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Abstract
This paper shows that, for CEU preferences, the axioms consquentialism, state independence

and conditional certainty equivalent consistency under updating characterise a family of capac-

ities, called Genralised Neo-Additive Capacities (GNAC). This family contains as special cases

among others neo-additive capacities as introduced by Chateauneuf, Eichberger, and Grant

(2007), Hurwicz capacities, and ε-contaminations.

Moreover, we will show that the convex version of a GNAC is the only capacity for which the

core of the Full-Bayesian Updates of a capacity, introduced by Jaffray (1992), equals the set of

Bayesian updates of the probability distributions in the core of the original capacity
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1 Introduction

A major problem when modelling ambiguity of a decision maker in a dynamic context lies in

the well-known precarious relationship between updating capacities or multiple priors, dynamic

consistency and consequentialism. Early work by Epstein and LeBreton (1993) and Eichberger

and Kelsey (1996) showed that updating Choquet Expected Utility (CEU) preferences, which

satisfy consequentialism, in a dynamically consistent way implied additive beliefs. Even if

dynamic consistency was constrained to an event tree, ambiguous beliefs modelled by a capacity

were possible only on the final partition of events (Sarin and Wakker (1998) and Eichberger,

Grant, and Kelsey (2005)). In the context of ambiguity models with multiple priors, Epstein

and Schneider (2003) found that the set of priors had to fulfill a fairly restrictive rectangularity

condition in order to guarantee dynamically consistent preferences. In particular, the original

Ellsberg paradox cannot be explained with rectangular sets of priors.

In the light of these results, there are essentially two ways to proceed. Either one can abandon

consequentialism, and all the models relying on it like CEU and multiple priors, or to give up

dynamic consistency. In this paper, we retain consequentialism. The former route has been

explored by Hanany and Klibanoff (2007).

In the spirit of Gilboa and Schmeidler (1993), we consider a preference relation and the fam-

ily of its updated preferences which satisfy the two axioms Consequentialism and State Inde-

pendence. For the case where beliefs can be described by multiple priors, as in the max-min

expected utility (MMEU) preference model of Gilboa and Schmeidler (1989), Pires (2002)

proved that these two axioms plus a third axiom that Eichberger, Grant, and Kelsey (2007)

refer to as Conditional Certainty Equivalent Consistency (CCEC) are equivalent to the Full

Bayesian Updating of all prior probabilities. If the preference relation can be represented by

a Choquet integral and beliefs by a capacity, as in the Choquet Expected Utility (CEU) pref-

erence model of Schmeidler (1989), Eichberger, Grant, and Kelsey (2007) and Horie (2007)

established that Consequentialism, State Independence, and a weakening of CCEC that Horie
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refers to as Conditional Certainty Equivalent Consistency for Binary Acts, are equivalent to Full

Bayesian Updating of the capacity as suggested by Jaffray (1992) and Walley (1991).1

In this paper, we characterize the family of capacities for which the three initial axioms of Pires

(2002) hold, that is, where CCEC is not restricted to binary acts. We find a class of capacities

which is slightly more general than the family of neo-additive capacities which were introduced

and axiomatized in Chateauneuf, Eichberger, and Grant (2007). For CEU preferences for which

the associated capacity is a neo-additive capacity, the Choquet expected utility of an act can be

expressed as a convex combination of the expected utility with respect to an additive probability

distribution and the Hurwicz criterion (Hurwicz (1951)) which itself is a convex combination

of the utility values of the best and the worst outcomes.

The Choquet expected utility of an act with respect to a generalized neo-additive capacities

(GNAC) combines the subjective expected utility of the act and the utility values of the best

and the worst outcomes linearly, but the combinations need no longer to be convex but merely

monotone. Moreover, we can show that convex GNACs are the only capacities for which the

core of the Full Bayesian update of a capacity coincides with the set of Bayesian updates of the

probabilities in the core of the original capacity. These results provides a further justification

for neo-additive capacities as a useful restriction on the Choquet expected utility approach.2

The paper is organised as follows. After introducing in the next section the basic framework,

we prove in section 3 that CEU preferences satisfy Axiom CCEC if and only if the capacity v is

a GNAC. Section 4 discusses several special cases of GNACs before concluding the paper with

some open questions. Unless otherwise stated the proofs are given in the appendix.

2 The Framework

Let S be a finite set of states of the world, Σ = P(S), the set of events in S. For any E ∈ Σ, let

1 Horie (2007) showed that the necessary conditions in Eichberger, Grant, and Kelsey (2005) were too
stong and suggested the appropriate weakening of the CCEC where CCEC is restricted to hold only for binary acts.
2 In a recent paper, Chateauneuf, Faro, Gajdos, and Jaffray (2009) investigate robust updating rules.

From the perspective of robust statistics introduced by Huber (1981), they show that updated (ε, δ)-contaminations

are the only class of capacities whose core coincides with the set of Bayesian updates of the probabilities in the core

of the original capacity. (ε, δ)-contaminations are a special case of generalised neo-additive capacities. In this
regard, proposition 2 of Chateauneuf, Faro, Gajdos, and Jaffray (2009) overlaps with Proposition 4.3 in this paper.
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Ec denote the complement of E. Let X be a set of outcomes. An act is a function f : S → X ,

and F denotes the set of such acts. Given any two acts f and g in F and any event E in Σ, we

denote by fEg ∈ F the act defined as fEg(s) = f(s) if s ∈ E and fEg(s) = g(s) otherwise. For

notational convenience, we will not distinguish between the outcome x ∈ X and the constant

act x ∈ F , defined as x(s) = x for all s ∈ S.

Binary acts are an important special case. For any two outcomes x and y in X and any event E

in Σ, the binary act xEy is defined as

xEy(s) =

{
x if s ∈ E
y otherwise

.

A capacity v is a set function from Σ to R with v(∅) = 0, v(S) = 1 and v(A) ≤ v(B) for all

A ⊂ B, A and B in Σ.

Given a von Neumann-Morgenstern utility function u : X → R, two acts f and g are comonotonic

with respect to u, if for all pairs of states s and s′ in S,

[u (f (s))− u (f (s′))] [u (g (s))− u (g (s′))] ≥ 0.

The Choquet Expected Utility (CEU) of an act f with respect to the capacity v is given by

CEU(f, v) =

∫ 0

−∞

(v(u (f(s)) ≥ t)− 1)dt+

∫ +∞

0

v(u (f(s)) ≥ t)dt.

Since acts are finite-valued they can be written as f =
n∑

i=1

xiAi, where, in a convenient abuse of

notation, we denote by Ai both the set Ai ∈ Σ and the indicator function of the set Ai. That

is, Ai(s) = 1 for s ∈ Ai and 0 otherwise. For any f ∈ F , we denote by [f ] the subset of acts

comonotonic to f, which are measurable with respect to the partition A1, ...An. Without loss of

generality, suppose that the finite outcomes xi ∈ f(S) are ordered such that u(xi) ≤ u(xi+1),

then

CEU(f, v) =
n∑

i=1

u(xi) · [v(Ai ∪ Ai+1 ∪ ... ∪ An)− v(Ai+1 ∪ Ai+2 ∪ ... ∪ An)]

=
n∑

i=1

u(xi) ·m[f ](Ai),

withm[f ](Ai) := [v(Ai ∪Ai+1..An)− v(Ai+1 ∪Ai+2..An)] . Note that
n∑

i=1

m[f ](Ai) = 1 holds.

Thus, one can view the Choquet integral as determined by a set of probability distributions m,
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one for each possible ordering of outcomes.

Throughout this paper, we will consider preference relations � on F which can be represented

by a Choquet Expected Utility (CEU) functional,

f � g if and only if CEU(f, v) ≥ CEU(g, v).

An event E ∈ E is null (universal) if xEy ∼ y (xEy ∼ x) for all pairs of outcomes x, y ∈

X with x ≻ y. An event E is essential if for some x, y ∈ X, x ≻ xEy ≻ y. Let N , U and

E∗ denote the sets of null, universal and essential events, respectively.3 The following axiom,

which is not implied by CEU, will be assumed to hold throughout the paper.

Axiom 0 (Null-Event Consistency)

For all pairs of outcomes x and y such that x ≻ y, xEy ∼ y implies yEx ∼ x.

2.1 Updating preferences

Consider a family of preference relations�E on F which represent the decision maker’s prefer-

ences after it becomes known that a non-null event E has occurred. The ex-ante unconditional

preference relation on F will be denoted by � .

For preferences which are additive, that is, represented by a CEU functional with an additive

capacity v, standard Bayesian updating satisfies the following three axioms.

Axiom SI State Independence

For any two outcomes x, y ∈X , and any non-null event E /∈ N ,

x � y ⇔ x �E y.

Axiom C Consequentialism

For any two acts f , g ∈ F , and any event E ∈ Σ,

if f = g on E, then f ∼E g.

Axiom DC Dynamic Consistency

3 The definition of null, universal and essential events follows Ghirardato and Marinacci (2002).
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For any acts f , g ∈ F and any event E ∈ Σ,

f ≻E g if and only if fEg ≻ g.

State independence requires the conditional preferences over outcomes to agree with the uncon-

ditional preferences over outcomes. Consequentialism rules out effects on future choices from

outcomes which would have become relevant in the event Ec which did not happen. Dynamic

consistency links conditional and unconditional preferences by requiring that preferences after

E occurred remain consistent with ex-ante preferences.

It is well known (Ghirardato (2002)), that together the three axioms imply for a CEU deci-

sion maker that the utility function remains unchanged for the conditional preferences and the

capacity v is additive and updated by Bayes rule. As we wish to retain the property that the

ordinal ranking over outcomes is not affected by which event we condition upon, to have an

updating rule that leaves room for uncertainty represented by a non-additive capacity we must

relax either consequentialism or dynamic consistency.

Retaining consequentialism, Pires (2002) proposes a weaker version of DC, conditional cer-

tainty equivalent consistency which restricts the act g of the classical DC axiom to be constant.

Axiom CCEC Conditional Certainty Equivalent Consistency

For any event E �= ∅, any outcome x ∈ X, and any act f in F ,

f ∼E x if and only if fEx ∼ x. (1)

If the acts f in Equation 1 are restricted to binary acts, then we refer to Axiom CCEC as

Conditional Certainty Equivalent Consistency for Binary Acts.

Applying Axiom 0 to a binary act, reveals immediately the implication that the complement

of a null event is universal. Although this appears to be a natural assumption if capacities are

supposed to represent beliefs, together with Axiom CCEC (see Lemma 2.1 below) it implies

that the union of two null events must be also null. In the context of ambiguity, this conclusion

appears less innoxious. After all, ambiguity may manifest itself in a decision maker’s inability

to assign probability values to subevents, even if s/he feels capable of such a judgment for the

union of the events. This implication, however, is driven by Axiom CCEC and, hence, has to be
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judged in context with the latter.

The following lemma4 shows that the updating axiom, Axiom CCEC, in combination with

Axiom 0 yields a set of null events which is closed under the union operation.

Lemma 2.1 If Axiom 0 and Axiom CCEC for to binary acts hold, then v(A) = v(B) = 0

implies v(A ∪ B) = 0.

Proof. Let A and B be such that v(A) = v(B) = 0 and v(A ∪ B) �= 0 holds. By Axiom 0,

v(Ac) = 1. For x, y, z ∈ X with x ≺ y ≺ z, let f = xA + zB and, for E = A ∪ B, let

fEy = xA + yE
c + zB. Then

∫
fEydv = x(1 − v(A

c)) + y(v(Ac) − v(B)) + zv(B) = y.

Hence, fEy ∼ y. The same reasoning holds for any y′ ∈ X with y′ �= y, x ≺ y′ ≺ z. Hence,

fEy
′ ∼ y′. By Axiom CCEC, f ∼E y ∼E y′ for all y′ ∈ X, x ≺ y′ ≺ z. W.l.o.g. assume

x ≺ y ≺ y′ ≺ z. By Axiom CCEC, y′ ∼E y if and only if y′Ey ∼ y. Hence,
∫ (
y
′

Ey
)
dv =

y(1− v(E)) + y′v(E)) = y and v(E) = v(A ∪B) �= 0 imply y ∼ y′, a contradiction.

3 Generalized Neo-Additive Capacities (GNACs)

For multiple-prior preferences, Pires (2002) proved that state independence, consequentialism

and conditional certainty equivalent consistency imply the Full Bayesian updating rule, where

each probability distribution in the set of priors is updated according to Bayes rule. In the

CEU context, straightforward application of the definition reveals that CEU preferences satisfy

Axiom SI and Axiom C. Moreover, from Chateauneuf, Eichberger, and Grant (2007) and Horie

(2007) we know that Axiom CCEC restricted to binary acts implies that the capacities of CEU

preferences are updated according to the Full Bayesian Updating rule suggested by Jaffray

(1992) and Walley (1991).

We will show now that Axioms 0 and Axiom CCEC in its full strength determine a class of

capacities similar to neo-additive capacities, as axiomatized in Chateauneuf, Eichberger, and

4 Note that the proof uses only binary act consistency, the weaker notion of Axiom CCEC which

was suggested by Horie (2007). Notice that Axiom 0 would also have to be assumed for the main
result in Horie (2007), if it were extended to null sets other than the empty set.
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Grant (2007). We will call these capacities Generalized Neo-additive Capacities, or GNACs for

short.

Null events.

We do not restrict capacities to have non-zero values for events other than the empty set. This

generality requires us to introduce some regularity conditions.

Definition 3.1 A collection of setsN ⊂ Σ is said to exhibit the null-property if (i)∅ ∈ N and

S /∈ N ; (ii) A ∈ N ⇒ B ∈ N , for all B ⊂ A; and (iii) A ∈ N and B ∈ N ⇒ A ∪ B ∈ N .

The collection of sets N exhibits the null-property if it contains the empty set but not the state-

space, if all subsets of a null set are also in N , and if it is closed under union.

A capacity is congruent with a collection of null events N if it assigns a capacity value of zero

to every element in this collection5. Equivalently, if an event has positive capacity value then it

cannot be an element of N .

Definition 3.2 Fix a collection of sets N that exhibits the null-property. The capacity µ is

congruent with respect toN , if A ∈ N ⇒ µ (A) = 0 (or equivalently, µ (A) > 0⇒ A /∈ N ).

Exactly congruent is the stronger requirement that an event has zero capacity if and only if it

is in N . The capacity of complete ambiguity defined by µ(E) = 0 for all E �= S provides a

simple example of a capacity which is congruent, but not exactly congruent with N := {∅}.

Generalised Neo-Additive Capacities (GNAC).

A Generalized Neo-Additive Capacity (GNAC) can now be defined as a linear transformation of

an additive probability distribution which satisfies the monotonicity condition.

Definition 3.3 Let N be a collection of null events with the null-property, π a finitely additive

probability measure on (S,Σ), and a and b > 0 a pair of numbers satisfyingminE/∈N [a+ bπ (E)] ≥

5 Capacities congruent with a collection of null events satisfying the null-property are known as
null additive set functions, see Pap (1995).
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0 andmaxE/∈N [a+ b (1− π (E))] ≤ 1, then aGeneralized Neo-Additive Capacity v(·|N , π, a, b)

is defined as,

v(E|N , π, a, b) :=






0 if E ∈ N
a+ bπ (E) if E /∈ N and Ec /∈ N
1 if Ec ∈ N

.

The Choquet expected value of an act f with respect to the GNAC v(E|N , π, a, b) is easily

computed as

CEU(f, v) = b
∫

{s,∃t∈S,f(s)≤f(t),v({t}) �=0}

(u ◦ f)dπ

+a ·max{x| x ∈ (u ◦ f) ({s, ν({s}) �= 0})}

+(1− a− b) ·min{x| x ∈ (u ◦ f) ({s, ν({s}) �= 0})}).

In Chateauneuf, Eichberger, and Grant (2007) the following property of a capacity was intro-

duced.

Property A v(E ∪F )− v(F ) = v(E ∪G)− v(G) is satisfied for all events E, F andG such

that v(F ) �= 0, v(F ∪E) �= 1, v(G) �= 0 and v(G ∪ E) �= 1.

It is an easy exercise to check that a GNAC satisfies Property A.

We now state our main result.

Proposition 3.1 For a CEU preference relation represented by a capacity ν which satisfies

Axiom 0, Axiom SI, Axiom C, the following statements are equivalent:

(i) Axiom CCEC is satisfied.

(ii) v is updated with FBU and Property A is satisfied.

(iii) v is updated with FBU and v is a GNAC.

The following remark shows that small generalizations of the result in Proposition 3.1 are pos-

sible.

Remark 3.1 (i) It is worth noting that our proof uses only one way of Axiom CCEC, namely

f ∼E x⇒ fEx ∼ x.

(ii) In the statement of Axiom CCEC, we could replace the constant act x by a slightly more
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general act:

Alternative Axiom: Suppose∅ �= argmin
s∈S
f(s)∩argmin

s∈S
g(s)x ⊂ A and∅ �= argmax

s∈S
f(s)∩

argmax
s∈S
g(s) ⊂ A, then for any h ∈ F such that

max

{
min
s∈S
f(s),min

s∈S
g(s)

}
≤ min

s∈S
h(s), max

s∈Sc
h(s) ≤ min

{
max
s∈S
f(s),max

s∈S
g(s)

}
.

f ∼A g if and only if fAh ∼ gAh.

This alternative axiom is stronger than CCEC but, for CEU preferences, it is equivalent to

CCEC. Hence, for CEU preferences, Axiom CCEC implies GNAC which in turn implies the

alternative axiom.

Remark 3.2 Both neo-additive capacities and GNACs are based on an additive probability

distribution, but for a GNAC this probability distribution need no longer be congruent with the

null setN . For a GNAC it is possible that exists an event E such that π(E) �= 0, v(E) = 0 and

that for any essential event F, v(F ∪E) = v(F ) + bπ(E) �= v(F ). The existence of such event

has the following implication for the computation of the Choquet integral: consider an act f,

then there are two possibilities:

- either there is at least one essential event on which the outcome is not inferior to the outcome

on E, in which case the capacity value of E in the Choquet integral of f will be v(E ∪ F ) −

v(F ) = v(F ) + bπ(E),

-or the best outcome of f lies only on E, then the capacity value of E in the Choquet integral

of f is v(E) = 0.

GNACs can describe a situation where the decision maker ignores events with the highest out-

comes. Ignoring events with the best outcome can be viewed as a form of pessimism.

The Choquet expected value of an act f with respect to the GNAC v(E|N , π, a, b) is computed

as
CEU(f, v) = b

∫

{s,∃t∈S,f(s)≤f(t),v({t}) �=0}

(u ◦ f)dπ

+a ·max{x| x ∈ (u ◦ f) ({s, ν({s}) �= 0})}

+(1− a− b) ·min{x| x ∈ (u ◦ f) ({s, ν({s}) �= 0})}).
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In order to impose this congruence, we can use the following strengthening of axiom 0:

Axiom 0’ (Strong Null-Event Consistency)

For any three outcomes x, y, z ∈ X with x ≻ y ≻ z, any null event N ∈ N and any event

E ∈ Σ, s.t. E ∩N = ∅,

yN (xEz) ∼ xEz. (2)

Null-event consistency requires a null event not to affect the evaluation of a bet as long as it

carries a non-extreme outcome6. For E = ∅, Equation 2 yields the definition of a null event.

The following lemma shows that Axiom 0 guarantees that the capacity of the CEU is a null-

additive set functions, see Pap (1995).

Lemma 3.2 CEU preferences satisfy Axiom 0’ if and only if for any null event N ∈ N and

any event E ∈ Σ, s.t. E ∩N = ∅, v(E ∪N) = v(E).

Proof. Applying CEU to Equation 2 one has

u(x)v(E) + u(y)[v(E ∪N)− v(E)] + u(z)[1− v(E ∪N)]

= u(x)v(E) + u(z)[1− v(E)]

⇐⇒ [u(y)− u(z)][v(E ∪N)− v(E)] = 0.

With this strong null event consistency axiom, property D of the appendix is fulfilled. Therefore

lemma A.1 can be applied and the probability π is also congruent withN . The Choquet integral

of such GNACs combines then the expectation computed according to the probability with max

and min:

CEU(f, v) = b

∫

S

(u ◦ f)dπ + a ·max{x| x ∈ (u ◦ f) ({s, ν({s}) �= 0})}

+(1− a− b) ·min{x| x ∈ (u ◦ f) ({s, ν({s}) �= 0})}).

6 The property imposed by Axiom 0 is implied by Axiom 5 in Chateauneuf, Eichberger, and Grant (2007)
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4 GNACs and updating

Assuming CEU preferences which satisfy null-event consistency and consequentialism, updat-

ing rules impose conditions on unconditional preferences which may characterise these prefer-

ences. Thus, dynamic consistency implies additive capacities. Similarly, as the previous section

has shown, CCEC implies that capacities have the form of Generalised Neo-Additive Capac-

ities. GNACs are linear transformations of an additive probability distribution. Several well-

known examples of capacities can be obtained as special cases by putting additional constraints

on the parameters a and b.

1. Subjective Expected Utility (Savage (1954)): a = 0, b = 1.
2. Simple capacities, ε-Contaminations: a = 0, b ≤ 1.
3. (ε, δ)-Contaminations

(Chateauneuf, Faro, Gajdos, and Jaffray (2009)): −1 ≤ a ≤ 0, b < 1.
4. Hurwicz capacity (Hurwicz (1951)): 0 ≤ a ≤ 1, b = 0.
4. Convex capacity: a ≤ 0, a+ b ≤ 1.
5. Concave capacity: a ≥ 0, a+ b ≥ 1.
6. Cavex capacity (Wakker (2001), p. 1049): a ≥ 0, a+ b ≤ 1.

The updating axiom CCEC, however, also has implications for the updated preferences. In

this section, we will derive and discuss some properties for the updates of GNAC. Eichberger,

Grant, and Kelsey (2007) and Horie (2007) show that Axiom CCEC resstricted to binary acts

implies that the capacities of CEU preferences must be updated according to the Full-Bayesian

Updating rule (FBU) of Jaffray (1992). Given the information that E has occurred, the FBU-

rule is defined as the capacity νE,

vE (A) : =
v (A ∩ E)

v (A ∩ E) + 1− v (A ∪Ec)
(3)

=
v(A ∩E)

v(A ∩E) + v(Ac ∩ E)
,

where v(A) := 1− v(Ac) denotes the dual capacity of v.

Properties of the FBUs depend on the classification according to a � 0 and a+ b � 1.
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a+ b ≤ 1 a+ b ≥ 1
a ≤ 0 convex ‘vexcave’

a ≥ 0 cavex concave

4.1 Convex GNACs (a ≤ 0, a+ b ≤ 1)

Let v be a convex capacity, and letC(v) = {p ∈ ∆(S)| p ≥ v} denote its core. It is well-known

(Schmeidler (1989)) that CEU(f, v) = minp∈C(v)
∫
(u ◦ f) dp in this case. In the light of the

result by Pires (2002) that an axiom like CCEC applied to a multiple-priors model yields that

the set of priors after updating equals the set of the Bayesian updates of the priors, one may be

inclined to think that a similar result would hold for CEU preferences. As Horie (2007) points

out, however, and as one easily checks, for each p ∈ C(v) and any event E such that p (E) > 0,

we have C(v)E ⊆ C(vE), where C(v)E denote the set of Bayesian updates with respect to E

of the probabilities in the core C(v). To see this notice that

p(A)

p(E)
− vE(A) =

p(A)

p(E)
−

v(A)

v(A) + v(Ac ∩E)
=
p(A)v(E\A)− v(A)p(E\A)

p(E)(v(A) + v(E\A))
.

As p ∈ C(v), we have p(A) ≥ v(A) and p(E\A) ≤ v(E\A). Hence, p (A) /p (E) ≥ vE(A).

Horie (2007) also shows by example that there exists a convex capacity v′ for which C(v′)E �=

C(v′E). Thus, in general, C(v)E �= C(vE).

The reverse inclusion C(vE) ⊆ C(v)E holds, however, if the capacity is a convex GNAC and if

there are at least three states.

Proposition 4.1 If |S| > 3, then C(v)E = C(vE) if and only if v is a convex GNAC.

As an immediate consequence of Proposition 4.1 is the representation of the conditional prefer-

ences by the same type of functional. Since the FBU vE of a convex capacity v is also convex,

it follows for a convex GNAC that

CEU(f, vE) = min
p∈C(v)E

∫
(u ◦ f) dp.

A couple of remarks may help to put Proposition 4.1 into the context of related work.
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Remark 4.1 The following remarks are in order:

(i) Studying robust updating rules, Chateauneuf, Faro, Gajdos, and Jaffray (2009) derive the

result of Proposition 4.1 for (δ, ε)-Contaminations.

(ii) For a finite state space S, there exist convex GNACs which are not ε-contaminations. For

example, |S| = 4 and π(E) = |E|
|S| , then v = 6

5
π − 1

5
is convex, but not an ε−contamination.

With a non-atomic state space S, however, monotonicity implies that the only convex GNAC are

ε-contaminations.

(iii) Proposition 4.1 provides necessary and sufficient conditions for capacities to guarantee

C(vE) = C(v)E. An alternative condition can be found in Theorem 2 of Jaffray (1992). Propo-

sition 4.1, however, holds for convex capacities whereas Jaffray’s Theorem 2 is true only for

belief functions.

(iv) If |S| = 3 holds, then C(vE) = C(v)E is true for every convex capacity.

(v) If |S| > 3, it follows from Proposition 3.1 that the only case in which C(vE) = C(v)E holds

for convex capacities is when Axiom CCEC is true.

Proposition 4.1 shows that GNACs are the only class of capacities for which the updated prob-

abilities of the core coincide with the core of the FBUs of the capacity. This result can be

generalised to arbitrary updating rules of convex capacities for which the core of the updated

capacity coincides with the Bayesian updates of the probabilities in the core of the capacity.

Proposition 4.2 Let PE be the set of updates on event E of a set of priors P. If PE is the core

of a convex capacity vE then v is a GNAC.

Proposition 4.2 shows the strength of the consistency requirements for updating rules. Nev-

ertheless, the class of Generalised Neo-Additive Capacities together with the Full Bayesian

Updating rule allow for a class of CEU representations with a reasonable degree of consistency

in updating which covers a broad range of models used in economic applications.

For a ≥ 0, convex GNACs coincide with the case of simple capacities or ε-contaminations

which has been used extensively in the literature7. Following Schmeidler (1989), this case,

7 Examples of applications include Dow and Werlang (1992), Eichberger and Kelsey (2002), Eichberger
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has been associated with ambiguity aversion or pessimism. For GNACs, however, the convex

case does not require a ≥ 0. Monotonicity of the capacity imposes only the general constraint

minE/∈N [a+ bπ (E)] ≥ 0. This constraint implies a lower bound for a, a ≥ −bminE/∈N π (E)

which is only equal to 0 if the probability distribution π puts probability 0 on a non-null event.

The degree to which a can become negative depends, however, on the probability distribution

π. The intuitive interpretation of this case not clear.

Remark 4.2 In the convex case, the probability π has to be congruent withN . Let v(E) = 0

then by convexity of v, v(E∪F )+v(Ec) ≤ v(S)+v(F ). As v(Ec) = 1 then v(E∪F ) = v(F ).

Therefore for a convex GNAC, property D of lemma A.1 is implied by convexity.

4.2 Concave GNAC (a ≥ 0, a+ b ≥ 1)

Concave GNACs are the duals of convex GNACs. Hence, it is not surprising that the results

of the previous subsection hold mutatis mutandis. For a concave capacity v and denote by

C̄(v) = {p ∈ ∆(S)| p ≤ v} the anti-core. In this case, CEU(f, v) = maxp∈C̄(v)
∫
(u ◦ f) dp.

Given an eventE with p (E) > 0, let C̄(v)E be the set of Bayesian updates of the probabilities in

the anti-core C̄(v). By analogous reasoning as in the previous case of convex capacities, we can

show C̄(v)E ⊆ C̄(vE). The conjugate of the capacity in Example 1 of Horie (2007) illustrates

that, in general, C̄(v)E �= C(vE). Our next proposition, which we state without formal proof,

shows that C̄(v)E = C̄(vE) if and only if v is a concave GNAC.

Proposition 4.3 If |S| > 3, then C̄(v)E = C̄(vE) if and only if v is a concave GNAC.

Hence, for a concave GNAC, we have as well the representation

CEU(f, vE) = max
p∈C̄(v)E

∫
(u ◦ f) dp.

4.3 Cavex GNACs (a ≥ 0, a+ b ≤ 1): Neo-additive capacities.

Wakker (2001) introduced the notion of a cavex capacity: "Concavity is imposed on the unlikely

and Kelsey (2004), Teitelbaum (2007), Jeleva and Rossignol (2008), and Eichberger, Kelsey, and Schipper (2009).
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Figure 1.

events and convexity on the likely events. Henceforth, such capacities are called cavex." (p.

1049). Figure 1 shows the capacity value as a function of its additive part π.

A cavex GNAC is a neo-additive capacity as introduced and axiomatised by Chateauneuf, Eich-

berger, and Grant (2007). A neo-additive capacity congruent with the null sets in N , the prob-

ability π, and the parameters α, δ ∈ [0, 1] is given by

v (E|N , π, δ, α) =






0 if E ∈ N
(1− δ)π (E) + δα if E /∈ N and Ec /∈ N
1 if Ec ∈ N

This corresponds to a cavex GNAC with a := δα ≥ 0 and b := (1− δ) ≤ 1.

Cavex GNACs can also be viewed as a special case of a type of capacity introduced by Jaffray

and Philippe (1997). We will refer to such capacities as JP-capacities. A JP-capacity is a

convex combination of a convex capacity and its conjugate, which is a concave capacity, i.e.,

ν := αµ+ (1− α)µ where µ is a convex capacity and α ∈ [0, 1].

A GNAC v(.|N , π, a, b) with the parameter restrictions a ≥ 0 and a + b ≤ 1, is a convex

combination

v(·|N , π, a, b) =
(1− a− b)

(1− b)
µ(·|N , π, b) +

a

(1− b)
µ̄(·|N , π, b).
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of the convex capacity µ(E|N , π, b),

µ(E|N , π, b) :=






0 if E ∈ N
bπ (E) if E /∈ N and Ec /∈ N
1 if Ec ∈ N

,

and its concave conjugate, defined by µ̄(E|N , π, b) = (1− b) + bπ (E) for essential events E,

Ec /∈ N .

Since µ is a convex capacity and µ̄ is a concave capacity, we can combine the arguments of the

previous two subsections to obtain

CEU(f, vE) =
(1− a− b)

(1− b)
min
p∈PE

∫
(u ◦ f) dp+

a

(1− b)
max
p∈PE

∫
(u ◦ f) dp, (4)

where

PE = C (µ)E = C̄ (µ̄)E .

A nice property of the FBU of a cavex GNAC is the fact that the weights given to the minimual

and maximal expected utility in Equation 4, ((1− a− b) / (1− b) and a/ (1− b)) are indepen-

dent of the event on which the cavex GNAC is updated. In terms of Figure 1 the transformation

of π will only change in slope but not in its fixed point. Eichberger, Grant, and Kelsey (2009)

provide a more detailed analysis of this property.

4.4 ‘Vexcave’ GNAC (a ≤ 0, a+ b ≥ 1).

This parameter constellation of a GNAC is almost in contradiction with the monotonicity re-

quirement of a capacity. In order to see this let π := minE/∈N π(E) and consider the inequalities

minE/∈N [a+ bπ (E)] = a + bπ ≥ 0 and maxE/∈N [a+ b (1− π (E))] = a + b (1− π) ≤ 1.

They imply 0 ≥ a ≥ −bπ and 1 ≤ a+b ≤ 1+bπ. For an atomless state space, these inequalities

would force the GNAC to equal its additive part.

Though conceptually possible, this parameter constellation appears difficult to reconcile with

observable attitudes towards ambiguity.

5 Conclusion

In this paper, we show that a decision maker with CEU preferences satisfying Consequentialism,

State Independence, and Conditional Certainty Equivalent Consistency will hold beliefs which
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are a linear transformation of an additive probability distribution. In a CEU-model of decision

making under ambiguity consistency requirements between unconditional and conditional pref-

erences restrict the class of capacities considerably. The class of capacities determined by these

three axioms almost coincides with neo-additive capacities. CEU preferences with neo-additive

capacities can be represented by as a linear combination of the expected utility with respect to

some additive probability distribution and the maximum and minimum utility over outcomes.

These three axioms also imply that the capacity of a CEU preference order must be updated

according to the Full Bayesian Updating rule. If beliefs are represented by a convex capacity

then the core of the Full Bayesian updated capacities equals the set of Bayesian updates of the

probabilities in the core of the prior capacity. These observations clarify some open questions

on Fully Bayesian updating of capacities and multiple priors and provide additional arguments

for generalised neo-additive capacities in a dynamic context.

Appendix A. Proofs

For the proof of Proposition 3.1 we will use the following two properties of capacities which

characterise GNACs. These properties were introduced in Proposition 3.1 of Chateauneuf, Eich-

berger, and Grant (2007).8

Property A v(E ∪F )− v(F ) = v(E ∪G)− v(G) is satisfied for all events E, F andG such

that v(F ) �= 0, v(F ∪E) �= 1, v(G) �= 0 and v(G ∪ E) �= 1.

Property A characterises capacities which have identical increments for essential events. For

such capacities the Choquet integral will have the same additive probability distribution for all

rank-orders of states with the same best and worst state.

Property D Let N be a null event and E an essential event, then v(N ∪E) = v(E).

Property D characterises capacities for which the union with a null event will not affect the

capacity value of an essential event.

8 Property A corresponds to (a) and Property D to (d) in Proposition 3.1 of Chateauneuf, Eichberger,
and Grant (2007).
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In the proof of Proposition 3.1 we will use the following characterisation of GNACs.

Lemma A.1 Suppose that a capacity v satisfies property D, then the following assertions are

equivalent:

(i) v is a GNAC,

(ii) v satisfies Properties A.

Proof. We refer to the proof of Proposition 3.1 in Chateauneuf, Eichberger, and Grant (2007),

pp. 556-559. They prove that a capacity v, which satisfies Properties A and D and two further

properties, Properties (b) and (c), is a null-additive set function of the form v(E) = λ + (1 −

δ)π(E) for any essential set E, where π is a probability distribution on S and λ, δ ∈ [0, 1] are

real numbers. A careful reading of their proof reveals that properties (b) and (c) are only used in

Part (b2) of their proof in order to establish λ ≤ 1 and in Part (c) in order to show that δ ∈ [0, 1].

Therefore, if only Property A and Property D are satisfied, then the capacity has no bounds on λ

and δ, except the ones implied by monotonicity. It follows that a capacity ν satisfying Properties

A and D is a GNAC.

Proof of Proposition 3.1:

(i) We suppose that CCEC is fulfilled and show that Properties A holds for a capacity ν satisfy-

ing Axioms 0 and CCEC.

For ease of notation we write
∫
u(f)dv for CEU(f, v) and

∫
E
u(f)dv for CEU(f ·E, v) where

E is the indicator function of E. From Theorem 1 in Eichberger, Grant, and Kelsey (2007), we

obtain that the von Neumann-Morgenstern utility u can be chosen to be independent of E.

Step A: Let f =
n∑

j=1

xjAj and u(xj) < u(xj+1) for all j, 1 ≤ j ≤ n.Note that there is an additive

measurem[f ] such that v(Aj ∪Aj+1∪ ...∪An) = m[f ](Aj ∪Aj+1∪ ...∪An) =
n∑

i=j

m[f ](Ai) and

∫
u(f)dv =

∫
u(f)dm[f ]. For any event Ai, denote by Ei := A

c
i . Then there is an (additive)

measure p[f ] such that vEi(Aj ∪Aj+1 ∪ ...∪An) = p[f ](Aj ∪Aj+1 ∪ ...∪An) =
n∑

i=j

p[f ](Ai) for

j �= i, 1 ≤ j ≤ n,and
∫
u(f)dvEi =

∫
u(f)dp[f ].
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In this step we will show that for any event Ai, i �= 1, n, on which the act f takes no extreme

value, the Choquet integral of f conditional on the information that the event Ai did not occur

can be calculated according to the measure m[f ] updated by the event Ei = Aci according to

Bayes rule p[f ] =
m[f ]

m[f ](Ei)
.

Lemma A.2 If v satisfies Axiom CCEC, then for any Ai with i �= 1, n, and associated mea-

sures m[f ] and p[f ] such that
∫
u(f)dv =

∫
u(f)dm[f ] and

∫
u(f)dvEi =

∫
u(f)dp[f ], we have

p[f ] =
m[f]

m[f ](Ei)
.

Proof. Let y be the certainty equivalent of f conditional on Ei, f ∼Ei y. By axiom CCEC,

fEiy ∼ y. If f and fEiy are not comonotone, then we can modify the best and worst outcomes

of the act fEiy to obtain an act gEiy such that f and gEiy are comonotone and gEiy ∼ y.

Hence,
∫
u(g)dvEi =

∫
u(g)dp[f ] As f and gEiy are comonotone, their Choquet integrals are

computed according to the same measure m[f ], namely
∫
u(gEy)dv =

∫
u(gEy)dm[f ]. From

gEiy ∼ y, we get u(y) =
∫
u(gEy)dv =

∫
u(gEy)dm[f ] =

∫
Ei
u(g)dm[f ] + m[f ](Ai)u(y),

which can be transformed to yield

u(y) =
1

m(Ei)

∫

Ei

u(g)dm[f ] =

∫

Ei

u(g)dvEi =

∫

Ei

u(g)dp[f ].

Let π :=
m[f]

m[f ](Ei)
− p[f ], we have

∫
Ei
u(g)dπ = 0. Let us prove π = 0. For any act f ′ which is

comonotonic with f we can construct g′ and get
∫
Ei
u(g′)dπ = 0. Hence, π = 0. �

Step B. From Lemma A.2, we have p[f ] =
m[f ]

m[f ](Ei)
for each act f and each measure m[f ] such

that
∫
u(f)dv =

∫
u(f)dm[f ] whenever there is no extreme outcome of f on Ai. Hence, by

varying the best and worst outcomes, one can find two comonotone acts f and f ′ such that

xi = f(Ai) and x′i = f
′

(Ai) satisfy u(xj) < u(xi) < u(xj+1) and u(xj′) < u(x
′
i) < u(xj′+1)

for j �= j
′

. For the associated measuresm[f ] andm′
[f ], we have

m[f ]

m[f ](Ei)
=

m′
[f ]

m′
[f ](Ei)

.

>From m[f ](Ei) = m
′
[f ](Ei), we have m[f ](Ei) = 1 − m[f ](Ai) = 1 − v(Ai ∪ Aj+1...An) +
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v(Aj+1...An), andm′
[f ](Ei) = 1−m

′
[f ](Ai) = 1− v(Ai ∪ Aj′+1...An) + v(Aj′+1...An) or

v(Ai ∪Aj+1 ∪ ...∪An)− v(Aj+1 ∪ ...∪An) = v(Ai ∪Aj′+1 ∪ ...∪An)− v(Aj′+1 ∪ ...∪An).

This is true for any f. Hence, for i �= 1, n, let Ai = E, F = Aj+1 ∪ ... ∪ An and G =

Aj′+1 ∪ ... ∪ An. Clearly, E ∩ F = ∅ = E ∩ G. The left-hand side of the equality holds if

v(Ai∪Aj+1∪ ...∪An)−v(Aj+1∪ ...∪An) �= 1, i.e. v(F ) �= 0 and v(F ∪E) �= 1 (which insures

us that vE exists), the right-hand side of the equality holds for every G such that v(G) �= 0 and

v(G ∪ E) �= 1 (which insures us thatm(E) �= 0). Hence, we get

v(F ∪ E)− v(F ) = v(G ∪E)− v(G).

(ii) Let us suppose that property A is satisfied, we partition S in two sets U and U c (this is

possible because of the structure of the null sets) with v(E) �= 0 for all non empty E included

in U and v(F ) = 0 for all F ⊂ U c, let us note that for all E � U, v(E) < 1 , the atoms of U

are Ai and the ones of N are Bj . we suppose that there are at least three atoms in U.

Let Ai � E � U, N ⊂ U c. As the complement of E ∪ N is not included in U c, then

0 < v(E ∪N) < 1.We make use of property A:

(a) : v(E ∪N)− v(E ∪N\Ai) = v(E)− v(E\Ai)

>From (a) we draw two consequences:

1) If v(A1 ∪N) = v(A1)+ e then for all i, let E = A1 ∪Ai, we get v(Ai ∪N) = v(Ai)+ e (nb

that is where we use there are more than three atoms in U)

2) for all E, with 0 < v(E) < 1, If v(A1 ∪N) = v(A1) + e then v(E ∪N) = v(E) + e. This

can be proved using Ai ⊂ E and then applying 1) and (a).

Let ǫj = v(A1 ∪Bj)− v(A1).We can distinguish two cases:

- ǫj = 0 in which case Bj plays no role,

- ǫj �= 0 in which case we have v(Bj) = 0 but v(E ∪ Bj) = v(E) + ǫj.

Consider now the capacity v/U (the restriction of v to U). It has no other null set than the

empty one and fulfills property A. Therefore we can apply Lemma ?? and conclude that v/U is
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a GNAC, so for all E ⊂ U, v/U(E) = a′ + b′π′(E).Let b =
∑

i∈I

b′π′(Ai) +
∑
ǫj

j∈J

and π(Ai) =

b′π′(Ai)
b

and π(Bj) =
ǫj
b
.We have then

v(E) = 0 if E ⊂ U c,

v(E) = 1 if U ⊂ E,

v(E) = a+ bπ(E) otherwise.

(iii) If ν is a GNAC then property A is directly satisfied.

(iv) Let us suppose that property A and is satisfied, that the FBU is used as the updating rule,

and show that CCEC is satisfied. Let us consider an act fEx such that x is not an extreme value

of the act fEx. Let us say that u(xi0) < u(x) < u(xi0+1)

Let
∫
fExdv =

∫
fExdm[fEx], som[fEx](E) = 1−m[fEx](E

c) = 1− v(E∪Ai0+1∪ ...∪An)+

v(Ai0+1 ∪ ... ∪ An).

∫
fdvE =

∑
u(xi)(vE(Ai ∪ Ai+1 ∪ ... ∪ An)− vE(Ai+1 ∪ ... ∪ An))

As vE(A) =
v(A)

v(A)+1−v(Ec∪A) , and by property A v(E ∪Ai0+1∪ ...∪An)− v(Ai0+1∪ ...∪An) =

v(Ec ∪ A)− v(A), which implies v(A) + 1− v(Ec ∪ A) = m[fEx](E), we have:
∫
fdvE =

∑
u(xi)

v(Ai ∪ Ai+1 ∪ ... ∪ An)− v(Ai+1 ∪ ... ∪ An)

m[fEx](E)

Now we must distinguish two cases:

- u(x) < u(xi), thenm[fEx](Ai) = v(Ai ∪Ai+1 ∪ ... ∪An)− v(Ai+1 ∪ ... ∪ An),

- u(x) > u(xi) then m[fEx](Ai) = v(Ai ∪ Ai+1 ∪ ... ∪ An ∪ E) − v(Ai+1 ∪ ... ∪ An ∪ E), by

property A,

v(Ai∪Ai+1∪ ...∪An∪E)−v(Ai+1∪ ...∪An∪E) = v(Ai∪Ai+1∪ ...∪An)−v(Ai+1∪ ...∪An)

Therefore

∫
fdvE =

∫
E
fdm[fEx]

m[fEx](E)

fEx ∼ x ⇔
∫
fExdvE = u(x) ⇔

∫
fExdm[fEx] = u(x) ⇔

∫
E
fdm[fEx] + u(x)m[fEx](E

c) =

u(x)⇔
∫
E
fdm[fEx] = u(x)m[fEx](E)⇔

∫
E
fdm[fEx]

m[fEx]
(E)

= u(x)⇔
∫
fdvE ⇔ f ∼E x

So CCEC holds.

22



Proof of Proposition 4.1:

C(vE) is the core of a convex capacity. It is known, see e.g. Delbaen (1974), that for any

maximal chain (a chain is an ordered set of sets) C1 ⊂ ..Ci.. ⊂ E there exists µ ∈ C(vE) such

that ∀i µ(Ci) = vE(Ci). µ ∈ PE so for all i there exists p ∈ C(v) such that,

p(Ci)

p(E)
= vE(Ci) =

v(Ci)

v(Ci) + v(E\Ci)

It thus follows from computations made above that p(Ci)v(E\Ci) − v(Ci)p(E\Ci) = 0. As

p(Ci) ≥ v(Ci) and p(E\Ci) ≤ v(E\Ci), we get p(Ci) = v(Ci) and p(E\Ci) = v(E\Ci).

From (1) we deduce that for all i,

p(E) = v(Ci) + v(E\Ci) = 1 + v(Ci)− v(Ci ∪ E
c)

so for A and B non void strictly included in E and ordered by inclusion we have,

v(Ec ∪A)− v(A) = v(Ec ∪ B)− v(B)

We can prove it remains true if A and B are not ordered by inclusion. if A ∩ B �= ∅, we have,

v(Ec ∪A)− v(A) = v(Ec ∪ (A ∩B))− v(A ∩B) = v(Ec ∪ B)− v(B)

if A ∪B � E we do the same with A ∪ B :

v(Ec ∪A)− v(A) = v(Ec ∪ (A ∪B))− v(A ∪B) = v(Ec ∪ B)− v(B)

The remaining case is A ∪ B = E and A ∩ B = ∅, if |E| > 2, we pick a non void set included

in A or B, say Á, and get,

v(Ec ∪A)− v(A) = v(Ec ∪ Á)− v(Á) = v(Ec ∪ (Á∪B))− v(Á∪B) = v(Ec ∪B)− v(B)

if |E| = 2, as |S| > 3 we can write Ec = F ∪G and get,

(i) : v(F ∪G ∪ A))− v(G ∪ A) = v(F ∪G ∪ B)− v(G ∪ B)

(ii) : v(G ∪A)− v(A) = v(G ∪ B)− v(B)
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(i)− (ii) : v(Ec ∪A))− v(A) = v(Ec ∪B)− v(B)

So we get the property A which insures that v is a GNAC.

Conversely, let us suppose that v is a GNAC, we just need to prove that any extreme point

µ of C(vE) belongs to PE. There exits a maximal chain C1 ⊂ ..Ci..Ck ⊂ E such that ∀i,

µ(Ci) = vE(Ci).We are going to construct p ∈ C(v) such that for all i,

p(Ci)

p(E)
= vE(Ci) =

v(Ci)

v(Ci) + v(E\Ci)

On P(E), the set of parts of E, v/E, v restricted to E is a convex capacity, so we can find in its

core a probability p such that p(Ci) = v(Ci) and p(E) = v(Ck)+ v(E\Ck), (compare Delbaen

(1974)). By the Hahn Banach Theorem, we can extend p to Σ with p in the core of v. As v

satisfies property A we have

p(E) = v(Ci) + v(E\Ci) = 1 + v(Ci)− v(Ci ∪ E
c).

Hence,

p(Ci ∪E
c) = p(E) + p(Ci) = v(Ci ∪ E

c).

Thus, p satisfies property A and we have C(vE) = PE.

Proof of Proposition 4.2:

A chain is a collection of sets ordered with respect to inclusion. It is maximal when it is maximal

for inclusion, i.e., if adding a set to the collection makes it no longer an ordered collection. We

make use of the following result ( Delbaen (1974), pp. 219-220): C is the core of a convex

capacity if and only if for all maximal chains (Ai) there exists m ∈ C such that m(Ai) = min
p∈C

p(Ai). These measuresm are the the extreme points of C. Hence, C = co{m ∈ C| there exists

a maximal chain such thatm(Ai) = min
p∈C
p(Ai)}.

We have to prove C(vE) ⊂ PE. Let (Ai) be a maximal chain of E and µ ∈ C(vE) such that

µ(Ai) = min
p∈C(vE)

p(Ai).We want to show that µ ∈ PE.

(i) Consider any additive measurem such thatm(A) = v(A) andm(E) = 1− v(E\A) + v(A)
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and let p ∈ C(v), then

p(A)

p(E)
−

v(A)

1− v(Ec ∪A) + v(A)
=

p(A)(1− v(Ec ∪ A) + v(A))− v(A)(p(E\A) + p(A))

(1− v(Ec ∪ A) + v(A))p(E)

=
p(A)(1− v(Ec ∪ A))− v(A)(p(E\A))

(1− v(Ec ∪ A) + v(A))p(E)
≥ 0,

since every p ∈ C(v) satisfies p(A) ≥ v(A) and p(E\A) ≤ 1− v(Ec ∪ A). Hence,

p(A)

p(E)
≥

v(A)

1− v(Ec ∪ A) + v(A)

(ii) As v is convex for any chain there exists a measure in its core which is equal to the capacity

for each element of the chain. Hence, for the chain A,A ∪ Ec, S there exists m ∈ C(v) such

thatm(A) = v(A) andm(E\A) = 1− v(E\A). As the set PE is the core of a convex capacity,

for any maximal chain (Ai) of E there exists a measurem such thatm(Ai) = min
p∈PE

p(Ai). From

(i),m satisfiesm(Ai) = v(Ai) andm(E) = 1− v(E\Ai) + v(Ai) for all i.

Thereforem = µ and v is a GNAC according to Proposition 4.1.

Proof of Remark 3.1

Let us check that GNAC satisfy this axiom: let argmin
s∈S
f(s)∩argmin

s∈S
g(s) = Em andmax

s∈S
f(s)∩

argmax
s∈S
g(s) = EM. Let p = (1−δ)π+αδdEm+(1−α)δdEM ,where dE denotes the Dirac mea-

sure of the setE. Asmax

{
min
s∈S
f(s),min

s∈S
g(s)

}
≤ min

s∈S
h(s), max

s∈Sc
h(s) ≤ min

{
max
s∈S
f(s),max

s∈S
g(s)

}

then
∫
fAhdv =

∫
fAhdp and

∫
gAhdv =

∫
gAhdp. As Em and EM are included in A, then

∫
fdvA =

∫
fdpA and

∫
gdvA =

∫
gdpA. Therefore CCEC comes from that the same measure

at every stage.
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