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1 Introduction

The objective of this paper is to explore the link between updating nonexpected

utility preferences and existing notions of unambiguous events. Nonexpected utility

preferences are widely used in modeling ambiguity averse behavior, as exemplified

by the famous Ellsberg (1961) paradox. Choquet expected utility (CEU) theory

is a prominent class of such preferences. As a decision criterion it was axiomat-

ically justified, in different frameworks, by Schmeidler (1989), Gilboa (1987) and

Sarin and Wakker (1992). According to this theory, decision makers’ beliefs are

represented by capacities, which are not necessarily additive probabilities. To make

nonexpected utility models attractive for economic and game theoretic applications

it is important to know how well do they perform in dynamic choice situations. In

this contribution we ask whether for CEU preferences the property of dynamic con-

sistency, constrained to a given collection of events, guarantees that its elements are

unambiguous and vice versa. The results we obtain allow us to answer this question

in the affirmative.

Recently, several extensions of CEU preferences to intertemporal decision making

have been proposed (see e.g. Machina (1989), Sarin and Wakker (1998a), Eichberger,

Grant, and Kelsey (2005), Eichberger, Grant, and Kelsey (2007)). In dynamic choice

situations the decision maker (henceforth DM) receives new information, updates

preferences, and formulates a new plan of action. A fundamental question raised

in this context is how updated preferences that govern future choices are linked to

contingent choices made ex ante. Two axioms are used to justify the link: dynamic

consistency and consequentialism. Dynamic consistency requires that choices made

ex ante are respected by updated preferences. Consequentialism requires that after

being informed that some event occurred, the conditional preferences are not affected

by outcomes outside of that event. When preferences satisfy both axioms simulta-

neously on all events, then the DM’s beliefs are probabilistic and the updating rule

coincides with the Bayes revision rule. This result was obtained in the presence of

risk by Hammond (1988) and in the presence of uncertainty by Ghirardato (2002)
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and belongs today to the ‘folk wisdom’ of the decision theory. However, as the

following dynamic version of the classical 3-color Ellsberg experiment illustrates, it

is impossible to retain both rationality arguments on all events in the presence of

ambiguity. As a mind experiment it was described by Ghirardato, Maccheroni, and

Marinacci (2008) and Siniscalchi (2009). Recently, Dominiak, Dürsch, and Lefort

(2009) ran a real experiment on this issue.

Example 1.1. The DM maker faces an urn containing 90 balls, 30 of which are

known to be red {R} and 60 of which are somehow divided between blue {B} and

yellow {Y }, with no further information on the distribution. At the ex ante stage

(t = 0) the DM only has the information as described above. Suppose that at the

interim stage (t = 1) one ball is drawn from the urn at random, and then the DM is

informed that the ball is not yellow, i.e. {R, B}. The DM has to choose between two

bets (f, f ′) and (g, g′) paying off 100 or 0, depending on the color of the randomly

drawn ball. Suppose that at the ex ante stage (t = 0) the DM, like a majority

of subjects in experimental studies (see Camarer and Weber (1992)), displays the

following patterns of preferences:

f =


100 if ω ∈ R

0 if ω ∈ B

0 if ω ∈ Y

 �


0 if ω ∈ R

100 if ω ∈ B

0 if ω ∈ Y

 = f ′

g =


100 if ω ∈ R

0 if ω ∈ B

100 if ω ∈ Y

 ≺


0 if ω ∈ R

100 if ω ∈ B

100 if ω ∈ Y

 = g′

A DM displaying such preferences is reluctant to bet on events with unknown prob-

abilities and therefore she is said to be averse toward ambiguity. Now consider the

interim stage (t = 1) and the possible patterns of conditional preferences, (�{R,B}),

which respect dynamic consistency, (i), and which respect consequentialism, (ii).

(i) According to the property of dynamic consistency the DM’s conditional prefer-

ences have to respect the choices made ex ante, i.e. f �{R,B} f ′ and g ≺{R,B}

g′.
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(ii) According to consequentialism, since the bets f, g and f ′, g′ are the same on the

event {R,B} and differ only outside that event, the DM must be conditionally

indifferent between them, i.e. f ∼{R,B} g and f ′ ∼{R,B} g′. Furthermore,

consequentialism implies that if f �{R,B} f ′, then g �{R,B} g′ and vice versa

(respectively if f ≺{R,B} f ′, then g ≺{R,B} g′ and vice versa).

It can be immediately seen that in dynamic situations an ambiguity averse DM must

violate either the property of dynamic consistency or consequentialism (or both).

Then, if conditional preferences respect dynamic consistency, as in (i), the property

of consequentialism is violated. On the other hand, if the conditional preferences

remain consistent with consequentialism, as in (ii), exactly one of the ex ante pref-

erences is reversed, what violates dynamic consistency.1

As an immediate consequence, when extending nonexpected utility models to

dynamic frameworks, we must either relax the property of dynamic consistency or

consequentialism, or we may maintain both rationality arguments, but, constrain

the analysis to some fixed collection of events. We follow the latter direction and

characterize the properties of events on which dynamic consistency and consequen-

tialism are satisfied. A natural candidate for events on which both axioms are

satisfied, are events that support some kind of probabilistic beliefs, as for instance

events with known distribution, i.e. {R} and {B, Y } in the example above. The

idea of events characterized by probabilistic beliefs is closely related to the recently

suggested notions of unambiguous events by Nehring (1999), Epstein and Zhang

(2001), Zhang (2002) and Ghirardato, Maccheroni, and Marinacci (2004).

First, we focus on the definition by Nehring (1999), since it mimics the desir-

able separability property of expected utility theory.2 His definition is based on the

idea, originated by Sarin and Wakker (1998b), to interpret capacities in terms of

1If conditionally on the event {R,B} the DM reverses both ex ante preferences, i.e. f ≺{R,B} f ′

and g �{R,B} g′, then such DM is inconsistent with dynamic consistency and consequentialism.
2Separability of preferences and beliefs is a key property of expected utility theory. It means

that subjective probabilities assigned to uncertain events are not affected by outcomes that are

associated to these events.

3



rank dependent probability assignments. According to this interpretation, subjective

probabilities used for evaluating acts depend on the rank ordering of their conse-

quences. In general two acts generating distinct ranks are evaluated with respect

to different subjective probabilities. Thus, the separability of preferences and be-

liefs may be achieved for acts that generate the same rank. Such acts are called

comonotonic. In the case that the subjective likelihood of an event is unaffected by

changing its position, it must be viewed as unambiguous. Correspondingly, Nehring

(1999) calls an event unambiguous, henceforth N-unambiguous, if the subjective

probability attached to the event does not depend on the ranking position of states.

We argue that conditional on N -unambiguous events, the Bayes revision rule

for capacities is the most appropriate updating rule. The reason is twofold. First,

because updating on N -unambiguous events according to the Bayes rule is the only

way to retain dynamic consistency. Second, when conditioning on N -unambiguous

events, the Bayesian updating rule coincides with other popular updating rules.

These include the Full-Bayesian updating rule introduced by Jaffray (1992) and

all h-Bayesian updating rules as axiomatized by Gilboa and Schmeidler (1993).

Motivated by this rationale we show that consequentialist Choquet expected utility

preferences satisfy dynamic consistency on a fixed filtration if and only if the algebra

generated by the smallest elements in the filtration belongs to an algebra generated

by N -unambiguous events. This result on its own may be viewed as an alternative

characterization of N -unambiguous events in a conditional decision problem.

Furthermore, Nehring (1999) emphasized the restrictiveness of CEU preferences,

since the collection of N -unambiguous events must be always an algebra. However,

there may be potentially interesting ambiguity situations, as exemplified by Zhang

(2002) in his 4-color example, in which the candidates for unambiguous events form a

weaker structure. By departing from the intuition behind Savage’s key axiom, called

Sure-Thing-Principle, Zhang (2002) suggested a weaker definition of unambiguous

events, henceforth Z-unambiguous. Thus, it is impossible to maintain dynamic con-

sistency on events that are Z-unambiguous. An ilustrating dynamic extension of

the 4-color example is given in Section 5. Adopting an axiom, called conditional
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certainty equivalence consistency and constraining the dynamic consistency to par-

tition measurable acts, we provide a dynamic characterization of Z-unambiguous

events in a conditional decision problem.

This paper is organized as follows. Section 2 presents the necessary notation.

In Section 3 the definitions of N -unambiguous events and Z-unambiguous events

are introduced. Section 4 presents the main concepts regarding the conditional

decision problem. In Section 5 we provide a characterization of N -unambiguous

events in a conditional decision problem. Moreover, we make some remarks on the

related literature and provide an illustrative example. A dynamic characterization

of Z-unambiguous events is given in Section 6. Finally, we conclude in Section 7.

2 Notation

The uncertainty, which the DM faces, is described by a finite set of states of nature,

Ω. An event A is a subset of Ω. The algebra generated by Ω is denoted by A. For all

A ⊂ Ω, we denote Ω\A, the complement of A, by Ac. Let X be the set of outcomes.

An act f is a function from Ω to X. For instance, an act f = (A1, x1; . . . ; An, xn)

assigns the outcome xj to each ω ∈ Aj, j = 1, . . . , n, where A1, . . . , An are events

partitioning Ω. Let fAg be an act that assigns the outcome f(ω) to each ω ∈ A and

the outcome g(ω) to each ω ∈ Ac. An act f = x that assigns a constant outcome to

each ω ∈ Ω is called a constant act. Denote the set of all acts by F . A set function

ν : A → R is called capacity if it satisfies the following conditions: (1) ν(∅) = 0

and ν(Ω) = 1; (2) if A ⊂ B ⊂ Ω, then ν(A) ≤ ν(B). Let � be a binary relation

on the set of acts, F , that represents preferences. The DM is said to have Choquet

expected utility preferences, if there exists a utility function u : X → R and a

capacity ν such that, for all f, g ∈ F , f � g if and only if
∫

Ω
u ◦ fdν ≥

∫
Ω

u ◦ gdν.

Formally, expected utility of an act f with respect to the utility index u and the

capacity ν is defined as:∫
Ω

u ◦ f dν = u(f(A1)) +
n∑

i=2

[u(f(Ai))− u(f(Ai−1))] ν(Ai, . . . , An)

5



with {Ai}i=1,...,n chosen such that u(f(A1)) ≤ u(f(A2)) ≤ · · · ≤ u(f(An)). Schmei-

dler (1989), Gilboa (1987) and Sarin and Wakker (1992) axiomatized CEU prefer-

ences for a infinite state space. Assuming a rich set of consequences and allowing for

a finite state space CEU preferences were axiomatized by Wakker (1989), Nakamura

(1990) and Chew and Karni (1994).

Throughout the paper we assume that preferences are represented by CEU. Ad-

ditionally we restrict the set of outcomes X and preferences � on F by assuming

that:

Assumption 1 (Continuity) The utility function u : X → R is continuous.

Assumption 2 (Solvability) For any f ∈ F there exists x ∈ X such that f ∼ x.

Solvability serves as a richness condition on � and X. It is satisfied in all

axiomatizations of CEU in finite state space set-up. For instance, Nakamura (1990)

and Chew and Karni (1994) impose it directly on � , while Wakker (1989) requires

X to be a connected and separable topological space.

3 Unambiguous events

This section provides a behavioral characterization of unambiguous events. We begin

with the characterization suggested by Nehring (1999), who interprets capacities in

terms of rank dependent probability assignments. Let ρ be a bijection ρ : Ω →

{n, . . . , 1}. The mapping ρ expresses the ranking position of states associated with

an act f , i.e. the favorableness of their outcome relative to the outcomes obtained

under other states. Let R be a set of such rankings and let ∆Ω be a set of probability

distributions over Ω. Furthermore, we say that ρ is a neighbor of ranking ρ′, written

ρNρ′, if and only if for at most two states ω ∈ Ω, ρ(ω) = ρ′(ω), and for all ω ∈ Ω,

|ρ(ω) − ρ′(ω)| ≤ 1. A mapping m : R → ∆Ω is called rank dependent probability

assignment if and only if for all ρ, ρ′ ∈ R such that ρNρ′, and all ω ∈ Ω such that

ρ(ω) = ρ′(ω): mρ(ω) = mρ′(ω). For a given capacity ν on Ω the rank dependent

probability assignment mρ may be defined as follows mρ(ω) = ν(ω′ : ρ(ω′) ≤ ρ(ω))−
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ν(ω′ : ρ(ω′) < ρ(ω)).3 The mapping mρ may be interpreted as the marginal capacity

contribution of the state ω to all states yielding better outcomes. The Choquet

integral of an act f with respect to ν and u can be written as the Choquet integral

with respect to mρ and u, i.e.:∫
Ω

u◦f dν =

∫
Ω

u◦f dmρ = u(f(A1))+
n∑

i=2

[u(f(Ai))− u(f(Ai−1))] mρ(Ai, . . . , An).

By abuse of notation we denote a measure mρ(f), such that mρ(f)(Ai, . . . , An) =

v(Ai, . . . , An) with 1 ≤ i ≤ n, as the rank dependent probability assignment mρ

associated with an act f . Thus, throughout the paper we write the Choquet expec-

tation of f , taken with respect the measure mρ(f), as
∫

Ω
u ◦ f dν =

∫
Ω

u ◦ f dmρ(f).

Call a pair of acts f and g comonotonic, if there are no two states ω, ω′ such that

f(ω) < f(ω′) and g(ω) > g(ω′). For any act g, comonotonic with f and measurable

with respect to f , the Choquet integral of g with respect to ν and u is equal to the

expectation of g with respect to mρ(f) and u.

According to this interpretation, an event A is called N-unambiguous if its rank

dependent probability assignment does not depend on its ranking.

Definition 3.1. Fix an event A ∈ A. A is N-unambiguous if mρ(A) = ν(A) for all

ρ ∈ R, otherwise A is N-ambiguous.

Let AU
N be the set of all N -unambiguous events. Nehring (1999) proves that

for any capacity ν the set AU
N is an algebra. Moreover, any capacity ν is always

additively separable across its unambiguous events. Thus, AU
N = {A|v(B) = v(B ∩

A) + v(B ∩ Ac) for all B ∈ A}. An alternative way to define N -unambiguous

events is to use Savage’s axiom called Sure-Thing-Principle. However, since the

Sure-Thing-Principle, applied to the whole algebra of events A, implies that beliefs

are probabilistic, we have to constrain its domain to some events. Thus, we say that

the Sure-Thing-Principle holds at A and Ac if and only if for any act f, f ′, g, g′ ∈ F :

if fDg � f ′
Dg, then fDg′ � f ′

Dg′ and D ∈ {A, Ac}.
3Nehring (1999) showed that there is a one-to-one relation between capacities and rank depen-

dent probability assignments, mρ. In his definition the superscript ν is used for mν
ρ. We drop it

for notational simplicity.
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Proposition 3.1. Fix an event A ∈ A. The following two statements are equivalent:

i) A is N-unambiguous, i.e. A ∈ AU
N .

ii) The Sure-Thing-Principle at A and Ac is satisfied.

Ghirardato, Maccheroni, and Marinacci (2004) provide the behavioral counter-

part to N -unambiguous events in a different set up, assuming a convex structure

on the set of consequences. In particular, an event A is N -unambiguous if for any

x, x′ ∈ X bets of the form xAx′ cannot not be used for hedging other acts. According

to their proposition 10 all such bets (called crisp acts) are evaluated with respect to

the same probability distribution. Thus, the measure of an event A, mρ(xAx′)(A), is

independent of the rank ρ, meaning that A is N -unambiguous event.

Zhang (2002) constrains Savage’s Sure-Thing-Principle and proposes a weaker

definition of unambiguous events. An event A is Z -unambiguous if replacing a

common outcome for all states in A by any other outcomes does not change the

ranking of the pair of acts being compared. The following definition reflects this

idea.

Definition 3.2. An event A ∈ A is Z-unambiguous if for any f, g ∈ F , x ∈ X

fAx � gAx ⇒ fAx′ � gAx′

for any x′ ∈ X and the same implication holds for Ac. Otherwise A is Z-ambiguous.

Let AU
Z be a set of all Z -unambiguous events. It is well known that AU

N ⊆ AU
Z ,

since AU
Z does not need to be an algebra.4 Furthermore, Zhang (2002) estab-

lished the following characterization of AU
Z in terms of capacities. An event A

is Z-unambiguous if and only if v(A ∪ B) = v(A) + v(B) for all B ⊂ Ac and

v(Ac ∪ C) = v(Ac) + v(C) for all C ⊂ A.

4Kopylov (2007) showed that AU
Z is weaker than originally claimed λ-systems, it is a mosaic.
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4 Information and Updating

We limit our attention to updating on events that the DM views as possible to

occur, i.e. non null events. An event A ∈ A is non null if ν(A) > 0.5 As time

progresses the DM is informed that the true state of the nature ω is an element of

an event A, i.e. ω ∈ A. A natural way to model information is by means of event

trees represented by a filtration. We assume that time is discrete, finite and goes

over the index set T = {0, . . . , T}. Let Pt be a partition of the state space Ω. A

filtration P = {Pt}t∈T is a collection of partitions such that P0 = {Ω}, any Pt+1 is

finer than Pt for all t < T , and PT = {{ω} : ω ∈ Ω}. A filtration is given and fixed

throughout. Let AP be the algebra generated by the smallest elements of a given

filtration P .

At the ex ante stage, t = 0, the DM formulates a complete contingent plan of

action. When no information is given, the relation � represents the DM’s uncondi-

tional preferences, that is � is equivalent to �Ω. At any interim stage, t < T , the

DM faces new information and has a chance to review the contingent plan for the

remaining time periods. We denote by �A the CEU preferences over F conditional

on A ∈ Pt, i.e. for all f, g ∈ F ,

f �A g ⇔
∫

Ω

u ◦ fdνA ≥
∫

Ω

u ◦ gdνA

with νA a capacity conditional on A. As in Ghirardato (2002) we reduce conditional

decision problems to static ones.

In a dynamic framework it is important to know how the conditional and the

unconditional preferences are related to each other. The following three axioms

impose dynamic restrictions on preferences over F . The first property, called con-

sequentialism, concerns only the conditional preference relation. It requires that

preferences conditional on a non null event A are not affected by outcomes outside

the conditional event, Ac. Intuitively, once the DM is informed that an event A

occurred, only the uncertainty about all subevents of A matters for preferences.

5When an event A is either N -unambiguous or Z-unambiguous this definition of null events is

equivalent to the stronger notion, A is null if ν(A ∪B) = ν(B) for any B ∈ A.
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The uncertainty about counterfactual events, Ac, is not relevant anymore for future

choices.

Axiom 4.1 (Consequentialism). For any non null A ∈ A and all f, g ∈ F , f(ω) =

g(ω) for each ω ∈ A implies f ∼A g.

Throughout the paper, we assume that preferences satisfy consequentialism. An

important axiom linking directly conditional and unconditional preferences is called

dynamic consistency. Dynamic consistency requires that ex ante contingent choices

are respected by updated preferences and vice versa.

Axiom 4.2 (Dynamic consistency). For any non null A ∈ A and all f, g ∈ F such

that f(ω) = g(ω) for each ω ∈ Ac, f � g ⇔ f �A g .

Essentially, when the DM prefers f to g without any information regarding A,

and f and g are the same outside of A, she should also prefer f to g after being

informed that A occurred and vice versa.

The third property, called conditional certainty equivalent consistency, is adapted

from Pires (2002).6 This property is a weaker version of dynamic consistency. It

states: if conditional on a non null event A, the DM is indifferent between the act f

and the constant payment x, then the unconditional preferences should also express

indifference between the outcome x and the act fAx, which agrees with the act f on

A and otherwise assigns the constant outcome x.

Axiom 4.3 (Conditional certainty equivalent consistency). For any non null A ∈ A

any outcome x ∈ X and any f ∈ F , f ∼A x ⇔ fAx ∼ x.

At the interim stage, the revealed information is taken into account by updating

the DM’s subjective beliefs. For CEU preferences, there are several ways of defining

the conditional capacity νA. The most common updating rules used to revise ca-

pacities are: the Bayes update, the Dempster-Shafer update and the Full-Bayesian

update. For the sake of completeness, we recall the respective definitions.

6In her paper Pires (2002) axiomatizes the Full-Bayesian updating rule for the multiple prior

preferences of Gilboa and Schmeidler (1989).
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Definition 4.1. Let ν be a capacity on Ω and let A ⊂ Ω. If A is observed and

B ⊂ A, then:

i) the Bayes update (B) is given by

νA(B) =
ν(B ∩ A)

ν(A)
,

ii) the Dempster-Shafer (DS) update of ν is given by

νDS
A (B) =

ν((B ∩ A) ∪ Ac)− ν(Ac)

1− ν(Ac)
,

ii) the Full-Bayesian update (FB) is given by

νFB
A (B) =

ν(B)

1− ν(B ∪ Ac) + ν(B ∩ A)
.

Eichberger, Grant, and Kelsey (2007) provide an axiomatic characterization of

the Full-Bayesian update for CEU preferences. Moreover, the Dempster-Shafer and

the Bayes updating rule belong to the class of so called h-Bayesian updating rules

introduced by Gilboa and Schmeidler (1993).

Definition 4.2 (h-Bayesian update). There is an act h ∈ F such that for all

f, g ∈ F and all A ∈ A, f �A g ⇔ fAh � gAh.

When preferences admit a CEU representation then for the Dempster-Shafer (or

pessimistic) update, the act h = x∗ is a constant act yielding the most preferred

outcome in X. That is, under the Dempster-Shafer update, the conditionally null

event, Ac, is associated with the best outcome possible. For the Bayes (or optimistic)

update the act h = x∗ is a constant act associating the worst possible outcome in

X (note that w.l.o.g. we suppose that such x∗ and x∗ exist). According to Gilboa

and Schmeidler (1993) the DM exhibits ‘happiness’ that an event A occurred and

decisions are made as if we were always in ‘the best of all possible worlds’ (‘happiness’

comes from the fact that the event Ac, which did not occur, was associated by the

DM with the worst outcome). All h-Bayesian updates satisfy consequentialism but

not necessarily dynamic consistency.
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5 N-Unambiguous Events in a Conditional Deci-

sion Problem

The objective of this section is to establish the necessary and sufficient conditions

for CEU preferences to be dynamically consistent on events in a fixed filtration. We

begin by looking for an appropriate updating rule on the filtration P made up of

N -unambiguous events, i.e. AP ∈ AU
N . It turns out that the Bayes revision rule

for capacities is the only way to ensure dynamic consistency on the filtration P ,

whose elements are N -unambiguous events. Moreover, when the conditional event

is N -unambiguous, then the property of conditional certainty equivalent consistency

implies that beliefs are revised according to the Bayes rule. These observations are

summarized in the following proposition.

Proposition 5.1. Let ν be a capacity on Ω and let A ∈ AU
N be an N-unambiguous

event, then the following three statements are equivalent:

i) Conditional certainty equivalent consistency is satisfied.

ii) The capacity ν is updated according to Bayes rule.

iii) Dynamic consistency is satisfied.

Remark 5.1. Ghirardato, Maccheroni, and Marinacci (2008) provide a similar re-

sult for a larger class of preferences than the class of CEU preferences, the invariant

biseparable preferences. However, the properties that they obtain are not available for

all acts but only for acts which are unambiguous (i.e. acts measurable with respect

to the unambiguous partition).

As next we state that the Full-Bayesian update and all h-Bayesian updates co-

incide with Bayes update when the conditional event A belongs to the algebra gen-

erated by N -unambiguous events, i.e. A ∈ AU
N .

Proposition 5.2. Let ν be a capacity on Ω and let A ∈ AU
N be an N-unambiguous

event, then the Full-Bayesian update and all h-Bayesian updates coincide with the

Bayes update.
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Now we are ready to state our first theorem. It claims that CEU preferences

satisfy dynamic consistency on events in a fixed filtration if and only if the algebra

generated by the events from that filtration belongs to the algebra generated by

N -unambiguous events. Intuitively, CEU preferences respect dynamic consistency

on a fixed collection of events, which are not affected by ambiguity.

Theorem 5.1. Let P = {Pt}t∈T be a fixed filtration on Ω and let AP be an algebra

generated by P. If the DM has CEU preferences then the following conditions are

equivalent:

i) The DM is dynamically consistent with respect to P.

ii) AP belongs to AU
N and ν is updated according to the Bayes rule..

Some remarks regarding the theorem and the related literature are in order.

Remark 5.2. Our result extends the theorem of Eichberger, Grant, and Kelsey

(2005), which is true only for convex capacities, to all capacities. Then, for a ca-

pacity ν being convex, the additivity on A ∈ A, i.e. ν(Ac) + ν(A) = 1, is equivalent

to A being N-unambiguous. The proof relies on their lemma 2.1 stating that if

ν(Ac) + ν(A) = 1, then for any B ∈ A, ν(B) = ν(Ac ∩ B) + ν(A ∩ B). Instead of

assuming the Bayesian updating rule as in Eichberger, Grant, and Kelsey (2005) we

show that it is actually the only way to retain the property of dynamic consistency.

Remark 5.3. Sarin and Wakker (1998a) show in their theorem 3.2 that dynamic

consistency is equivalent to the additivity of the Choquet functional. Our theorem

strengthens this result by showing that dynamic consistency on fixed filtration ac-

tually implies that the algebra generated by this filtration belongs to the algebra of

N-unambiguous events and vice versa.
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6 Dynamic Characterization of Z-unambiguous

events

We begin this section by presenting the 4-color experiment, suggested by Zhang

(2002), and extend it to a dynamic framework. In particular it ilustrates that con-

ditionally on a Z-unambiguous event (which is not N -unambiguous) it is impossible

that the consequentialist DM satisfies the property of dynamic consistency.

Example 6.1. Consider an urn containing 100 balls. The color of each ball may

be black (B), red (R), gray (G) or white (W). The DM is supposed to rank six acts,

f, f ′, g, g′, h, h′ ∈ F , which are defined as below. At the ex ante stage (t = 0) the

DM is told that that the sum of black and red balls is 50 and the sum of black and

gray is also 50. At interim stage (t = 1) one ball is drawn at random from the urn

and the DM is informed the event {B, R} occurred.

Suppose that at the ex ante stage (t = 0) the DM is ambiguity averse and displays

the following pattern of preferences:

f =


1 if ω ∈ B

100 if ω ∈ R

0 if ω ∈ G

0 if ω ∈ W

 �


100 if ω ∈ B

0 if ω ∈ R

0 if ω ∈ G

0 if ω ∈ W

 = f ′

g =


1 if ω ∈ B

100 if ω ∈ R

100 if ω ∈ G

0 if ω ∈ W

 ≺


100 if ω ∈ B

0 if ω ∈ R

100 if ω ∈ G

0 if ω ∈ W

 = g′

h =


1 if ω ∈ B

100 if ω ∈ R

100 if ω ∈ G

100 if ω ∈ W

 �


100 if ω ∈ B

0 if ω ∈ R

100 if ω ∈ G

100 if ω ∈ W

 = h′

The DM prefers f to f ′ and she also prefers h and h′, because the chance of

getting 100 by choosing f is the same as by choosing f ′, but also with additional
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chance of getting 1 under f . The same way of reasoning holds for the preference

relation between the act h and the act h′. Furthermore, the DM prefers g′ to g.

Choosing act g′ leads to the payment of 100 with probability of one half, since the

probability of the event {B, G} is known to be one half, whereas the act g pays 100

only with probability in the range between null and one half. Moreover, chang-

ing the outcome on event {G, W} in the pair of acts {f, f ′} and {h, h′} leaves

the preference relation between these acts unchanged. Thus, the event {B, R} is

Z-unambiguous. In particular the collection of all Z-unambiguous events, AU
Z =

{∅, {B, R}, {G, W}, {B, G}, {R,W}, Ω}, is not an algebra, since it is not closed un-

der intersections.

Consider now the filtration P = {P0,P1}, with P0 = Ω and P1 = {{B, R}, {G, W}}.

At the interim stage (t = 1) the DM is informed that the event {B, R} occurred.

Since all acts a, b ∈ {f, g, h} and all acts a′, b′ ∈ {f ′, g′, h′} are the same on the event

{B, R}, a = b and a′ = b′, and differ only outside of that event, consequentialism

requires that a ∼{A,B} b and a′ ∼{A,B} b′ and furthermore a �{B,R} a′ (or a ≺{B,R} a′

respectively). But this is possible only by reversing the conditional preference rela-

tion between g and g′. Thus, it is impossible for the ambiguity averse DM to respect

dynamic consistency on fixed filtration P made up of Z-unambiguous events.

We maintain dynamic consistency for all acts measurable with respect to the

filtration P . That is for all f ∈ F such that for any x ∈ X, f−1(x) ∈ P . Denote by

FP the set of all acts measurable with respect to the filtration P .

Axiom 6.1 (P-Dynamic Consistency). For any non null event A ∈ A and for any

f, g ∈ FP , f ∼A g ⇔ fAg ∼ g.

In the same spirit as for N -unambiguous events, we look for the most natural

revision rule to update capacities conditionally on Z-unambiguous events. According

to the next result, applying the Bayes revision rule is the only way to ensure that

the conditional certainty equivalent consistency and the P-dynamic consistency are

satisfied.
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Proposition 6.1. Let ν be a capacity on Ω and let A ∈ AU
Z be a Z-unambiguous

event, then the following two statements are equivalent:

i) The capacity ν is updated according to the Bayes rule.

ii) Conditional certainty equivalent consistency and P-dynamic consistency are

satisfied.

Next we show that conditional on Z-ambiguous events the Bayes rule coincides

with all h-Bayesian rules, whenever h is a constant act, and with the Full-Bayesian

update.

Proposition 6.2. Let ν be a capacity on Ω and let A ∈ AU
Z be an Z-unambiguous

event, then the Full-Bayesian update and all h-Bayesian updates, with h = x for

some x ∈ X, coincide with the Bayes update.

In the following, we assume that the finest partition in P contains at least three

elements. Then we provide a necessary and sufficient condition Z-unambiguous

events in a conditional decision problem.

Theorem 6.1. Let P = {Pt}t∈T be a fixed filtration on Ω. If a decision maker has

CEU preferences then the following conditions are equivalent:

i) Conditional certainty equivalent consistency and P-dynamic consistency are sat-

isfied on P.

ii) AP belongs to AU
Z and ν is updated according to the Bayes rule.

Remark 6.1. If conditional certainty equivalent consistency is satisfied but not P-

dynamic consistency, then the event fails to be Z-unambiguous. When updated ac-

cording to the Full-Bayes rule, the capacities known as ε-contamination respect con-

ditional certainty equivalent consistency. For a characterization of capacities which

satisfies the conditional certainty equivalent consistency on all events see Eichberger,

Grant, and Lefort (2009).
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Remark 6.2. This characterization of Z-unambiguous events through conditional

certainty equivalent consistency is a specific property of CEU preferences. For in-

stance when preferences admit the multiple prior representation, then according to

the result of Pires (2002) conditional certainty equivalent consistency holds on all

events whenever the Full-Bayesian updating rule is used.

7 Conclusion

In this paper the notion of unambiguous events is related to conditional decision

problems. We consider a consequentialist decision maker with Choquet expected

utility preferences. We look for a fixed collection of events on which the DM re-

spects dynamic consistency. It turns out that dynamic consistency satisfied on a

fixed filtration guarantees that its elements are N -unambiguous events. The con-

verse is also true, when the capacity is updated according the Bayes rule. As an

implication, the DM will in general violate dynamic consistency on events which

are Z-unambiguous (but not N -unambiguous). However, when the fixed filtration

is made up of Z-unambiguous the DM’s preferences respect an axiom called con-

ditional certainty equivalence consistency and dynamic consistency constrained to

partition measurable acts.

On the one side the tight structure of CEU models can be seen as a drawback of

these models. On the other side it allows to characterize sharply the usual dynamic

properties of preferences from the static point of view. We hope that these results on

their own may give some new insights into the nature of dynamic CEU preferences

and may also contribute to the existing debate regarding the suitable notion of

unambiguous events.
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A Appendix

Proposition 3.1. i) ⇒ ii) Let A be a N -unambiguous event. Suppose that there are

four acts f, f ′, g, g′ ∈ F such that fAg � f ′
Ag, but fAg′ ≺ f ′

Ag′. By computing the

Choquet expectations of fAg we get∫
Ω

u ◦ (fAg) dν = u(x1) +
n∑

j=2

[u(xj)− u(xj−1)]ν(Aj, . . . , An)

= u(x1)(ν(A) + ν(Ac))

+
n∑

j=2

[u(xj)− u(xj−1)](ν((Aj, . . . , An) ∩ A) + ν((Aj, . . . , An) ∩ Ac))

=

∫
A

u ◦ f dν +

∫
Ac

u ◦ g dν.

Furthermore after computing the Choquet expectations of f ′
Ag, fAg′, and f ′

Ag′ we

obtain ∫
A

u ◦ f dν ≥
∫

A

u ◦ f ′ dν

and ∫
A

u ◦ f dν <

∫
A

u ◦ f ′ dν

Thus we got a contradiction.

ii) ⇒ i)

Step 1. Fix an event A ∈ A. For any act f ∈ F take an outcome x ∈ X such that

fAx ∼ x. Let mρ(fAx) be a rank dependent probability assignment for rank ρ

generated by fAx. Hence
∫

Ω
u ◦ (fAx) dν =

∫
Ω

u ◦ (fAx) dmρ(fAx). Take any

y ∈ X such that fAx and fAy are comonotonic. By the Sure-Thing-Principle

we have fAy ∼ xAy. After computing the Choquet integral we obtain∫
A

u ◦ f dmρ(fAx) + u(x)mρ(fAx)(A
c) = u(x),

thus ∫
A

u ◦ f dmρ(fAx) = u(x)mρ(fAx)(A).

Furthermore, whenever u(x) < u(y) we have

u(x)mρ(fAx)(A) + u(y)mρ(fAx)(A
c) = u(y)ν(Ac) + u(x)(1− ν(Ac)).
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By continuity of u there are infinity many of such outcomes y and therefore

we get

ν(Ac) = mρ(fAx)(A
c).

Let now B ∈ A be an event such that B = {ω|f(ω) � x}, then

mρ(fAx)(A
c) = ν(Ac ∪B)− ν(B)

and

ν(Ac) = ν(Ac ∪B)− ν(B).

This holds for any B ∈ A such that B∩Ac = ∅. Since the Sure-Thing-Principle

is satisfied at Ac as well, then

ν(A) = ν(A ∪ C)− ν(C)

for any C ∈ A such that A ∩ C = ∅.

Step 2. For any x, z ∈ X such that u(x) < u(z), there exists a y ∈ X with u(x) <

u(y) < u(z) such that fAg ∼ f ′
Ag where the acts fAg and f ′

Ag are defined as

follows

fAg =


z if ω ∈ A ∩B

x if ω ∈ A ∩Bc

x if ω ∈ Ac

 and f ′
Ag =


y if ω ∈ A ∩B

y if ω ∈ A ∩Bc

x if ω ∈ Ac

 .

By the Sure-Thing-Principle fAg ∼ f ′
Ag ⇒ fAh ∼ f ′

Ah for any fAh and f ′
Ah

defined as

fAh =


z if ω ∈ A ∩B

x if ω ∈ A ∩Bc

z if ω ∈ Ac ∩B

x if ω ∈ Ac ∩Bc

 and f ′
Ah =


y if ω ∈ A ∩B

y if ω ∈ A ∩Bc

z if ω ∈ Ac ∩B

x if ω ∈ Ac ∩Bc

 .
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Now by computing the Choquet integrals, we get

fAg = u(x)(1− ν(A ∩B)) + u(z)ν(A ∩B)

f ′
Ag = u(x)(1− ν(A)) + u(y)ν(A)

fAh = u(x)(1− ν(B)) + u(z)ν(B)

f ′
Ah = u(x)(1− ν(A ∪ (Ac ∩B))) + u(y)(ν(A ∪ (Ac ∩B))− ν(Ac ∩B))

+u(z)ν(Ac ∩B)

and since fAg ∼ f ′
Ag we obtain

u(x)(1− ν(A ∩B)) + u(z)ν(A ∩B) = u(x)(1− ν(A)) + u(y)ν(A)

u(x)(ν(A)− ν(A ∩B)) = u(y)ν(A)− u(z)ν(A ∩B)

From Step 1 we have ν(A) = ν(A∪ (Ac∩B))−ν(Ac∩B) and since fAh ∼ f ′
Ah

we obtain that

u(x)(ν(A ∪ (Ac ∩B))− ν(B)) = u(y)ν(A)− u(z)(ν(Ac ∩B)− ν(B))

Since this equation is true for any x, z ∈ X then ν(B) = ν(B∩A)+ν(B∩Ac),

for any B ∈ A and we conclude that A is a N -unambiguous event, i.e. A ∈ AU
N .

Proposition 5.1. i) ⇒ ii) Let us suppose that conditional certainty equivalent con-

sistency is satisfied. Let f = yBx be a simple bet with u(x) < u(y). By solvability,

there is z ∈ X such that f ∼A z. Thus, by conditional certainty equivalent consis-

tency, we have fAz ∼ z. After rearranging terms, we get:

u(z) = u(x)(1− νA(B)) + u(y)νA(B)

u(z) = u(x)(1− ν(Ac ∪B)) + u(z)(ν(Ac ∪ (B ∩ A))− ν(B)) + u(y)ν(B ∩ A)

Thus,

u(z) =
u(x)(1− ν(Ac ∪B)) + u(y)ν(A ∩B)

1− ν(Ac ∪B) + ν(A ∩B)
.
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Since A is a N -unambiguous event, then by the property of additive separability,

we get 1− ν(Ac ∪B) + ν(B) = 1− ν(Ac)− ν(A∩B) + ν(A∩B) = ν(A). Thus, for

any outcomes x, y ∈ X such that u(x) < u(y) the following is true:

u(z) =
u(x)(1− ν(Ac ∪B)) + u(y)ν(A ∩B)

ν(A)

= u(x)(1− νA(B)) + u(y)νA(B).

Therefore, we have

νA(B) =
ν(A ∩B)

ν(A)
.

ii) ⇒ iii) Now, suppose that the capacity ν is updated according to the Bayes

rule. Let the events A and B be N -unambiguous. Consider acts f, g ∈ F with

the following conditional preference relation: f ≺A g and f ≺B g. By computing

conditional Choquet expected utilities we get:∫
Ω

u ◦ fdνA = u(x1) +
n∑

j=2

[u(xj)− u(xj−1)]νA(Aj, . . . , An)

= u(x1) +
n∑

j=2

[u(xj)− u(xj−1)]
ν((Aj, . . . , An) ∩ A)

ν(A)∫
Ω

u ◦ fdνA∪B = u(x1) +
n∑

j=2

[u(xj)− u(xj−1)]νA∪B(Aj, . . . , An)

= u(x1) +
n∑

j=2

[u(xj)− u(xj−1)]
ν((Aj, . . . , An) ∩ (A ∪B))

ν(A ∪B)
.

Since the event A ∪ B is N -unambiguous we have ν((Aj, . . . , An) ∩ (A ∪ B)) =

ν((Aj, . . . , An)∩A)+ν((Aj, . . . , An)∩B) for any j = 2, . . . , n. Hence the conditional

Choquet integral
∫

Ω
u ◦ fdνA∪B is proportional to the sum of

∫
Ω

u ◦ fdνA and
∫

Ω
u ◦

fdνB. Therefore we obtain f ≺A∪B g.

iii) ⇒ i) Dynamic consistency directly implies conditional certainty equivalent

consistency.

Proposition 5.2. Consider the Full-Bayesian updating rule

νFB
A (B) =

ν(A ∩B)

1− ν(Ac ∪B) + ν(A ∩B)
.
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Since the conditional event A is N -unambiguous, ν(Ac∪B) = ν(Ac)+ν(A∩B) and

ν(Ac) + ν(A) = 1, therefore

νFB
A (B) =

ν(A ∩B)

ν(A)
.

Consider now the Dempster-Shafer updating rule,

νDS
A (B) =

ν((A ∩B) ∪ Ac)− ν(Ac)

ν(A)
.

Since A is a N -unambiguous event, ν((A∩B)∪Ac)−ν(Ac) = ν(A∩B)+ν(Ac)−ν(Ac),

therefore

νDS
A (B) =

ν(A ∩B)

ν(A)
.

Since A is N -unambiguous event, then for any f ∈ F :∫
Ω

u ◦ fdν = u(x1) +
n∑

j=2

[u(xj)− u(xj−1)]ν(Aj, . . . , An)

= u(x1)(ν(A) + ν(Ac))

+
n∑

j=2

[u(xj)− u(xj−1)](ν((Aj, . . . , An) ∩ A) + ν((Aj, . . . , An) ∩ Ac))

=

∫
A

u ◦ f dν +

∫
Ac

u ◦ f dν

Thus, by definition of the h-Bayesian update: f �A g iff fAh � gAh. For a N -

unambiguous event this is equivalent to
∫

A
u◦f dν ≤

∫
A

u◦g dν which is independent

of h. So all the h-Bayesian updating rules coincide when the conditional event A

which is N -unambiguous.

Theorem 5.1. i) ⇒ ii) Let A ∈ A be an event on which dynamic consistency is

satisfied. It is well known (see Ghirardato, Maccheroni, and Marinacci (2008)) that

dynamic consistency implies that the utility functions u and uA are the same up

to affine transformation. Let f = (A1, x1; . . . ; An, xn) be an act such that u(xi) <

u(xi+1) with 1 ≤ i ≤ n− 1. The Choquet expectation of f is taken with respect to

a rank dependent probability assignment mρ(f) with rank ρ given the act f , i.e.∫
Ω

u ◦ f dν =

∫
Ω

u ◦ f dmρ(f).
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By solvability, there is an outcome x ∈ X such that f ∼A x. Without loss of

generality, we assume that f does not take the value x, i.e x 6= xi with i = 1, . . . , n.

Consider acts fAy for any y ∈ X. Let mρ(fAy) be a rank dependent probability

assignment associated with the act g. Let ν be a capacity such that ν(A)+ν(Ac) = 1

and let νA be a conditional capacity given A. In the first step we prove that

1

ν(A)

∫
A

u ◦ f dmρ(fAy) =

∫
A

u ◦ f dνA.

In the second step, it is shown that for any act f ∈ F

1

ν(A)

∫
A

u ◦ f dmρ(f) =

∫
A

u ◦ f dνA.

In the third step we conclude that that mρ(f)(A) = ν(A) for any act f ∈ F . There-

fore, for any ranking position of states, that is for all ranks ρ ∈ R, mρ(A) = ν(A)

and thus A is a N -unambiguous event.

Step 1. Since f ∼A x, by dynamic consistency we get fAy ∼ xA for any y ∈ X.

i) Let y be an outcome such that u(y) < u(x). Since
∫

Ω
u ◦ g dν =

∫
Ω

u ◦

(fAy) dmρ(fAy) we have∫
A

u ◦ fdmρ(fAy) + u(y)mρ(fAy)(A
c) = u(y)(1− ν(A)) + u(x)ν(A).

This equality is true for any such outcome y for which the ranking ρ given the

act fAy and the ranking ρ′ given the act xAy are the same, i.e. ρ = ρ′. Thus

we get the following equality u(y)mρ(fAy)(A
c) = u(y)(1− ν(A)), which implies

that

mρ(fAy)(A) = v(A). (1)

Therefore we conclude that
∫

A
u ◦ fdmρ(fAy) = u(x)mρ(fAy)(A).

ii) Let y∗ be an outcome such that u(x) < u(y∗). Again, since
∫

Ω
u ◦ (fAy∗) dν =∫

Ω
u ◦ (fAy∗) dmρ(fAy∗) we have∫

A

u ◦ f dmρ(fAy∗) + u(y∗)mρ(fAy∗)(A
c) = u(y∗)(1− ν(A)) + u(x)ν(A).
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This equality is true for all outcomes y∗ which keep the same ranking, that

is the rank ρ associated with the act fAy∗ and the rank ρ′ associated with

the act xAy∗ are the same, i.e. ρ(ω) = ρ′(ω) for all ω ∈ Ω. So we have

u(y∗)mρ(fAy∗)(A
c) = u(y∗)ν(Ac) which implies that

mρ(fAy∗)(A
c) = ν(Ac). (2)

Therefore we have
∫

A
u ◦ fdmρ(fAy∗) = u(x)(1− ν(Ac)).

iii) Consider now an act fAx. Let mρ(fAx) be a rank dependent probability as-

signment with rank ρ given the act fAx. Since the act f does not take the

value x, there is an outcome y ∈ X such that u(y) = u(x)− ε and there is an

outcome y∗ ∈ X such that u(y∗) = u(x) + ε and such that the act fAy and

the act fAy∗ are comonotonic acts. This is possible by continuity of u. By

applying (1) and (2) to mρ(fAx) we can deduce that that mρ(fAx)(A) = ν(A)

and mρ(fAx)(A
c) = ν(Ac) and therefore ν(A) + ν(Ac) = 1.

Therefore, for any outcome y ∈ X and for any rank dependent probability as-

signment mρ(fAy) with rank ρ given the act fAy we have

u(x) =
1

v(A)

∫
A

u ◦ f dmρ(fAy) =

∫
A

u ◦ f dvA.

Step 2. Since f ∼A x, dynamic consistency implies that f ∼ xAf . Let mρ(xAf) be a

rank dependent probability assignment for a rank ρ given the act xAf . Thus,

we have∫
A

u ◦ f dmρ(f) +

∫
Ac

u ◦ f dmρ(f) =

∫
Ac

u ◦ f dmρ(xAf) + u(x)mρ(xAf)(A).

Let us consider an act f ∗ ∈ F such that f(ω) = f ∗(ω) for any ω ∈ A, but

f(ω) 6= f ∗(ω) for at least one ω ∈ Ac. Moreover let f ∗ be comonotonic with

f and let xAf be comonotonic with xAf ∗. According to dynamic consistency

we have fAf ∗ ∼ xAf ∗. Therefore, we obtain the following equality∫
A

u ◦ f dmρ(f) +

∫
Ac

u ◦ f ∗ dmρ(f) =

∫
Ac

u ◦ f ∗ dmρ(xAf) + u(x)mρ(xAf)(A
c),
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which implies that
∫

A
u ◦ f dmρ(f) = u(x)mρ(xAf)(A). Because dynamic con-

sistency is satisfied on the event A it is also satisfied on the complementary

event Ac. Thus, applying step 1 to Ac we get mρ(xAf)(A) = ν(A).

Step 3. From step 2 we have

u(x) =
1

v(A)

∫
A

u ◦ f dmρ(f),

and from step 1 we have for any y ∈ X

u(x) =
1

v(A)

∫
A

u ◦ f dmρ(fAy).

Therefore, we have for any y ∈ X∫
A

u ◦ f dmρ(f) =

∫
A

u ◦ f dmρ(fAy)

Let us consider an act g that is f measurable and comonotonic with the act

f . Then
∫

Ω
u ◦ f dmρ(f) =

∫
Ω

u ◦ g dmρ(g). For any outcome y∗ there is an

outcome y such that gAy∗ is fAy measurable and comonotonic with the act

fAy. By applying the same way of reasoning for act g as for act f in step 1

and in step 2 we obtain∫
A

u ◦ g dmρ(g) =

∫
A

u ◦ f dmρ(f) =

∫
A

u ◦ g dmρ(gay∗) =

∫
A

u ◦ f dmρ(fAy)

This implies that on the algebra on A generated by f we obtain mρ(f) =

mρ(fAy). From step 1 we have that ν(A) = mρ(fAy)(A). Therefore we get

ν(A) = mρ(f)(A) for any act f ∈ F .

ii) ⇒ i) See Proposition 5.1 ii) ⇒ iii).

Proposition 6.1. i) ⇒ ii) P-Dynamic Consistency follows directly: the capacity

on the filtration constructed from Z-unambiguous events is additive. Applying

the Bayes rule on it insures dynamic consistency for filtration measurable acts.

f ∼A x ⇔ fAx ∼ x is satisfied if the updating rule is h-Bayesian with h = x. In

proposition 6.2. we prove that all the h-Bayesian rules with h constant coincide on
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Z-unambiguous events. Since the Bayes rule corresponds to h-Bayesian update with

h = x, such that x is the worst possible outcome in X, the property of conditional

certainty equivalent consistency holds on Z-unambiguous events, when applying this

rule.

ii) ⇒ i) Let us suppose that conditional certainty equivalent consistency is

satisfied. Let f = yBx be a simple bet with u(x) < u(y). By Solvability there is

z ∈ X such that f ∼A z. Thus, by conditional certainty equivalent consistency we

have fAz ∼ z. After some computations we get:

u(z) = u(x)(1− νA(B)) + u(y)νA(B)

u(z) = u(x)(1− ν(Ac ∪B)) + u(z)(ν(Ac ∪ (B ∩ A))− ν(B)) + u(y)ν(B ∩ A)

Thus,

u(z) =
u(x)(1− ν(Ac ∪B)) + u(y)ν(A ∩B)

1− ν(Ac ∪B) + ν(A ∩B)
.

as A is a Z-unambiguous event, then by the characterization of Z-unambiguous

events, we get 1 − ν(Ac ∪ B) + ν(B) = 1 − ν(Ac) − ν(A ∩ B) + ν(A ∩ B) = ν(E).

Thus, for any outcomes x, y ∈ X such that u(x) < u(y) the following is true:

u(z) =
u(x)(1− ν(Ac ∪B)) + u(y)ν(A ∩B)

ν(A)

= u(x)(1− νA(B)) + u(y)νA(B).

Therefore, we have

νA(B) =
ν(A ∩B)

ν(A)
.

Proposition 6.2. From the definition of Z-unambiguous events it follows directly

that all the h-Bayesian updating rules with h being constant act coincide with the

Bayes rule. If A is observed and B ⊂ A then the Full-Bayesian update is given by:

νFB
A (B) =

ν(B)

1− ν(B ∪ Ac) + ν(B ∩ A)

Since A is Z-unambiguous then v(A ∪ Ec) = v(A) + v(Ec). Thus,

νFB
A (B) =

ν(B)

ν(A)
.
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Theorem 6.1. (i) ⇒ (ii). Let P be the fixed filtration and Aj the atoms of this

filtration with 1 ≤ j ≤ n. From Eichberger, Grant, and Kelsey (2007) we know

that conditional certainty equivalent consistency guarantees that the same util-

ity index u is used for conditional and unconditional prference relation. Let f =

(A1, x1; . . . ; An, xn) be a P-measurable act such that u(xj) < u(xj+1) with 1 ≤ j ≤

n − 1. The Choquet expectation of f is taken with respect to a rank dependent

probability assignment mρ(f) associated wtih the act f , i.e.∫
Ω

u ◦ f dν =

∫
Ω

u ◦ f dmρ(f).

Let us assume that Ac
i , with i 6= 1 and i 6= n, has occurred. In the first step we

show that
1

mρ(f)(Ac
i)

∫
Ac

i

u ◦ f dmρ(f) =

∫
Ac

i

u ◦ f dvAc
i
.

Step 1. By solvability there is an outcome y ∈ X such that f ∼Ac
i
y. Next we construct

an act g that is comonotonic with the act f . The construction is conducted

as follws. If u(y) ≤ u(xi−1), we define g on Ac
i as g = z on An with z ∈ X and

g = f otherwise. By choosing z properly, that is, such that u(z) > u(xn), we

obtain g such that g ∼Ac
i
x with u(xi−1) < u(x) < u(xi+1). By continuity of u

this is possible. On the other hand, if u(xi+1) ≤ u(y) we define another act g

by decreasing x1, such that g ∼Ac
i
x with u(xi−1) < u(x) < u(xi+1). Then the

acts f and g are comonotonic, because g is different of f only on the lowest

value of f , and this lowest value of g can only be lower than the lowest value

of f , or the highest value of f , and this highest value of g can only be higher

than the highest value of f . Therefore we get∫
Ac

i

u ◦ g dvAc
i
=

∫
Ac

i

u ◦ g mρ(g),

where mρ(g) is the rank dependent probability assignment associated with the

act g. Now, we apply conditional certainty equivalent consistency and get

gAc
i
x ∼ x. Since u(xi−1) < u(x) < u(xi+1), the act f and the act gAc

i
x are

comonotonic. Thus their Choquet integrals are computed with respect to the
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same measure mρ(f), namely
∫

Ω
u ◦ (gAc

i
x) dv =

∫
Ω

u ◦ (gAc
i
x) dmρ(f). Thus, we

have
∫

Ω
u ◦ (gAc

i
x) dv = u(x). Therefore we get

u(x) =

∫
Ac

i

u ◦ g dmρ(f) + mρ(f)(Ai)u(x)

Finally, we obtain

u(x) =
1

mρ(f)(Ac
i)

∫
Ac

i

u ◦ g dmρ(f) =

∫
Ac

i

u ◦ g dvAc
i
,

which is also true for the act f

1

mρ(f)(Ac
i)

∫
Ac

i

u ◦ f dmρ(f) =

∫
Ac

i

u ◦ f dvAc
i
.

Step 2. We show that the above result is true for any possible permutation of the

indices {2, . . . , n − 1} of the atoms {A2, . . . , An−1}. That is for any such

P-measurable act f ∗ the rank dependent probability assignment mρ(f∗) asso-

ciated with the act f ∗ is independent of the ranking position of the event Ai

provided that i 6= 1 and i 6= n. Consider an act f ∗ = (A1, x
∗
1; . . . ; An, x

∗
n)

such that f ∗ ∼Ac
i

y for some outcome y ∈ X and such that u(xi) is between

u(x∗j) and u(x∗j+1). Consider also an another act f ∗∗ = (A1, x
∗∗
1 ; . . . ; An, x

∗∗
n )

with different rearrangements of atoms, such that u(xi) is between u(x∗∗j ) and

u(x∗∗j+1) and such that f ∗∗ ∼Ac
i
y. Let mρ(f∗) and mρ(f∗∗) be a rank dependent

probability assignment associated with the act f ∗, respectively with f ∗∗. By

applying step 1 we obtain

1

mρ(f∗)(Ac
i)

∫
Ac

i

u ◦ f dmρ(f∗) =
1

mρ(f∗∗)(Ac
i)

∫
Ac

i

u ◦ f dmρ(f∗∗) (1).

Now, we can vary the values of x∗1 and x∗∗1 , equality (1) remains true, provided

that f ∗ and f ∗∗ have still the same certainty equivalent conditional on the Ac
i ,

i.e there is some z such that f ∗ ∼Ac
i

z and f ∗∗ ∼Ac
i

z. Thus, it must be true

that mρ(f∗)(A
c
i) = mρ(f∗∗)(A

c
i). Then we have

mρ(f∗)(A
c
i) = 1−mρ(f∗)(Ai) = 1−v(Ai∪A∗

j+1, . . . , An)+v(A∗
j+1, . . . , An), (2)

and

mρ(f∗∗)(A
c
i) = 1−mρ(f∗∗)(Ai) = 1−v(Ai∪A∗∗

j+1, . . . , An)+v(A∗∗
j+1, . . . , An). (3)
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Equations (2) and (3) lead to the following

v(Ai∪A∗
j+1, . . . , An)−v(A∗

j+1, . . . , An) = v(Ai∪A∗∗
j+1, . . . , An)−v(A∗∗

j+1, . . . , An).

The last equation is true for any f . Let Ai = E with i 6= 1 and i 6= n.

Moreovere, let F = (A∗
j+1, . . . , An) let G = (A∗∗

j+1, . . . , An). The left hand

side of the equation is true if (Ai ∪ A∗
j+1, . . . , An) − (A∗

j+1, . . . , An) 6= 1, i.e.

v(F ) 6= 0 and v(F ∪ E) 6= 1. The right hand side of the equation is true if

(Ai ∪ A∗∗
j+1, . . . , An) − (A∗∗

j+1, . . . , An) 6= 1, i.e. v(G) 6= 0 and v(G ∪ E) 6= 1.

Thus, we get

v(F ∪ E)− v(F ) = v(G ∪ E)− v(G).

Step 3. Since P-dynamic consistency holds on the algebra generated by the filtration

P the capacity ν is additive on this algebra.

Case 1. There exists an event F ∈ P such that v(F ) 6= 0 and v(F ∪E) 6= 1. Thus,

by additivity of v on P we get v(F ∪ E)− v(F ) = v(E). Then from the

result in step 1 we conclude that v(A∪E) = v(A) + v(E) for all A ⊂ Ec.

Case 2 Suppose that there exists no such event F and then let us assume at least

three atoms in P . There exists E ′ and E ′′ in P such that E = E ′ ∪ E ′′

and the complements of E ′ and E ′′ are not atoms in P . Therefore, we

can apply case 1 to them obtaining

ν(F ∪ E)− ν(F ) = ν(F ∪ E ′ ∪ E ′′)− ν(F ∪ E ′) + ν(F ∪ E ′)− ν(F )

= ν(E ′) + ν(E ′′)

= ν(E)

Therefore, we have v(A ∪ E) = v(A) + v(E) for all A ⊂ Ec.

By applying step 1, step 2 and step 3 to the complementary event, Ec, we can

conclude that E and Ec are Z-unambiguous events.

(ii) ⇒ (i). The converse follows immendiatly from the Proposition 6.1.
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