romer (1986). This confirms in a

full-fledged endogenous growth model an intuition derived in Acemoglu (2007) and

Acemoglu (2009) according to which the technology choice in a competitive economy

maximizes GDP given factor endowments unless there is an externality.

My analysis builds on and contributes to several strands of the literature. First, it

makes a contribution to the theoretical literature on the causal effect of demographic

trends on physical capital accumulation and economic performance in models with

overlapping generations. Hitherto, this literature has not looked at the implications

2The findings concerning steady-state growth rates are also in line with the so-called Steady-
State Growth Theorem of Uzawa (1961). See Irmen (2009) for a discussion of the relationship
between the production side of the economy studied here and Uzawa’s theorem.
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of demographic change on the direction of technical change. Recent contributions

include d’Albis (2007) and Futagami and Nakajima (2001).3

These papers base their analysis on the continuous time OLG model with finite

lifetime of Cass and Yaari (1967) and Tobin (1967). While d’Albis (2007) studies

the monotonic relationship between the population growth rate and the steady-state

capital intensity in an economy without technical change, the analysis in Futagami

and Nakajima (2001) adds endogenous growth following Romer (1986). In fact,

Futagami and Nakajima find a positive effect of longevity on the steady-state growth

rate of the economy. Here, increasing longevity is equivalent to an increase in the

finite and deterministic individual lifespan. This result relies i) on the complex

relationship between the economy’s aggregate savings rate and its steady-state age

distribution, and ii) on the AK-type aggregate production function. Since a longer

lifespan increases the economy’s savings rate, it also accelerates steady-state growth.

Contrary to this result, my analysis suggests that the link between aging and the

aggregate savings rate leaves the steady-state growth rate unaffected once one allows

for capital-saving technical change.

Second, the present paper extends and complements the literature on endogenous

economic growth in competitive economies that started with Bester and Petrakis

(2003), Hellwig and Irmen (2001), and Irmen (2005).4 These contributions allow

for endogenous economic growth through innovation investments that increase the

productivity of labor. However, the competitive framework is also well suited for

the analysis of capital- versus labor-saving technical change in an aging economy.

Its neoclassical properties facilitate the identification of the role of both types of

endogenous technical change relative to the neoclassical growth model of Solow

(1956) and Swan (1956) with or without exogenous labor-saving technical change.

Third, my model makes a contribution to the theory of endogenous economic growth

that also explains the direction of technical change.5 The focus of this literature

is on the interaction between changing factor endowments and the incentives to

engage in innovation investments that may increase the productivity of these factors

3There is also a theoretical literature concerned with the role of demographic change for human
capital accumulation and economic performance in OLG models. Recent contributions include
de la Croix and Licandro (1999), Boucekkine, de la Croix, and Licandro (2002), Heijdra and Romp
(2009), and Ludwig and Vogel (2009).

4An alternative way to model endogenous economic growth in a competitive framework has
been proposed by Boldrin and Levine (1999), and Boldrin and Levine (2008).

5This theory has its roots in the so-called ‘induced innovations’ literature of the 1960s. It is
comprehensively surveyed in Acemoglu (2003a). Funk (2002) provides a critique of this literature
and a microfoundation in a perfectly competitive setup.
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differently. This literature has been initiated by the works of Daron Acemoglu (see,

e. g., Acemoglu (1998), Acemoglu (2002), Acemoglu (2003b), Acemoglu (2007), and

Acemoglu (2009)).6 Similar to these studies, the direction of technical change in my

model is determined by innovation decisions of intermediate-good firms. However,

to allow for a balanced growth path with population growth I dispense with the scale

effect both at the level of intermediate-good firms and at the level of the innovation

technology.

This paper is organized as follows. Section 2 presents the details of the model.

Section 3 studies the intertemporal general equilibrium and establishes the existence

and the stability properties of the steady state. In Section 4, I consider increases

in the old-age dependency ratio due to a decline in the labor force growth rate.

The focus of my analysis is on the implications for the evolution of GDP and for

the direction of technical change. Section 5 extends the analysis in two directions.

First, following Romer (1986), I allow for contemporaneous knowledge spillovers

across innovating firms in Section 5.1. Second, I study the case where the old-

age dependency ratio increases because of a higher life expectancy in Section 5.2.

Section 6 concludes. Proofs are relegated to Appendix A. Details on the phase

diagrams are given in Appendix B. Appendix C presents a calibration exercise. It

shows that the model is consistent with the recent growth experience of today’s

industrialized countries.

2 The Basic Model

The economy has a household sector, a final-good sector, and two intermediate-

good sectors in an infinite sequence of periods t = 1, 2, ...,∞. The household sector

comprises two-period lived individuals. There are five objects of exchange. The

manufactured final good can be consumed or invested. If invested it may either be-

come future capital or serve as an input in current innovation activity undertaken by

intermediate-good firms. Intermediate-good firms produce one of two types of inter-

mediates and sell it to the final-good sector. The production of the labor-intensive

intermediate good uses labor as the sole input, the only input in the production

of the capital-intensive intermediate good is capital. Intermediate-good firms either

belong to the sector that produces the labor- or the capital-intensive intermediate.

Accordingly, I shall refer to the labor- and the capital-intensive intermediate-good

sector. Labor- and capital-saving technical change is the result of innovation invest-

ments undertaken by intermediate-good firms of the respective sector. Households

6Other important studies on this topic include Lloyd-Ellis (1999), Kiley (1999), Galor and Moav
(2000), or Krusell, Ohanian, Rios-Rull, and Violante (2000).
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supply labor and capital to the intermediate-good sectors. Labor is “owned” by the

young, the old own the capital stock. Capital is the only asset in the economy.7

Each period has markets for all five objects of exchange. The final good serves as

numéraire.

2.1 Households

The two-period lived individuals work and save when young, retire when old, and

consume during both periods of their life. At t, there are Lt young and Lt−1 old

individuals. Individual labor supply when young is exogenous and normalized to

one. I denote λ > (−1) the exogenous growth rate of the labor force. Population

aging in the sense of an increasing old-age dependency ratio defined as Lt−1/Lt
occurs whenever λ declines between two adjacent periods.

Preferences of a member of cohort t are homothetic and defined over the level of

consumption when young and old, cyt and cot+1, respectively. Lifetime utility is

Ut = u (cyt ) + βu
(
cot+1

)
, (2.1)

where u : R++ → R is a per-period utility function. It is C2 and satisfies u′(c) >

0 > u′′(c) for all c > 0 as well as limc→0 u
′(c) =∞. To ensure the uniqueness of the

equilibrium, I assume that preferences are such that the intertemporal elasticity of

substitution is greater or equal to unity. Moreover, β ∈ (0, 1) is the discount factor.

The maximization of (2.1) is subject to the per-period budget constraints cyt +st = wt
and cot+1 = stRt+1, where st denotes savings, wt > 0 the real wage at t, and Rt+1 > 0

the real rental rate of capital between t and t+ 1, expected under perfect foresight.

The optimal plan of a member of cohort t,
(
cyt , st, c

o
t+1

)
, results from the Euler

condition

−u′ (cyt ) + β Rt+1u
′ (cot+1

)
= 0 (2.2)

in conjunction with the two budget constraints. Given our assumptions on pref-

erences, this plan involves a continuous and partially differentiable function that

7My setup is mute on the question as to who owns the infinitely-lived firms in the economy.
Moreover, I consider competitive equilibria where per-period profits are zero such that the expected
present discounted value of dividends associated with any ownership share is zero, too. It is well
known that these considerations are not sufficient to exclude equilibria with bubbles since the
number of potential traders is infinite in the OLG-framework (Tirole (1985)). In what follows, I
disregard this possibility and focus on equilibria without bubbles.
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relates savings to current income, the expected rental rate of capital, and the dis-

count factor

st = s (Rt+1, β)wt, (2.3)

where s (Rt+1, β) ∈ (0, 1) is the marginal propensity to save out of wage income with

partial derivatives sR (Rt+1, β) ≥ 0 and sβ (Rt+1, β) > 0.

2.2 The Final-Good Sector

The final-good sector produces with a production function F : R2
++ → R++

Yt = F (YK,t, YL,t) , (2.4)

where Yt is aggregate output in t, YK,t is the aggregate amount of the capital-

intensive intermediate input used in t, and YL,t denotes the aggregate amount of the

labor-intensive intermediate input. The function F is C2 with F1 > 0 > F11 and

F2 > 0 > F22. Moreover, it exhibits constant-returns-to-scale with respect to both

inputs. To include, e. g., the CES production function, I make no assumptions on

the limits of the function F and its derivatives for YK → 0, YL → 0, YK →∞, and

YL →∞.

Under these assumptions, I may study the competitive behavior of the final-good

sector in terms of a single representative firm. In units of the final good of period t

as numéraire the profit in t of the final-good sector is

Yt − pK,tYK,t − pL,tYL,t, (2.5)

where pj,t, j = K,L, is the price of the respective intermediate.

The final-good sector takes the sequence {pK,t, pL,t}∞t=1 of factor prices as given

and maximizes the sum of the present discounted values of profits in all periods.

Since it simply buys both intermediates in each period, its maximization problem

is equivalent to a series of one-period maximization problems. Let κt denote the

period-t factor intensity in the final-good sector, i. e.,

κt =
YK,t
YL,t

. (2.6)

Then, the production function in intensive form is F (κt, 1) ≡ f (κt). The respective

profit-maximizing first-order conditions for t = 1, 2, ... are

YK,t : pK,t = f ′ (κt) , (2.7)

YL,t : pL,t = f (κt)− κtf ′ (κt) . (2.8)
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2.3 The Intermediate-Good Sector

There are two different sets of intermediate-good firms, each represented by the set

R+ of nonnegative real numbers with Lebesgue measure. Intermediate-good firms

either belong to the labor- or to the capital-intensive intermediate-good sector.

2.3.1 Technology

At any date t, all firms of a sector have access to the same sector-specific technology

with production function

yl,t = min {1, atlt} and yk,t = min {1, btkt} , (2.9)

where yl,t and yk,t is output, 1 a capacity limit,8 at and bt denote a firm’s labor and

capital productivity in period t, lt and kt is the labor and the capital input. While

labor, lt, is hired at t, capital, kt, must be installed in t − 1. The firms’ respective

labor and capital productivity is equal to

at = At−1(1− δ + qAt ) and bt = Bt−1(1− δ + qBt ); (2.10)

here At−1 and Bt−1 denote aggregate indicators of the level of technological knowl-

edge to which innovating firms in period t have access for free. Naturally, δ ∈ (0, 1)

is the rate of depreciation of technological knowledge in both sectors, and qAt and

qBt are indicators of (gross) productivity growth at the firm level. Without loss of

generality, capital fully depreciates after one period.

To achieve a productivity growth rate qjt > 0, j = A,B, a firm must invest i(qjt )

units of the final good in period t. The function i : R++ → R++ is the same for

both sectors, time invariant, C2, increasing and strictly convex. Hence, higher rates

of productivity growth require ever larger innovation investments. Moreover, with

the notation i′ (qj) ≡ di (qj) /dqj for j = A,B, it satisfies

lim
qj→0

i(qj) = lim
qj→0

i′(qj) = 0, and lim
qj→∞

i
(
qj
)

= lim
qj→∞

i′
(
qj
)

=∞. (2.11)

If a firm innovates, the assumption is that an innovation in period t is proprietary

knowledge of the firm only in t, i. e., in the period when it is made. Subsequently, the

8The analysis is easily generalized to allow for an endogenous capacity choice requiring addi-
tional capacity investments, with investment outlays being a strictly convex function of capacity. In
such a setting profit-maximizing behavior implies that a larger innovation investment is accompa-
nied by a larger capacity investment (see, Hellwig and Irmen (2001) for details). Thus, the simpler
specification treated here abstracts from effects on firm size in an environment with changing levels
of innovation investments. Otherwise, it does not affect the generality of my results.
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innovation becomes embodied in the sector specific productivity indicators (At, Bt),

(At+1, Bt+1) , ..., with no further scope for proprietary exploitation. The evolution

of these indicators will be specified below. If firms decide not to undertake an

innovation investment in period t, then they have access to the production technique

represented by At−1 and Bt−1 such that at = At−1(1 − δ) and bt = Bt−1(1 − δ),

respectively.

2.3.2 Profit Maximization and Zero-Profits

Per-period profits in units of the current final good are

πL,t = pL,tyl,t − wtlt − i(qAt ), πK,t = pK,tyk,t −Rtkt − i(qBt ), (2.12)

where pL,tyl,t, pK,tyk,t is the respective firm’s revenue from output sales, wtlt, Rtkt
its wage bill at the real wage rate wt and its capital cost at the real rental rate of

capital Rt, and i(qjt ), j = A,B, its outlays for innovation investment.

Firms choose a production plan (yl,t, lt, q
A
t ) and (yk,t, kt, q

B
t ) taking the sequence

{pL,t, pK,t, wt, Rt}∞t=1 of real prices and the sequence {At−1, Bt−1}∞t=1 of aggregate

productivity indicators as given. They choose a production plan that maximizes the

sum of the present discounted values of profits in all periods. Because production

choices for different periods are independent of each other, for each period t, they

choose the plan (yl,t, lt, q
A
t ) and (yk,t, kt, q

B
t ) that maximizes the profit πL,t and πK,t,

respectively.

If a firm innovates, it incurs an investment cost i(qjt ) > 0 that is associated with a

given innovation rate qjt > 0 and is independent of the output yl,t or yk,t. An inno-

vation investment is only profit-maximizing if the firm’s margin is strictly positive,

i. e., if pL,t > wt/at or pK,t > Rt/bt. Then, there is a positive scale effect, namely if

the firm innovates, it wants to apply the innovation to as large an output as possible

and produces at the capacity limit, i. e., yl,t = 1 or yk,t = 1. The choice of (lt, q
A
t )

and (kt, q
B
t ) must then minimize the costs of producing the capacity output, i. e.,

assuming wt > 0 and Rt > 0 these input combinations must satisfy

lt =
1

At−1(1− δ + qAt )
, kt =

1

Bt−1(1− δ + qBt )
, (2.13)

and

q̂At ∈ arg min
qA≥0

[
wt

At−1(1− δ + qA)
+ i(qA)

]
,

(2.14)

q̂Bt ∈ arg min
qB≥0

[
Rt

Bt−1(1− δ + qB)
+ i(qB)

]
.

9



Given the convexity of the innovation cost function and the fact that limqj→0 i
′(qj) =

0, j = A,B, the following conditions determine a unique level q̂At > 0 and q̂Bt > 0

as the solution to the first-order conditions

wt
At−1(1− δ + q̂At )2

= i′
(
q̂At
)

and
Rt

Bt−1(1− δ + q̂Bt )2
= i′

(
q̂Bt
)
. (2.15)

These conditions relate the marginal reduction of a firm’s wage bill/capital cost

to the marginal increase in its investment costs. Upon dividing one by the other

and rearranging reveals that Hicks’ conjecture mentioned in the Introduction is

essentially about the incentives to minimize costs. Indeed, one obtains

wt
Rt

=
At−1

Bt−1

(
(1− δ + q̂At )2 i′

(
q̂At
)

(1− δ + q̂Bt )2 i′ (q̂Bt )

)
. (2.16)

Since the numerator of the right-hand side increases in q̂At and the denominator

increases in q̂Bt , an increase in the relative price of labor induces, ceteris paribus,

relatively more labor-saving technical change, i. e., a hike in wt/Rt means a greater

ratio q̂At /q̂
B
t . However, to pin down the latter ratio one has to know the relative

factor prices per efficiency unit, i. e., the ratio (wt/At−1) / (Rt/Bt−1), where “effi-

ciency” refers to the level of technology before innovation investments are under-

taken. Changes in this ratio determine the direction of technical change.

If a firm’s margin is not strictly positive, i. e., pL,t ≤ wt/at or pK,t ≤ Rt/bt, then it

will not invest. In case of a zero-margin, any plan (yl,t, lt, 0) with yl,t ∈ [0, 1] and lt =

yl,t/At−1 (1− δ) or (yk,t, lt, 0) with yk,t ∈ [0, 1] and kt = yk,t/Bt−1 (1− δ) maximizes

πLt or πKt , respectively. Without loss of generality and to simplify the notation, I

assume for this case that intermediate-good firms still produce the capacity output.

If a firm faces a strictly negative margin, it won’t produce and (0, 0, 0) is the optimal

plan.

2.4 Consolidating the Production Sector

Turning to the implications for the general equilibrium, recall that the set of each

sector of intermediate-good firms is R+ with Lebesgue measure. Consider equi-

libria where both intermediates are produced. Then, the maximum profit of any

intermediate-good firm producing the labor- or the capital-intensive intermediate

must be zero at any t. Indeed, since the supply of labor and capital is bounded in

each period, the set of intermediate-good firms employing more than some ε > 0

units of labor or capital must have bounded measure and hence must be smaller

than the set of all intermediate-good firms. Given that inactive intermediate-good
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firms must be maximizing profits just like the active ones, I need that maximum

profits of all active intermediate-good firms at equilibrium prices are equal to zero.

Using (2.12), (2.13), and (2.15), I find for profit-maximizing intermediate-good firms

earning zero profits in equilibrium that

pL,t = (1− δ + q̂At )i′(q̂At ) + i(q̂At ), pK,t = (1− δ + q̂Bt )i′(q̂Bt ) + i(q̂Bt ), (2.17)

i. e., the price is equal to variable cost plus fixed costs when wt/at and Rt/bt are

consistent with profit-maximization as required by (2.15). Upon combining the

equilibrium conditions of the final-good sector and both intermediate-good sectors

the following proposition holds.

Proposition 1 If (2.7), (2.8), and (2.17) hold for all producing firms at t, then

there are maps, gA : R++ → R++ and gB : R++ → R++, such that q̂At = gA (κt) and

q̂Bt = gB (κt) satisfy

gAκ (κt) > 0 and gBκ (κt) < 0 for all κt > 0. (2.18)

Proposition 1 states a key property of the production sector. The equilibrium incen-

tives to engage in labor- and capital-saving technical change depend on the factor

intensity of the final-good sector. This is due to the properties of the production

function F . Under constant returns to scale and positive, yet decreasing marginal

products, both intermediate-good inputs are complements in the production of the

final good. Hence, having relatively more of YK,t, i. e., a higher κt, increases pL,t and

decreases pK,t. These price movements increase q̂At and decrease q̂Bt in accordance

with (2.17).

2.5 Evolution of Technological Knowledge

The evolution of the economy’s level of technological knowledge is given by the

evolution of the aggregate indicators At and Bt. An important question is then how

these indicators are linked to the innovation investments of individual intermediate-

good firms.

Labor- and capital-saving productivity growth occurs at those intermediate-good

firms that produce at t. Denoting the measure of the firms producing the labor- and

the capital-intensive intermediate in t by nt and mt, respectively, their contribution

11



to At and Bt is equal to the highest level of labor and capital productivity attained

by one of them, i. e.,

At = max{at(n) = At−1

(
1− δ + qAt (n)

)
|n ∈ [0, nt]}

(2.19)

Bt = max{bt(m) = Bt−1

(
1− δ + qBt (m)

)
|m ∈ [0,mt]}.

Since in equilibrium qAt (n) = qAt and qBt (m) = qBt , I have at = At−1

(
1− δ + qAt

)
and

bt = Bt−1

(
1− δ + qBt

)
. Hence, for all t = 1, 2, ...

At = At−1

(
1− δ + qAt

)
and Bt = Bt−1

(
1− δ + qBt

)
(2.20)

with A0 > 0 and B0 > 0 as initial conditions.

3 Intertemporal General Equilibrium

3.1 Definition

A price system corresponds to a sequence {pL,t, pK,t, wt, Rt}∞t=1. An allocation is a

sequence {cyt , st, cot , Yt, YK,t, YL,t, nt,mt, yL,t, yK,t, q
A
t , q

B
t , at, bt, lt, kt, Lt−1, Kt}∞t=1 that

comprises a strategy {cyt , st, cot+1}∞t=1 for all cohorts, consumption of the old at t = 1,

co1, a strategy {Yt, YK,t, YL,t}∞t=1 for the final-good sector, measures nt and mt of

intermediate-good firms active at t producing the capacity output yl,t = yk,t = 1

with input choices (lt, q
A
t ), and (kt, q

B
t ) resulting in the respective productivity levels

(at, bt), and demanding the aggregate supply of labor and capital, Lt and Kt.

For an exogenous evolution of the labor force, Lt = L0 (1 + λ)t with L0 > 0 and

λ > (−1), a given initial level of capital, K1 > 0, and initial values of technological

knowledge, A0 > 0 and B0 > 0, an intertemporal general equilibrium corresponds to

a price system, an allocation, and a sequence {At−1, Bt−1}∞t=1 of indicators for the

level of aggregate technological knowledge that satisfy the following conditions for

all t = 1, 2, ...,∞:

(E1) The young of each period save according to (2.3) and supply Lt units of labor.

(E2) The production sector satisfies Proposition 1.

(E3) The market for the final good clears, i. e.,

Lt−1c
o
t + Ltc

y
t + IKt + IAt + IBt = Yt, (3.1)

12



where IKt is capital investment, IAt and IBt denote aggregate innovation investments

in labor- and capital-saving technical change.

(E4) The market for both intermediates clears, i. e.,

YL,t = nt and YK,t = mt. (3.2)

(E5) There is full employment of labor and capital, i. e.,

ntlt = Lt and mtkt = Kt. (3.3)

(E6) The productivity indicators At and Bt evolve according to (2.20).

(E1) guarantees optimal behavior of all households under perfect foresight. Since

the old at t = 1 own the capital stock, their consumption is L0c
o
1 = R1K1. (E2)

assures optimal behavior of all firms. Due to constant returns to scale in final-good

production, there are no profits in equilibrium. The resource constraint (3.1) of (E3)

reflects the fact that capital fully depreciates after one period.

Market clearing for each intermediate good (E4), full employment of labor and

capital (E5), (2.13), and the updating condition (E6) imply that nt = AtLt and

mt = BtKt. Hence, in equilibrium, we have

YL,t = AtLt and YK,t = BtKt, (3.4)

IAt = AtLti
(
qAt
)

and IBt = BtKti
(
qBt
)
, (3.5)

i. e., aggregate output of each intermediate good is equal to the respective input

in efficiency units, and aggregate investment in labor- and capital-saving technical

change is proportionate to the respective input in efficiency units. Observe that

(2.6) and (3.4) imply an equilibrium factor intensity

κt =
Bt−1

(
1− δ + gB (κt)

)
Kt

At−1 (1− δ + gA (κt))Lt
(3.6)

Thus, in equilibrium κt is the intensity of efficient capital per unit of efficient labor.

For short, I shall henceforth refer to κt as the ‘efficient capital intensity’ as op-

posed to the ‘capital intensity’, i. e., the amount of capital per worker Kt/Lt. With

this in mind Proposition 1 may be reinterpreted from a perspective of the general

equilibrium.

Corollary 1 At all t, the equilibrium incentives to engage in capital- and labor-

saving technical change depend on the ratio Bt−1Kt/At−1Lt. If this ratio increases

(decreases), then q̂At increases (decreases) and q̂Bt decreases (increases).
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Corollary 1 links Hicks’ conjecture about relative factor prices as stated in condition

(2.16) to relative factor endowments. Moreover, it emphasizes that the correct mea-

sure of relative scarcity is the amount of efficient capital per unit of efficient labor,

where ‘efficient’ refers to the technological level at the beginning of the respective

period, i. e., before innovation investments are being undertaken. If Bt−1Kt/At−1Lt
increases, then κt also increases. Since gAκ (κt) > 0 > gBκ (κt), q̂

A
t increases and

q̂Bt decreases. It is in this sense that the relative scarcity of factors of production

induces technical change.

3.2 The Dynamical System

The equilibrium conditions (E1), (E2), (E3), (E5) and (E6), require savings to equal

capital investment, i. e.,

IKt = stLt = Kt+1 for t = 1, 2, ...,∞. (3.7)

The evolution of the economy can then be characterized by means of two state

variables, namely the efficient capital intensity of the final-good sector, κt, and the

level of capital-saving technological knowledge, Bt.

For further reference it proves useful to introduce some additional variables. I denote

the real wage per efficiency unit and the real rental rate of capital per efficiency unit

by wt/At ≡ w̃ (κt) and Rt/Bt ≡ R̃ (κt). Then, the equilibrium real rental rate of

capital and the equilibrium real wage become respectively R (κt) = BtR̃ (κt) and

w (κt) = Atw̃ (κt).

Proposition 2 (Dynamical System)

Given (K1, L0, A0, B0) > 0 as initial conditions, there is a unique equilibrium se-

quence {κt, Bt}∞t=1 determined by

s (R (κt+1) , β)

1 + λ
w̃ (κt) =

κt+1

Bt

1− δ + gA (κt+1)

1− δ + gB (κt+1)
, (3.8)

and

Bt+1 = Bt

(
1− δ + gB (κt+1)

)
, (3.9)

where κ1 and B1 satisfy

κ1 =
B0

(
1− δ + gB (κ1)

)
K1

A0 (1− δ + gA (κ1))L0(1 + λ)
> 0, B1 = B0

(
1− δ + gB (κ1)

)
> 0. (3.10)
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According to Proposition 2, the dynamical system is a two-dimensional system of

first-order, autonomous, non-linear difference equations. The equation of motion for

the efficient capital intensity is (3.8). It restates the condition for savings to equal

capital investment (3.7) where Kt+1 is replaced by an update of (3.6). Since pref-

erences are homothetic and wt is proportionate to At, the latter drops out on both

sides of the equation. Observe further that (3.8) collapses to Diamond’s difference

equation for the capital intensity if we eliminate capital- and labor-saving technical.

Equation (3.9) determines the evolution of the level of capital-saving technological

knowledge. For any given pair (κt, Bt) ∈ R++, (3.8) assigns a unique value κt+1

which is then used to find Bt+1 with (3.9). Since K1, L0, A0, and B0 are initial

conditions and L1 = (1 + λ)L0, κ1 is pinned down by (3.6) for t = 1.

Define a steady state as a trajectory along which all variables grow at a constant

rate. From (3.9) I deduce that a trajectory with Bt+1/Bt − 1 = const. requires

κt = κt+1 = κ∗. Moreover, according to (3.8), the latter needs Bt+1 = Bt = B∗.

Hence, a steady state is a solution to

s (R (κ∗) , β)

1 + λ
w̃ (κ∗) =

κ∗

B∗
(
1− δ + gA (κ∗)

)
. (3.11)

gB (κ∗) = δ (3.12)

Proposition 3 (Steady State)

1. There is a unique steady state involving κ∗ ∈ (0,∞) and B∗ ∈ (0,∞) if and

only if

lim
κ→0

f ′(κ) > i′(δ) + i(δ) > lim
κ→∞

f ′(κ). (3.13)

2. The steady-state growth rate of the economy is g∗ ≡ At+1/At−1 = gA (κ∗)−δ.
Moreover, along a steady-state path, I have

a)
at+1

at
=
wt+1

wt
=
cyt+1

cyt
=
cot+1

cot
=
st+1

st
= 1 + g∗,

b)
Yt+1

Yt
=
YK,t+1

YK,t
=
YL,t+1

YL,t
=
Kt+1

Kt

=
nt+1

nt
=
mt+1

mt

= (1 + g∗) (1 + λ) ,

c) Bt = bt = B∗, R∗ = B∗ [f ′ (κ∗)− i(δ)] ,

d) p∗L = f (κ∗)− κ∗ f ′ (κ∗) , p∗K = f ′ (κ∗) , k∗ =
1

B∗
,

lt+1

lt
=

1

1 + g∗
.
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According to Proposition 3, a steady state exists if the marginal product of the

capital-intensive intermediate good in final-good production is sufficiently high (low)

when YK → 0 (YK → ∞). Then, condition (3.13) assures a value κ ∈ (0,∞) such

that the zero-profit condition of intermediate-good firms of the capital-intensive

sector is satisfied at q̂B = δ.9 At this value pK = f ′(κ∗) is the revenue whereas

i′(δ)+i(δ) is the total cost of such a firm. Clearly, condition (3.13) would always hold

if I had imposed the usual Inada conditions on the final-good production function F .

On the other hand, a violation of (3.13) implies that Bt either becomes unbounded

or vanishes in the limit as t→∞.

Contrary to the one-sector neoclassical growth model where multiple steady states

with κ∗ ∈ (0,∞) may exist if capital and labor are poor substitutes (see, e. g.,

Galor (1996)), the steady state is unique in my setting. The reason is that here

the steady-state capital intensity κ∗ is not determined by the difference equation for

capital accumulation. Instead, κ adjusts such that additions to the stock of capital-

saving technological knowledge just offset depreciation. Then, given κ∗, there is a

unique steady-state level of capital-saving technological knowledge B∗ that satisfies

(3.11).

Statement 2 of Proposition 3 gives a complete list of the steady-state evolution.

The steady-state growth rate of the economy is equal to the growth rate of the

stock of labor-saving technological knowledge. Labor productivity, the real wage,

and individual consumption and savings grow at this rate. Aggregate variables such

as Yt or Kt grow at rate g∗ + λ. There is no growth of capital-saving technological

knowledge. The rental rate of capital and intermediate-good prices are constant.

With these results at hand, it is straightforward to see that the steady state is

consistent with Kaldor’s facts (Kaldor (1961)) as long as g∗ > 0.

For the upcoming analysis it is important to keep in mind that the determination

of the steady-state efficient capital intensity as well as the steady-state growth rate

is independent of the household sector. In fact, they only hinge on parameters that

characterize the production sector. For instance, if F = Γ (YK,t)
1−γ (YL,t)

γ, Γ > 0,

0 < γ < 1, and i = v0

(
qjt
)2

, v0 > 0, j = A,B, I find

κ∗ =

(
Γ (1− γ)

δ (2 + δ) v0

) 1
γ

and gA (κ∗) = −1− δ
3

+

√
(1− δ)2

9
+

Γ γ

3v0

(κ∗)1−γ.(3.14)

Quite intuitively, κ∗ increases in the productivity parameter Γ and decreases in

the innovation cost parameter v0. The steady-state growth rate g∗ = gA (κ∗) − δ

9In light of Proposition 1, condition (3.13) may also be stated as limκ→0 g
B(κ) > δ >

limκ→∞ gB(κ). Hence, diminishing returns to (efficient) capital still play a key role here since
they imply gBκ (κt) < 0.
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Figure 3.1: The Phase-Diagram of the Locally Stable Steady State (κ∗, B∗).

inherits these comparative statics. In Appendix C, I show that the steady-state

growth rate g∗ is broadly consistent with the long-run growth performance of today’s

industrialized countries for reasonable parameter values.

To get an idea of the transitional dynamics involved, consider the phase diagram

in the (Bt, κt) – plane shown in Figure 3.1 (see Appendix B for details). Based on

(3.8), I denote the locus of all pairs (Bt, κt) for which the evolution of κt is at a point

of rest by ∆κt = 0 ≡ {(Bt, κt) |κt+1 − κt = 0}. I assume this locus to be stable in a

sufficiently small neighborhood of the steady state. This assumption may be justified

with reference to the analysis of Diamond (1965) where the focus is also confined to

locally stable steady states. As a consequence, the horizontal arrows point towards

the ∆κt = 0 – locus. Moreover, this locus is strictly increasing. Intuitively, ∆κt = 0

requires dκt+1 = dκt whereas local stability means here that dκt+1 < dκt. Then,

from (3.8), dBt/dκt > 0 is necessary to reestablish dκt+1 = dκt following a change

dκt 6= 0.

The locus ∆Bt = 0 ≡ {(Bt, κt) |Bt+1 −Bt = 0} gives all pairs (Bt, κt), for which the

evolution of Bt is at a point of rest. In the vicinity of the steady state, this locus is

strictly decreasing and stable. Intuitively, ∆Bt = 0 requires δ = gB (κt+1), i. e., κt+1

must not change as I vary κt. Since any change dκt > 0 increases the left-hand side

of (3.8), I need dBt < 0 to offset this effect. Hence, the negative slope. The stability

of this locus may also be deduced from (3.8). Since dBt > 0 (dBt < 0) implies an

increase (decrease) in κt+1, I have δ > gB (κt+1) above and δ < gB (κt+1) below the
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∆Bt = 0 – locus. Accordingly, the vertical arrows point towards ∆Bt = 0.

The continuous time representation of the trajectories in Figure 3.1 does not sub-

stitute for a discrete time analysis which is provided by the following lemma.

Lemma 1 If the locus ∆κt = 0 is stable in a vicinity of (κ∗, B∗), then the steady

state is either a stable node or a clockwise spiral sink.

4 Population Aging, Labor Force Growth, and

the Direction of Technical Change

This section studies the effect of a permanent decline in the growth rate of the labor

force λ on the direction of technical change. This is equivalent to an increase in

the old-age dependency ratio at t defined as Lt−1/Lt = (1 + λ)−1. Increases in the

latter are meant to capture the tendencies shown in Table 1. For ease of notation, I

consider an economy in the steady state when a change in λ occurs. Proposition 4

has the main result of this section.

Proposition 4 (Labor Force Growth, Comparative Statics and Dynamics)

Consider an economy in the steady state in period t = 1. Then, it experiences a small

and permanent decline in its labor force growth rate such that Lt = L1(1+λ′)t−1 with

λ > λ′ > (−1) for all t = 2, 3, ...,∞. Denote variables associated with an evolution

under λ′ by an apostrophe such that (κ∗′, B∗′) is the steady state under λ′.

1. It holds that κ′2 > κ∗ and B′2 < B∗.

2. It holds that κ∗′ = κ∗ and B∗′ < B∗.

According to the first claim of Proposition 4 an increase in the old-age dependency

ratio leads to a higher efficient capital intensity and a lower level of capital-saving

technical knowledge. This is the result of two opposing forces on the capital intensity

of t = 2. On the one hand, the labor force will be smaller under λ′ than under λ.

From Corollary 1, I know that this leads, ceteris paribus, to a higher efficient capital

intensity. On the other hand, under rational expectations, generation 1 may reduce
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its savings rate to a lower rental rate of capital.10 The point of the first claim is

that the former effect dominates the latter. Therefore, between t = 1 and t = 2

the capital intensity grows faster than along the steady-state trajectory with λ.

Following Cutler, Poterba, Sheiner, and Summers (1990), I refer to this acceleration

in capital deepening as the Solow effect. In view of Corollary 1, the Solow effect

induces Hicks effects : since κ′2 > κ∗ there is more labor-saving and less capital-saving

technical change. In other words, gA (κ′2) > gA (κ∗) and gB (κ′2) < δ = gB (κ∗) where

the latter implies B′2 < B∗. Hence, population aging affects the relative scarcity of

factors of production and becomes a determinant of the direction of technical change.

How does aging affect the evolution of gross domestic product (GDP ) between t = 1

and t = 2 ? To address this question I use (2.4), (3.4) and (3.5) and express GDP

and per-capita GDP at t as

GDPt (Kt, Lt, Bt, At) ≡ F (BtKt, AtLt)− AtLti
(
gA (κt)

)
−BtKti

(
gB (κt)

)
(4.1)

gdpt (Kt, Lt, Bt, At) ≡
GDPt (Kt, Lt, Bt, At)

Lt−1 + Lt
.

To assess the impact of aging on these variables, I consider the differential evolution

of GDP2 and gdp2 under λ′ and λ and evaluate this difference at the evolution under

λ, i. e.,

dGDP2 (K2, L2, A2, B2) = GDP2 (K ′2, L
′
2, A

′
2, B

′
2)−GDP2 (K2, L2, A2, B2) ,

(4.2)

dgdp2 (K2, L2, A2, B2) = gdp2 (K ′2, L
′
2, A

′
2, B

′
2)− gdp2 (K2, L2, A2, B2) ,

where B2 = B∗, A2 = A1

(
1− δ + gA (κ∗)

)
, A′2 = A1

(
1− δ + gA (κ′2)

)
, and B′2 =

B∗
(
1− δ + gB (κ′2)

)
.

Corollary 2 (Aging, GDP, and per-capita GDP)

1. It holds that

dGDP2 (K2, L2, A2, B2) ≈ R2 (K ′2 −K2) + w2 (L′2 − L2) < 0. (4.3)

10There are at least two cases where this second channel is mute since savings do not adjust to
a lower rental rate of capital. First, if the intertemporal elasticity of substitution is equal to one,
then savings are independent of it. Second, if expectations of generation 1 are not rational but
“myopic” (Michel and de la Croix (2000)) such that the marginal propensity to save out of wage
income at t becomes s (Rt, β) = s (R (κ∗) , β).
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2. It holds that

dgdp2 (K2, L2, A2, B2) ≈
(

w2L2

GDP2(·)
2 + λ

1 + λ
− 1

)
GDP2(·)

(L1 + L2)
2 (L′2 − L2)

(4.4)

+
R2

L1 + L2

(K ′2 −K2) .

According to Corollary 2 aging reduces GDP2 because there is less capital and less

labor in t = 2. The former effect is the result of a lower expected rental rate of

capital, the latter is the direct effect of aging on the evolution of the labor force.

Both effects are proportionate to the respective factor price. More importantly,

induced technical change does not play a role here. In fact, as emphasized by

Acemoglu (2007), the choice of technology in a competitive economy is such that

it maximizes GDPt at given factor endowments (Kt, Lt). Therefore, the induced

changes of qA2 and qB2 have no first-order effect on GDP2.

The effect of aging on per-capita GDP is indeterminate in general. This reflects the

fact that less labor may reduce GDP by more than population. The first term in

parenthesis of (4.4) captures this tension. However, if the labor share w2L2/GDP2 is

close to 2/3 and λ close to zero, the effect on aggregate output is likely to dominate.

Then, as K ′2 ≤ K2, per-capita GDP falls in response to population aging.

Finally, it is worth noting that Claim 1 of Proposition 4 as well as Corollary 2 hold

for any pair of adjacent periods that experience a small decline in the labor force

growth rate. Hence, their applicability is not restricted to the steady state as the

starting point.

Let me get back to Claim 2 of Proposition 4 which has the steady-state effects

of a permanent increase in the old-age dependency ratio. In accordance with the

interpretation of Proposition 3 the steady-state efficient capital intensity remains

unaffected and so does the steady-state growth rate. However, there is a level effect

on capital-saving technological knowledge. From (3.11), I deduce that B∗ declines

at the same rate as the growth factor of the labor force.

To understand the role of capital-saving technical change for the steady-state effects

consider the phase diagram of Figure 4.1 (again, see Appendix B for details). At

B∗, the one time and permanent decline in λ shifts the ∆κt = 0 – locus to the right

since savings per unit of next period’s workers increase and (κ∗, B∗) is locally stable.

In a world without capital-saving technical change, the new steady state would be

at point Z since the evolution of κt is stable around κ∗ given B∗. Intuitively, this

shift reflects the Solow effect and the Hicks effect on labor-saving technical change.

As a consequence, such a framework predicts that a permanent decline in λ induces
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Figure 4.1: Comparative Statics and Dynamics for a Permanent Decline in the

Growth Rate of the Labor Force. The Case of a Stable Node.

faster steady-state growth due to the Hicks effect on labor-saving technical change.

Once the direction of technical change is endogenous, point Z cannot be a steady

state: to the right of κ∗, the growth rate of Bt is strictly negative.

5 Extensions

5.1 Contemporaneous Knowledge Spillovers

What is the effect of population aging on the direction of technical change in a

competitive economy with contemporaneous knowledge spillovers? To allow for

such an externality I replace (2.10) by

at(n) = At−1

(
1− δ + qAt (n) + η

[
1

nt

∫ nt

0

qAt (n)dn

])
,

(5.1)

bt(m) = Bt−1

(
1− δ + qBt (m) + η

[
1

mt

∫ mt

0

qBt (m)dm

])
,

where η ∈ R+, n ∈ [0, nt], and m ∈ [0,mt]. The terms in squared brackets represent

the knowledge externality that is external to the respective intermediate-good firm.
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It is proportionate to the average of the net productivity growth rates achieved by

all firms of the respective sector.

The incorporation of contemporaneous knowledge spillovers requires some modifi-

cations that, however, do not invalidate the qualitative results established so far

except for those of Corollary 2. To get an idea of the necessary changes, observe

that the reasoning that led to Proposition 1 delivers now a symmetric equilibrium

configuration with qAt (n) = qAt , qBt (m) = qBt , at = At−1

(
1− δ + (1 + η)qAt

)
, and

bt = Bt−1

(
1− δ + (1 + η)qBt

)
. Moreover, there are maps gA : R2

++ → R++ and

gB : R2
++ → R++, such that q̂At = gA (κt, η) and q̂Bt = gB (κt, η) with gAκ (κt, η) >

0 > gBκ (κt, η), and giη(κt, η) < 0, i = A,B. Substituting these functions in (3.8) -

(3.10) delivers the dynamical system with contemporaneous spillovers. Its steady-

state efficient capital intensity satisfies gB(κ∗, η) = δ/(1 + η). Hence, κ∗ = κ∗(η)

and B∗ = B∗(η). A unique steady state with κ∗(η) ∈ (0,∞) and B∗(η) ∈ (0,∞)

exists if and only if limκ→0 f
′(κ) > i′(δ/(1+η))+ i(δ/(1+η)) > limκ→∞ f

′(κ), which

replaces (3.13). Moreover, the steady-state growth rate of the economy becomes

g∗(η) = (1 + η)gA (κ∗(η), η)− δ.

To understand the role of contemporaneous knowledge spillovers for the effect of

aging on the economy, consider its GDPt and gdpt of (4.1) replacing gi(κt) by

gi(κt, η), i = A,B. In analogy to (4.2), I denote by dGDP2 (K2, L2, A2, B2; η) and

dgdp2 (K2, L2, A2, B2; η) the differential effect of a small decline in the work force in

t = 2 on the evolution of GDP and per-capita GDP if η > 0.

Corollary 3 (Spillovers, Aging, GDP, and per-capita GDP)

Consider an environment as in Proposition 4 with η > 0 and let

E(·) ≡

[ ∑
i=A,B

∂GDP2 (·)
∂qi2

giκ (κ2, η)

]
dκ2(·), (5.2)

where the evaluation is at (K2, L2, A2, B2; η) .

1. It holds that

dGDP2 (K2, L2, A2, B2; η) ≈ R2(K
′
2 −K2) + w2(L

′
2 − L2) + E (·) .(5.3)

2. It holds that

dgdp2 (K2, L2, A2, B2; η) ≈
(

w2L2

GDP2(·)
2 + λ

1 + λ
− 1

)
GDP2(·)

(L1 + L2)
2 (L′2 − L2)

(5.4)

+
R2

L1 + L2

(K ′2 −K2) +
E (·)

L1 + L2

.
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Corollary 3 extends the findings of Corollary 2 to the case where η > 0. The new

feature is the presence of E(·) in (5.3) and (5.4). It captures the effect of population

aging on the evolution of GDP and gdp through induced technical change.

According to (5.2), the expression E(·) consists of two factors. First, there is the

effect of a changing capital intensity, on the efficient capital intensity κ2. In light

of Proposition 4, I have K ′2/L
′
2 > K2/L2, hence, dκ2(·) = κ′2 − κ∗ > 0. The second

factor, i. e., the term in brackets of (5.2), has the effect of induced technical change on

GDP2. Unlike in the scenario without contemporaneous knowledge spillovers, this

effect does not vanish. In fact, due to the externality there is too little innovation in

the competitive economy such that sign [∂GDP2 (·) /∂qi2] > 0, i = A,B. However,

since gAκ (κ2, η) > 0 > gBκ (κ2, η), the sign of the term in brackets is indeterminate in

general. Hence, for the results of Corollary 2 to go through, I have to assume that

contemporaneous knowledge spillovers are weak such that η is sufficiently close zero.

5.2 Increasing Life-Expectancy

Thus far, I studied aging as a decline in the growth rate of the labor force. However,

only a slight reinterpretation of the analytical framework is necessary to allow for

the incorporation of the effect of an increasing life expectancy on the direction of

technical change. To accomplish this, suppose that each individual faces a proba-

bility to die at the onset of old age equal to (1− ν) ∈ (0, 1). Let βν ∈ (0, 1) denote

the discount factor that the individual applies in the presence of a probability to

die. Moreover, normalize u(0) = 0 to be the utility after death. Under these as-

sumptions, we may interpret Ut of (2.1) as the expected utility of generation t with

β ≡ βν ν as the effective discount factor. The old-age dependency ratio at t becomes

νLt−1/Lt and increases in ν.

There is a perfect annuity market for insurance against survival risk. Then the

economy inherits the properties established in Proposition 1, 2, 3, and Lemma 1.

However, since the savings rate becomes a function of life expectancy, the following

proposition holds.11

Proposition 5 (Life Expectancy, Comparative Statics and Dynamics)

Consider an economy in a steady state in period t = 1. Then, it experiences a

small and permanent increase in its life expectancy such that the effective discount

11Without a perfect annuity market there are unintended bequests to deal with and the effect of
an increase in life-expectancy on aggregate savings is indeterminate in general (see, e. g., Sheshinski
(2007) for a discussion).
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factor increases, i. e., β′ > β for all generations t = 1, 2, 3, ...,∞. Denote variables

associated with an evolution under β′ by an apostrophe such that (κ∗′, B∗′) is the

steady state under β′.

1. If generation 1 anticipates the increase in its life expectancy, then κ′2 > κ∗ and

B′2 < B∗. If this change is anticipated by all generations t = 2, 3, ...,∞ and

not by generation 1, then κ′2 = κ∗, B′2 = B∗ and κ′3 > κ∗, B′3 < B∗.

2. It holds that κ∗′ = κ∗ and B∗′ < B∗.

Intuitively, an anticipated higher life expectancy increases savings per next period’s

worker since the weight on expected old-age utility increases. This dominates the

effect of a declining real rental rate of capital. Then, initially the effective capital

intensity increases. However, contrary to the case of a permanent decline in the

growth rate of the labor force, this effect may be delayed by one generation if gen-

eration 1 makes its plan anticipating an effective discount factor of β instead of β′.

Arguably, this is the relevant case since expectations of one’s own life expectancy

are often myopic, i. e., coincide with the actual life expectancy of the previous gen-

eration. Moreover, unlike a reduction in a generation’s number of offsprings, the

choice of (cy1, s1, c
o
2) is usually made before the change in the survival probability is

experienced. As a consequence, the effect of a permanent increase in life expectancy

on the direction of technical change may be delayed by one generation.

Since the steady-state efficient capital intensity is independent of the household

sector, the qualitative finding on the long-run implications mimic those of Proposi-

tion 4: an increase in life expectancy has no effect on the steady-state growth rate,

however, the steady-state rate of return on capital falls since B∗′ < B∗.

The initial effect of an increasing life expectancy on GDP in absolute and per-

capita terms may be directly deduced from Corollary 3. Since K ′2 ≥ K2 and

L′2 = L2, (5.3) and (5.4) deliver dGDP2 (K2, L2, A2, B2; η) ≈ R2(K
′
2 −K2) + E (·),

which is positive if η is sufficiently small and K ′2 > K2. As to per-capita GDP ,

I find dgdp2 (K2, L2, A2, B2; η) ≈ [R2 (K ′2 −K2) + E(·)] / [νL1 + L2] − gdp2L1(ν
′ −

ν)/ [νL1 + L2]. The sign is indeterminate even if η is small. It will be negative if a

higher ν increases population by more than GDP2.

6 Concluding Remarks

What is the role of population aging for the direction of technical change and eco-

nomic performance ? I address this question in a competitive economy that exhibits
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endogenous capital- and labor-saving technical change. Population aging corre-

sponds either to a decline in the growth rate of the labor force or to an increase in

life-expectancy. Both phenomena increase the economy’s old-age dependency ratio.

Contrary to the existing literature on aging and endogenous growth, I find that the

steady-state growth rate is independent of the economy’s age structure. However,

population aging affects the transitional dynamics. Even if the current young reduce

their savings in anticipation of a declining rental rate of capital, the relative scarcity

of labor increases. This leads to more labor- and less capital- saving technical change.

Unless there are contemporaneous knowledge spillovers, this change in the direction

of technical change fails to have a first-order effect on the evolution GDP . If aging

takes the form of a declining labor force growth rate, it reduces GDP because it

lowers the growth of the work force and of the capital stock. Per-capita GDP is

then likely to decline, too, since the effect on GDP more than outweighs the one on

population growth.

An increase in life expectancy has the potential to raise GDP along the transition

if it leads to more savings and capital accumulation. However, these effects may

be delayed if a rise in life expectancy is not anticipated. Overall, the presence

of contemporaneous knowledge spillovers makes it more difficult to come up with

clear-cut predictions on the relationship between population aging, the direction of

technical change, and economic performance.

The present analysis suggests several routes for future research. They include the

following. First, one may want to understand the role of fiscal policy in an econ-

omy with endogenous capital- and labor-saving technical change. The fact that

the steady-state growth rate is independent of the household sector suggests that

steady-state growth effects that arise, e. g., in Saint-Paul (1992), may not obtain

once endogenous capital-saving technical change is allowed for.

Second, the question arises to what extend the implications for the transitional

dynamics hinge on the assumption of a household sector with two-period lived in-

dividuals. While this framework has the advantage of an intuitive representation of

aging and of analytical tractability, it abstracts from facets that may impinge on

the relationship between aging and the direction of technical change such as ele-

ments of intragenerational heterogeneity or intergenerational transfers. I leave these

questions for future research.
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A Proofs

A.1 Proof of Proposition 1

Upon substitution of (2.7) and (2.8) in the respective zero-profit condition of (2.17), we obtain

f (κt)− κt f ′ (κt) = (1− δ + q̂At )i′(q̂At ) + i(q̂At ),

(A.1)

f ′ (κt) = (1− δ + q̂Bt )i′(q̂Bt ) + i(q̂Bt ).

Denote RHS(q) the right-hand side of both conditions. In view of the properties of the function
i given in (2.11), RHS(q) is a mapping RHS(q) : R+ → R+ with RHS′(q) > 0 for q ≥ 0 and
limq→∞RHS(q) = ∞. Moreover, the properties of the function f(κt) imply that the left-hand
side of both conditions is strictly positive for κt > 0. Hence, for each κt > 0 there is a unique
q̂jt > 0, j = A,B, that satisfies the respective condition stated in (A.1). I denote these maps by
q̂jt = gj (κt), j = A,B.

An application of the implicit function theorem to (A.1) gives

dq̂A

dκt
=

−κt f ′′ (κt)(
1− δ + q̂At

)
i′′
(
q̂At
)

+ 2i′
(
q̂At
) ≡ gAκ (κt) > 0,

(A.2)
dq̂B

dκt
=

f ′′ (κt)(
1− δ + q̂Bt

)
i′′
(
q̂Bt
)

+ 2i′
(
q̂Bt
) ≡ gBκ (κt) < 0.

The respective signs follow from the properties of the functions f and i. �

A.2 Proof of Corollary 1

Equation (3.6) is a fixed-point problem with a unique solution κ̂t > 0. To see this, write the
right-hand side of (3.6) as RHS (κt, Bt−1Kt/At−1Lt). Given the properties of gA (κt) and gB (κt)
as stated in (2.18) and Bt−1Kt/At−1Lt > 0, the function RHS (κt, Bt−1Kt/At−1Lt) is continuous,
strictly decreasing and strictly positive for all κt > 0. Hence, limκt→0RHS (κt, ·) > 0. Accordingly,
there is a unique κ̂t > 0 such that κ̂t = RHS (κ̂t, Bt−1Kt/At−1Lt).

Ceteris paribus, a greater Bt−1Kt/At−1Lt shifts the function RHS (κt, Bt−1Kt/At−1Lt) upwards.
Therefore, κ̂t is greater the greater Bt−1Kt/At−1Lt. Then, from (2.18), q̂At = gA (κt) increases
whereas q̂Bt = gB (κt) decreases. Obviously, the opposite response obtains when Bt−1Kt/At−1Lt
falls. �

A.3 Proof of Proposition 2

The proof consists of two steps. First, I show that the variables κt and Bt are indeed state variables
of the economy at t. Second, I prove the existence of a unique equilibrium sequence {κt, Bt}∞t=1.
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1. Given Lt−1, Lt, and Kt, the equilibrium determines 22 variables belonging to period t. One
readily verifies that there are also 22 conditions for each period. Since q̂A = gA (κt) and
q̂B = gB (κt) according to Proposition 1, it is also straightforward to verify that all prices
{pL,t, pK,t, wt, Rt}∞t=1 depend on κt. Moreover, {Yt, YK,t, YL,t, nt,mt, at, bt, lt, kt}∞t=1 as well
as {At, Bt}∞t=1 depend on κt. In addition, yL,t = yK,t = 1. With this in mind, individual
savings of (2.3) becomes st = s (R (κt+1) , β)w (κt), where

w (κt) ≡ At−1

(
1− δ + gA (κt)

) [
f (κt)− κtf ′ (κt)− i

(
gA (κt)

)]
(A.3)

and

R (κt+1) ≡ Bt
(
1− δ + gB (κt+1)

) [
f ′ (κt+1)− i

(
gB (κt+1)

)]
. (A.4)

Both factor prices, w (κt) and R (κt+1), are found from the respective zero-profit condi-
tion given in (2.12) and Proposition 1. The individual budget constraints deliver cyt =
(1− s (R (κt+1) , β))w (κt) and cot = R (κt) s (R (κt) , β)w (κt−1). For t = 1, we have by
assumption that co1 = R (κ1)K1/L0.

2. To obtain equation (3.8) solve (3.6) for Kt+1 and substitute the resulting expression into
(3.7). This gives

stLt = κt+1

At
(
1− δ + gA (κt+1)

)
Bt (1− δ + gB (κt+1))

Lt+1, for t = 1, 2, ...,∞. (A.5)

Using st = s (R (κt+1) , β)w (κt) and wt/At ≡ w̃ (κt) gives after some straightforward ma-
nipulations (3.8).

The second difference equation of the dynamical system states the evolution of Bt+1 de-
scribed by (2.20) where qBt+1 is replaced by gB (κt+1) in accordance with Proposition 1.

In the first period, κ1 is pinned down by (3.6) for given initial values A0, B0, L0, K1 and
L1 = (1 + λ)L0. From the proof of Corollary 1, there is a unique solution κ1 > 0.

Before we turn to the uniqueness of the sequence {κt, Bt}∞t=1 it is useful to state and prove
the following lemma.

Lemma 2 Define

Ψ (κt) ≡
1− δ + gA (κt)
1− δ + gB (κt)

κt(1 + λ)
s (R (κt) , β)

. (A.6)

It holds for all κt > 0 that

w̃ (κt) > 0 and w̃′ (κt) > 0,

R̃ (κt) > 0 and R̃′ (κt) < 0,

w (κt) > 0 and w′ (κt) > 0, (A.7)

R (κt) > 0 and R′ (κt) < 0,

Ψ (κt) > 0 and Ψ′ (κt) > 0 with lim
κt→0

Ψ (κt) = 0 and lim
κt→∞

Ψ (κt) =∞.
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Proof of Lemma 2

First, I note that (2.12), Proposition 1, and the updating conditions (2.20) deliver

wt/At = f (κt)− κt f ′ (κt)− i
(
gA (κt)

)
≡ w̃ (κt) ,

(A.8)

Rt/Bt = f ′ (κt)− i
(
gB (κt)

)
≡ R̃ (κt) .

With (A.1), this gives

w̃ (κt) =
(
1− δ + gA (κt)

)
i′
(
gA (κt)

)
> 0,

(A.9)

R̃ (κt) =
(
1− δ + gB (κt)

)
i′
(
gB (κt)

)
> 0,

where, for κt > 0, the signs follow from Proposition 1 and the properties of the function i

given in (2.11). It follows that

w̃′ (κt) = gAκ (κt)
[
i′
(
gA (κt) +

(
1− δ + gA (κt)

)
i′′
(
gA (κt)

))]
> 0,

(A.10)

R̃′ (κt) = gBκ (κt)
[
i′
(
gB (κt) +

(
1− δ + gB (κt)

)
i′′
(
gB (κt)

))]
< 0.

Again, for κt > 0, the signs follow from Proposition 1 and the properties of the function i

given in (2.11).

The third and the forth claim of (A.7) follow immediately from (A.9) and (A.10) since the
updating conditions (2.20) imply

w (κt) = At−1

(
1− δ + gA (κt)

)2
i′
(
gA (κt)

)
,

(A.11)

R (κt) = Bt−1

(
1− δ + gB (κt)

)2
i′
(
gB (κt)

)
.

As to the fifth claim of (A.7), I note that Ψ (κt) > 0 and Ψ′ (κt) > 0 follow immediately
from the definition of Ψ given in (A.6), Proposition 1, and the fact that sR (κt, β) ≥ 0.

Since gA (κt) is increasing on R++ and bounded from below by zero, limκt→0 g
A (κt) is

finite and limκt→∞ gA (κt) is finite or infinite. Since gB (κt) is decreasing on R++ and
bounded from below by zero, limκt→0 g

B (κt) is either finite or infinite and limκt→∞ gB (κt)
is finite. It follows that limκt→0

(
1− δ + gA (κt)

)
/
(
1− δ + gB (κt)

)
is finite. Moreover,

limκt→∞
(
1− δ + gA (κt)

)
/
(
1− δ + gB (κt)

)
is either finite or infinite.

Since s (R (κt) , β) ∈ (0, 1) for all κt ∈ R++ and sR (R (κt) , β) ≥ 0, I find that 1 ≥
limκt→0 s (R (κt) , β) > 0 and 1 > limκt→∞ s (R (κt) , β) ≥ 0 if sR (R (κt) , β) > 0. Other-
wise, s (R (κt) , β) is independent of κt. Hence, I have limκt→0 Ψ (κt) = 0 and limκt→∞Ψ (κt) =
∞. �

Rearranging (3.8) gives

Bt w̃ (κt) = Ψ (κt+1) . (A.12)

According to Lemma 2, the left-hand side of (A.12) is strictly positive for any (κt, Bt) ∈
R2

++. Moreover, the right-hand side of (A.12) is increasing on R++ approaching zero as
κt+1 → 0 and infinity as κt+1 →∞. Hence, there is a unique κt+1 that satisfies (3.8) given
(κt, Bt) ∈ R2

++. With this value at hand, (3.9) delivers a unique Bt+1 > 0. �
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A.4 Proof of Proposition 3

1. First, I prove the “if”-part before I turn to the “only if”-part.

• “⇒”: If condition (3.13) holds then (A.1) delivers for the capital-intensive intermediate-
good sector limκ→0 g

B (κ) > δ > limκ→∞ gB (κ). The latter is necessary and sufficient
for (3.12) to have at least one solution κ∗ ∈ (0,∞) given that gB (κ) is continuous
according to Proposition 1.

The existence of a steady state (κ∗, B∗) ∈ R2
++ follows from (3.11) and Lemma 2.

They assure that a value B∗ = Ψ (κ∗) /w (κ∗) ∈ (0,∞) exists since Ψ (κ) > 0 and
w̃ (κ) > 0 for any κ ∈ (0,∞).

Uniqueness of κ∗ follows from gBκ (κ) < 0 on R++. The uniqueness of B∗ follows since
the total differential of (A.12) reveals for any given κt that dκt+1/dBt > 0. Hence,
there is a unique B∗ that satisfies (A.12) at κt = κt+1 = κ∗.

• “⇐”: If i′(δ) + i(δ) ≥ limκ→0 f
′(κ), then δ ≥ limκ→0 g

B(κ). As a consequence, for
all κ ∈ (0,∞) the sequence {Bt}∞t=1 is decreasing for all t. Accordingly, Bt ∈ [0, B0]
and Bt ≤ B0

(
1− δ + limκ→0 g

B(κ)
)t. Therefore, limt→∞Bt = 0. If limκ→∞ f ′(κ) ≥

i′(δ) + i(δ) then limκ→∞ gB(κ) ≥ δ. Accordingly, the sequence {Bt}∞t=1 is increasing
for all t and Bt ≥ B0

(
1− δ + limκ→∞ gB(κ)

)t. Hence, limt→∞Bt =∞.

2. Since (3.12) determines κ∗, I obtain from Proposition 1 and (2.20) that At+1/At − 1 =
gA (κ∗) − δ ≡ g∗. The stated findings about the steady-state growth rate of at, wt, c

y
t , cot ,

and st are immediate from at = At, (A.8), (2.3) with R∗ = B∗ [p∗K − i(δ)]. Steady-state
growth of Kt follows from (3.7). The evolution of kt and lt follow immediately from (2.13).
All other growth factors under b) result from (2.4) in conjunction with (E4), (E5), and (3.4).
From (2.7), I have p∗K = f ′ (κ∗). Then, (A.8) delivers R∗ = B∗ [p∗K − i(δ)]. �

A.5 Proof of Lemma 1

The following Result introduces some necessary notation for the analysis of the local stability of
the steady state.

Result 1 With (κ1, B1) given by (3.10), the dynamical system can be stated as

(κt+1, Bt+1) = φ (κt, Bt) ≡
(
φκ(κt, Bt), φB(κt, Bt)

)
, t = 1, 2, ...,∞, (A.13)

where φj : R++ → R++, j = κ,B, are continuously differentiable functions.

Proof of Result 1

Write (3.8) and (3.9) as κt+1 = h (κt, Bt+1) and Bt+1 = z (κt+1, Bt), where h and z are some
continuously differentiable functions. With B0 as an initial condition and κ1 determined by (3.10),
B1 is the equal to z (B0, κ1). Hence, we may state the the dynamical system as

κt+1 = h (κt, Bt+1) , Bt+1 = z (κt+1, Bt) t = 1, 2, ...,∞, (κ1, B1) given. (A.14)

Then, for any (κt, Bt) these equations determine (κt+1, Bt+1). More precisely, upon substitution
we obtain κt+1 = h (κt, z (κt+1, Bt)) which implicitly defines κt+1 = φκ (κt, Bt). In turn, using the
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latter, we find Bt+1 = z (κt+1, Bt) = z (φκ (κt, Bt) , Bt) ≡ φB (κt, Bt). Hence, we may state the
dynamical system as in (A.13). �

The steady state is a fixed point of the system (A.13). To study the local behavior of the system
around the steady state, we have to know the eigenvalues of the Jacobian matrix

Dφ(κ∗, B∗) ≡

 φκκ(κ∗, B∗) φκB(κ∗, B∗)

φBκ (κ∗, B∗) φBB(κ∗, B∗)

 . (A.15)

We study each of the four elements of the Jacobian in turn.

1. First, consider φκ(κt, Bt). Consider (3.8), which we repeat here for convenience in the form
of (A.12)

Bt w̃ (κt) = Ψ (κt+1) .

The implicit function theorem assures that a function κt+1 = φκ(κt, Bt) exists if φκκ(κt, Bt) ≡
dκt+1/dκt and φκB(κt, Bt) ≡ dκt+1/dBt exist. We show next that this is the case for all
(κt, Bt) > 0.

(a) We start with φκκ(κt, Bt). Implicit differentiation of (3.8) gives

φκκ(κt, Bt) =
Bt w̃

′ (κt)
Ψ′ (κt+1)

> 0. (A.16)

Form Lemma 2 the numerator and the denominator are strictly positive. Hence, the
derivative φκ(κt, Bt) exists and is strictly positive for all (κt, Bt).

Evaluated at the steady state, (A.16) simplifies to

φκκ(κ∗, B∗) =
Ψ (κ∗)w′ (κ∗)
Ψ′ (κ∗)w (κ∗)

. (A.17)

The assumption that the locus ∆κt = 0 is stable in the vicinity of the steady state is
equivalent to φκκ(κ∗, B∗) ∈ (0, 1).

(b) Next, I turn to the derivative φκB(κt, Bt). Total differentiation of (3.8) gives now

φκB(κt, Bt) =
Ψ (κt+1)

Bt Ψ′ (κt+1)
> 0. (A.18)

By Lemma 2, the derivative exists for all κt+1 > 0 and is strictly positive. Evaluated
at the steady state, we have

φκB(κ∗, B∗) =
Ψ (κ∗)

B∗Ψ′ (κ∗)
. (A.19)

2. Next, I turn to φB (κt, Bt). Consider (3.9) for t+ 1 and substitute κt+1 = φκ (κt, Bt). This
gives

Bt+1 = Bt
(
1− δ + gB (κt+1)

)
= Bt

(
1− δ + gB (φκ (κt, Bt))

)
≡ φB (κt, Bt) . (A.20)

Since φκ (κt, Bt) exists for all (κt, Bt) > 0 so does φB (κt, Bt). We now characterize the
partial derivatives of this function.
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(a) First, consider φBκ (κt, Bt) ≡ ∂Bt+1/∂κt. From (A.20) we have

φBκ (κt, Bt) = Bt g
B
κ (φκ (κt, Bt)) φκκ (κt, Bt) < 0. (A.21)

Evaluated at the steady state, this gives

φBκ (κ∗, B∗) = B∗ gBκ (κ∗) φκκ (κ∗, B∗) . (A.22)

(b) Next, we consider the derivative φBB (κt, Bt) ≡ ∂Bt+1/∂Bt. From (A.20), we find

φBB (κt, Bt) =
(
1− δ + gB (φκ (κt, Bt))

)
+Bt g

B
κ (φκ (κt, Bt)) φκB (κt, Bt) .

Evaluated at the steady state, this gives

φBB (κ∗, B∗) = 1 +B∗ gBκ (κ∗) φκB (κ∗, B∗) . (A.23)

Observe that φBB (κ∗, B∗) ∈ (0, 1). Indeed, since gBκ < 0 and φκB (κ∗, B∗) > 0, we have
φBB (κ∗, B∗) < 1. Using (A.19) and the definition of Ψ of (A.6) I find

φBB (κ∗, B∗) > 0 ⇔
(
1− δ + gA(κ∗)

)(
1− sRR

′ (κ∗)
s

)
+ κ∗ gAκ (κ∗) > 0, (A.24)

where s is evaluated at (R (κ∗) , β). The sign follows from Proposition 1.

Using the results of (A.17), (A.19), (A.22), and (A.23), the required Jacobian (A.15) can be written

Dφ(κ∗, B∗) =

 φκκ(κ∗, B∗) φκB(κ∗, B∗)

B∗gBκ (κ∗) φκκ(κ∗, B∗) 1 +B∗ gBκ (κ∗) φκB(κ∗, B∗)

 . (A.25)

Denote µ1 and µ2 the eigenvalues of the Jacobian (A.25). With (A.17), (A.19), (A.22), and (A.23),
they are given by

µ1 =
φκκ + φBB

2
+

√(
φκκ + φBB

2

)2

− φκκ,

µ2 =
φκκ + φBB

2
−

√(
φκκ + φBB

2

)2

− φκκ.

Both eigenvalues are real if φBB ≥ 2
√
φκκ − φκκ ≥ 0, or

1 +B∗ gBκ (κ∗) φκB(κ∗, B∗) ≥ 2
√
φκκ − φκκ.

One readily verifies that µ1 is strictly increasing in φBB with µ1|φBB=1 = 1. Moreover, µ1|φBB=2
√
φκκ−φκκ

=√
φκκ. Hence, µ1 ∈ (0, 1) . On the other hand, µ2 decreases in φBB with µ2|φBB=2

√
φκκ−φκκ

=
√
φκκ

and µ2|φBB = φκκ. Hence, µ2 ∈ (0,
√
φκκ). Moreover, µ1 ≥ µ2 with equality when φBB = 2

√
φκκ − φκκ.

If (A.26) is violated, then Dφ has two distinct complex eigenvalues. Then, the steady state is a
spiral sink since det (Dφ) = φκκ < 1 (see, e. g., Galor (2007), Proposition 3.8). The stability of the
loci ∆κt = 0 and ∆Bt = 0 imply the clockwise orientation of the spiral sink. �
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A.6 Proof of Proposition 4

1. Under rational expectations, generation 1 makes its plan (cy1, s1, c
o
2) anticipating a real rental

rate of capital equal to R2 = R (κ′2). Then, the capital stock at t = 2 is equal to K2 =
s (R (κ′2) , β)w1L1. Moreover, κ′2 is given by (3.8), i. e.,

B∗ w̃ (κ∗) = Ψ (κ′2)
1 + λ′

1 + λ
. (A.26)

From Lemma 2, I know that Ψ (κ) is increasing for all κ > 0. Hence, κ′2 > κ∗ as λ > λ′.

2. This follows immediately from (3.11) and (3.12) for λ and λ′ and λ > λ′. �

A.7 Proof of Corollary 2

Equations (4.3) and (4.4) are first-order Taylor approximations of dGDP2 and dgdp2 at the steady-
state path under λ. I know from the proof of Proposition 4 that κ′2 > κ∗, henceK ′2 ≤ K2. Moreover,
λ′ < λ implies L′2 < L2.

The total effect of a small change of L2 and K2 on GDP2 at (K2, L2, A2, B2) may be written as

dGDP2 (·)
dL2

=
∂GDP2 (·)

∂L2
+

 ∑
i=A,B

∂GDP2 (·)
∂qi2

giκ (κ2)

 ∂κ2(·)
∂L2

= w2 > 0, (A.27)

dGDP2 (·)
dK2

=
∂GDP2 (·)

∂K2
+

 ∑
i=A,B

∂GDP2 (·)
∂qi2

giκ (κ2)

 ∂κ2(·)
∂K2

= R2 > 0, (A.28)

where ∂κ2(·)/∂L2 < 0 and ∂κ2(·)/∂K2 > 0 are implicitly given by (3.6) for t = 2. The partial
effect of L2 on GDP2 is ∂GDP2 (·) /∂L2 = A2

[
∂F (·) /∂ (A2L2)− i

(
gA (κ2)

)]
following (4.1). It

coincides with w2 = w (κ2) = w (κ∗) using (A.3). Since giκ (κ2) 6= 0, i = A,B, (A.27) follows from
the observation that

∂GDP2 (·)
∂qA2

= A1L2

[
∂F (·)
∂ (A2L2)

−
(
1− δ + gA (κ2)

)
i′
(
gA (κ2)

)
− i
(
gA (κ2)

)]
= 0,

(A.29)
∂GDP2 (·)

∂qB2
= B1K2

[
∂F (·)

∂ (B2K2)
−
(
1− δ + gB (κ2)

)
i′
(
gB (κ2)

)
− i
(
gB (κ2)

)]
= 0.

The expressions in brackets coincide with equilibrium profits of intermediate-good firms at t = 2
and are therefore equal to zero in accordance with Proposition 1. The same reasoning proves the
result for a small change in K2 as given in (A.28). Hence, (4.3) holds.

As to (4.4), I use (A.27) and (A.28) to derive dgdp2/dL2 and dgdp2/dK2. Straightforward manip-
ulations of these derivatives deliver (4.4). �

A.8 Proof of Corollary 3

Equations (5.3) and (5.4) are first-order Taylor approximations of dGDP2 and dgdp2 at the steady-
state path under λ. Since Proposition 4 also holds if η > 0, I have κ′2 > κ∗(η), hence dκ2(·) =
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∂κ2(·)/∂L2 (L′2 − L2) + ∂κ2(·)/∂K2 (K ′2 −K2) > 0, where the evaluation is at (K2, L2, A2, B2; η)
and ∂κ2 (·) /∂L2 < 0 and ∂κ2 (·) /∂K2 > 0 are implicitly given by (3.6) for t = 2 with giκ (κ2, η)
replacing giκ (κ2), i = A,B.

The total effect of a small change of L2 and K2 on GDP2 at (K2, L2, A2, B2; η) may then be
written as in (A.27) and (A.28). One readily verifies that ∂GDP2 (·) /∂L2 = w2 = w (κ∗(η)) and
∂GDP2 (·) /∂K2 = R2 = R (κ∗(η)).

However, with η > 0, I have

∂GDP2 (·)
∂qA2

= A1L2

[
πL,2 + η

(
w2

A2

)]
, and

∂GDP2 (·)
∂qB2

= B1K2

[
πK,2 + η

(
R2

B2

)]
,

since

πL,2 =
∂F (·)
∂ (A2L2)

−
(
1− δ + (1 + η)gA (κ2, η)

)
i′
(
gA (κ2, η)

)
− i
(
gA (κ2, η)

)
,

πK,2 =
∂F (·)

∂ (B2K2)
−
(
1− δ + (1 + η)gB (κ2, η)

)
i′
(
gB (κ2, η)

)
− i
(
gB (κ2, η)

)
,

and

w2

A2
=

∂F (·)
∂ (A2L2)

− i
(
gA (κ2, η)

)
,

R2

B2
=

∂F (·)
∂ (B2K2)

− i
(
gB (κ2, η)

)
.

As πL,2 = πK,2 = 0 holds in equilibrium and factor prices are strictly positive, I arrive at
∂GDP2 (·) /∂qA2 > 0 and ∂GDP2 (·) /∂qB2 > 0.

In view of gAκ (κ2, η) > 0 and gBκ (κ2, η) < 0, the conclusion is that the effect of a declining labor
force on E (·) is a sum of two terms of opposite sign with E (K2, L2, A2, B2; η = 0) = 0.

As to (5.4), I use the same reasoning as above to derive dgdp2/dL2 and dgdp2/dK2. Then, straight-
forward manipulations of the Taylor approximation of dgdp2(·) deliver (5.4). �

A.9 Proof of Proposition 5

In the presence of a perfect annuity market, an individual born at t chooses the plan
(
cyt , st, c

o
t+1

)
to maximize lifetime utility (2.1) subject to cyt +st = wt and cot+1 = stRt+1/ν. Writing the problem
like this uses the fact that an individual’s assets at t+ 1 are equal to st + (1− ν)st/ν. Moreover,
it incorporates the results of Yaari (1965) and Sheshinski and Weiss (1981) according to which
individuals without a bequest motive want to annuitize all their wealth.

Since preferences are homothetic, the Euler condition delivers cot+1/c
y
t = h (βRt+1/ν), where h :

R++ → R++ is a monotonically increasing function. Using cot+1 = stRt+1/ν and the Euler equation
in the budget constraint of period t, one has st = wt − cot+1/h(·) or

st =
νh(·)wt

νh(·) +Rt+1
= s (Rt+1, βν , ν)wt,

where s (Rt+1, βν , ν) ≡ s (ν, h (βνRt+1) , Rt+1). Since the intertemporal elasticity of substitution
is greater than or equal to unity, one has dst/dRt+1 ≥ 0. Moreover,

dst
dν

=
∂s

∂ν
wt > 0.
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1. (a) The increase in life expectancy is expected if generation 1 makes its plan (cy1, s1, c
o
2)

anticipating ν′. Then, s1 = s (R (κ2) , βν , ν′)w (κ∗). Since dst/dν > 0, I deduce from
(3.8), that dκt+1/dν > 0. Hence, κ2 > κ∗. Moreover, (3.9) delivers B2 < B∗.

(b) The increase in life expectancy is unexpected if generation 1 makes its plan (cy1, s1, c
o
2)

anticipating no change in the effective discount factor. Then, s1 = s (R (κ∗) , βν , ν)w (κ∗),
hence κ2 = κ∗ and B2 = B∗. The only change that occurs at t = 2 concerns
consumption of the old at t = 2. Since the insurance companies pay less, one has
cot+1 = stRt+1/ν

′. As generation 2 anticipates ν′, I have κ3 > κ∗ and B3 < B∗.

2. From (3.12) it follows that κ∗ = κ∗′. A higher life expectancy increases the left-hand side
of (3.11). Hence, to satisfy this equation B∗ must decrease. �
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B The Phase Diagram

B.1 The Phase-Diagram of Figure 3.1

I develop the phase diagram in the (Bt, κt) – plane.

First, consider the locus ∆κt ≡ κt+1 − κt. From (3.8) it follows that

∆κt = 0 ≡ {(Bt, κt) |κt+1 − κt = 0} ⇔ Bt =
Ψ (κt)
w̃ (κt)

. (B.1)

By assumption, the locus ∆κt = 0 is stable in the vicinity of the steady state. Then, from (A.17)
I have Ψ′ (κ∗) /Ψ (κ∗) > w̃′ (κ∗) /w̃ (κ∗). Hence, for all pairs (Bt, κt) satisfying (B.1) near (B∗, κ∗)
I have dBt/dκt > 0.

Next, consider the locus ∆Bt = 0. From (A.20) we have for Bt > 0

∆Bt = 0 ≡ {(Bt, κt) |Bt+1 −Bt = 0} ⇔ δ = gB (κt+1) = gB (φκ (κt, Bt)) . (B.2)

By (A.18), this locus is stable with monotonic convergence. Moreover, all pairs (κt, Bt) > 0 that
satisfy (B.2) are implicitly given by

κ∗ = φκ (κt, Bt) . (B.3)

Implicit differentiation of (B.3) reveals that dBt/dκt = −φκκ/φκB < 0 for all pairs (κt, Bt) > 0. The
sign follows since φκκ > 0 and φκB > 0 from Lemma 1.

B.2 The Phase-Diagram of Figure 4.1

This section proves the rightward shift of the ∆κt = 0 – locus and the downward shift of the
∆Bt = 0 – locus in the neighborhood of the locally stable steady state (κ∗, B∗) in response to a
decline in the growth rate of the labor force.

For λ′ 6= λ, equation (3.8) may be written as

Btw̃ (κt) = Ψ (κt+1)
1 + λ′

1 + λ
. (B.4)

Local stability of (κ∗, B∗) implies for all (κt, κt+1, Bt) sufficiently close that

dκt+1

dκt
=
Btw̃

′ (κt)
Ψ (κt+1)

1 + λ

1 + λ′
< 1. (B.5)

The ∆κt = 0 – locus associated with λ′ satisfies (B.4) for κt = κt+1. Then, changes in λ′ such
that κt remains an element of the set ∆κt = 0 satisfy

dκt =
Ψ (κt)
1 + λ

[
Btw̃

′ (κt)−Ψ′ (κt)
1 + λ′

1 + λ

]−1

dλ′. (B.6)

From (B.5), the term in brackets is negative. Hence, given Bt and dλ′ < 0, (B.6) gives dκt > 0.

As to the ∆Bt = 0 – locus consider (B.3). In the neighborhood of (κ∗, B∗) I have dBt =
−φκκ (κt, Bt) /φκB (κt, Bt) dκt. Moreover, from (B.4), one finds dκt = Ψ (κt+1) / [Btw̃ (κt) (1 + λ)] dλ′,
given κt+1. Upon combining these two differentials, one readily verifies that dBt < 0 for dλ′ < 0.
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C Three Numerical Examples

This appendix presents three calibration exercises. The focus is on the steady state and its stability
properties.

I make the following three assumptions:

Assumption 1 Per-period utility is logarithmic such that individual savings at t is st = β wt/(1+
β).

Assumption 2 The production function of the final good F is CES, i. e.,

F (YK,t, YL,t) = Γ
[
(1− γ)Y

ε−1
ε

K,t + γY
ε−1
ε

L,t

] ε
ε−1

, (C.1)

where Γ > 0, 0 < ε < ∞ is the constant elasticity of substitution between both inputs, and
0 < γ < 1.

Assumption 3 For j = A,B, the investment requirement function is given by

i(qj) = v0
(
qj
)v
, with v0 > 0, v > 1. (C.2)

Calibration The examples were computed with mathematica. All notebooks are available upon
request.

I consider three environments parameterized by the elasticity of substitution: ε = 1, ε = .9, and
ε = 2. Let a period represent 30 years. Then, I choose β = .55, a population growth rate λ = .35,
and a depreciation rate of technological knowledge δ = .26. These numbers correspond to per-
annum values of .98, .01, and .01, respectively. The depreciation rate of capital is set equal to
unity. The distribution parameter is equal to γ = 2/3 such that the share of output that accrues
to the capital-intensive (labor-intensive) intermediate is 1/3 (2/3) if the elasticity of substitution
is unity. The parameters of the input requirement function are v0 = 1/2 and v = 2. Finally, I set
Γ = 2.1 with the implication, that the steady-state annual growth rate of per-capita variables is
1.8% if ε = 1. This growth rate is approximately consistent with the trend growth rates of most
of today’s industrialized countries.

Key Results For Three Examples.

Elasticity of Steady State steady-state growth average annual eigenvalues
Substitution (κ∗, B∗) rate g∗ = gA (κ∗)− δ growth rate (µ1, µ2)

ε = 1 (3.6776, 14.2964) 0.71869 1.8% (0.778386, 0.409777)

ε = .9 (3.151871, 12.451) 0.703 1.79% (0.711324, 0.46547)

ε = 2 (59.5637, 150.124) 1.24951 2.7% (0.973239, 0.343434)

Since both eigenvalues are strictly positive and smaller than unity, the steady state is a locally
stable node. Moreover, observe that the growth rates increase in the elasticity of substitution, a
finding consistent with the general results established in Irmen (2009).
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