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1 Introduction

Technological knowledge diffuses across the boundaries of open economies.! As a
consequence, backward countries with access to the knowledge contained in the
world’s technological frontier, may adopt this knowledge and, thereby, grow faster
than advanced countries (Gerschenkron (1962), Abramovitz (1986)). This paper de-
velops a new open-economy endogenous growth model where this mechanism allows
for a stable and non-degenerate world income distribution. The purpose is to detect
both country characteristics and properties of the growth process that explain a
country’s position in the eventual world income distribution.

From a macroeconomic point of view, international technology diffusion is the pro-
cess by which domestic firms incorporate new ideas and techniques from abroad into
their production technology and, thereby, raise the productivity of the available do-
mestic factors of production. At the microeconomic level, I motivate this process
by what Griffith, Redding, and Reenen (2004) call the second face of RED, i.e.,
the fact that firms engaged in innovation activity acquire external knowledge and
assimilate discoveries of others.? From this point of view, the intensity of domestic
innovation activity becomes a key determinant of a country’s capacity to absorb
previously unknown technological knowledge from abroad.

Following Nelson and Phelps (1966), the second component of the diffusion process
is the gap between the state of the world’s technological frontier and a country’s
current state of technological knowledge. This gap represents the pool of ideas and
techniques from which the second face of R&D can draw. I take the view that no
country has access to the entire knowledge embodied in the world’s technological
frontier. Hence, over time, the technology gap may rise or fall, however, it remains
positive throughout. In a steady state, each country absorbs a constant fraction of
the world’s technological frontier. The remaining steady-state gap turns out to be
a key determinant of a country’s relative position in the steady-state world income
distribution.

I refer to international technology diffusion as the foreign contribution to the ad-
vancement of a country’s accessible level of technological knowledge. The domestic
contribution reflects the first face of R&D, i.e., research and development of new

!Recent empirical studies in support of this include Coe and Helpman (1995), Eaton and Kortum
(1996), Nadiri and Kim (1996), and Coe, Helpman, and Hoffmaister (2008).

2Besides Griffith, Redding, and Reenen (2004), there is considerable support for this motive
in the empirical literature (see, e.g., Tilton (1971), Allen (1977), Mowery (1983)). Cohen and
Levinthal (1989) study the implications of such activity for partial industry equilibria.
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technological knowledge undertaken by domestic firms. Overall, the evolution of
a country’s accessible level of technological knowledge is given by the sum of the
domestic and the foreign contribution.

The set-up of the domestic economy adds a competitive intermediate-good sector
to an otherwise neoclassical economy to incorporate endogenous economic growth.?
Innovation investments are undertaken by intermediate-good firms in an attempt to
gain an advantage over rivals. These investments are endogenously determined, raise
the productivity of domestic labor, and, as a byproduct, bring about a knowledge
inflow from abroad.

For this set-up, I establish the intertemporal general equilibrium and the existence
of a unique steady state that pins down a country’s capital intensity and its rel-
ative position with respect to the world’s technological frontier. Similar to other
theoretical studies of technology diffusion, including Parente and Prescott (1994),
Barro and Sala-i-Martin (1997), or Howitt (2000), all economies share the same
steady-state growth rate of per-capita magnitudes which coincides with the exoge-
nous growth rate of the world’s technological frontier. However, differences in the
level of technological knowledge survive even in the steady state and cause cross-
country income differences, a feature consistent with empirical findings of, e. g., Hall
and Jones (1999).

A particular focus of the analysis is on human capital and on growth policies based
on subsidies for innovation investments. Besides its static labor-augmenting effect in
the spirit of Becker (1993) and Mincer (1974), I argue that human capital is favorable
to innovation because it reduces the amount of resources necessary to adapt to or
to invent something new. This follows ideas expressed in, e.g., Nelson and Phelps
(1966), Schultz (1975), or Galor and Moav (2000). However, in my context where
economic growth is endogenous, the positive effect of human capital on domestic
innovation and technology diffusion may be offset by general equilibrium effects.
The latter implies that the rate of diffusion, i.e., the rate at which the gap between
the technological frontier and the current state of the domestic technology closes,
does not necessarily increase in human capital. Thus, the Nelson-Phelps hypothesis
(Nelson and Phelps (1966), p. 70) fails in general. In a similar vein, I find that the
partial equilibrium effect of a subsidy on innovation investments is positive but may
be outweighed by general equilibrium effects.

What determines steady-state income differences across countries? I find that an
economy’s size, its available research technology, properties of the diffusion pro-

3The analytical framework extends and complements the endogenous growth model developed
in Irmen (2005). The latter, in turn, builds on Hellwig and Irmen (2001) and Bester and Petrakis
(2003).
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cess, and the behavioral assumption on savings determine both the set of country
characteristics that matter and the sign of the predicted effect. However, for open
economies that engage in innovation activity the analysis shows that independent
of these categories a) a social infrastructure that fosters the efficiency of an econ-
omy’s domestic production technology, and b) institutions that facilitate the inflow
of technological knowledge from abroad increase a country’s position in the steady-
state world income distribution. Such countries benefit more from their own R&D
and from international R&D spillovers. This is in line with the empirical evidence
provided by, e.g., Hall and Jones (1999), Sachs and Warner (1995), or Coe, Help-
man, and Hoffmaister (2008). Moreover, a high savings rate and a small population
growth rate imply a high steady-state per-capita income, a finding consistent with
the correlations that appear in the data provided by Heston, Summers, and Aten
(2002) (see, e.g., Weil (2005), p. 70 and 84).

The role of human capital and of subsidies for innovation investments as deter-
minants of cross-country income differences is strengthened if the savings rate is
endogenous a la Ramsey (1928), Cass (1965), Koopmans (1965). In this setting the
steady-state capital intensity is pinned down by a first-order condition rather than
by a market equilibrium condition. As a result, the general equilibrium effects in
the comparative statics disappear. Both variables tend to raise domestic research
activity and, thereby, increase a country’s capacity to absorb knowledge embodied
in the technological frontier. Through both channels the steady-state per-capita
income rises.

Several studies of the evolution of the world’s income distribution question the view
according to which all countries converge to parallel growth paths (see, e.g., Quah
(1997), Durlauf and Johnson (1995), or Pritchet (1997)). My framework highlights
two mechanisms in support of this view. Both are consistent with the observation
of a growing divergence between the world’s richest and poorest countries and with
the presence for convergence clubs in growth rates.

First, countries may be closed, i.e., cut-off from the evolution of the world’s tech-
nological frontier. Historical examples include China’s isolationism starting in the
15th century AD or Japan’s isolationism ending in the mid 19th century AD. I show
that closing an economy means that it falls behind forever because growth relies
solely on domestic innovation efforts. The example of China is a case in point (see,
e.g. Mokyr (1990), Chapter 9, or Landes (1998), p. 93-97). I find that the country
characteristics that generate level effects in the open economy induce also growth
effects in the closed economy. Hence, country characteristics determine whether
closed economies converge to parallel growth paths or not.

Second, an open economy may be caught up in a no-innovation trap if country
characteristics prevent profit-maximizing domestic firms from engaging in innovation
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investments. As a consequence, the second face of R&D is mute. The country
does not absorb technological knowledge from abroad and converges to a stationary
steady state as in Solow (1956). For such a setting, I show that a minimum level
of human capital is necessary to induce innovation activity in equilibrium. This is
consistent Benhabib and Spiegel (2005) who claim for a sample of 84 countries that a
minimum level of human capital corresponding to an average 1.78 years of schooling
in 1960 was necessary to catch up with US total factor productivity growth over the
following 35 years.

The paper is organized as follows. I present the details of the model in Section
2. Section 3 studies the intertemporal general equilibrium and characterizes the
dynamical system. Section 4 extends the basic model in three directions. First,
I consider an endogenous savings rate generated by infinitely lived dynasties in
Section 4.1. The closed economy and the implications for club convergence are
analyzed in Section 4.2. Section 4.3 studies the possibility no-innovation traps.
Section 5 concludes. All proves are relegated to the Appendix.

2 The Basic Model

The economy has a household sector, a final-good sector, and an intermediate-
good sector in an infinite sequence of periods ¢t = 1,2,... There are four objects
of exchange, a manufactured final good, a manufactured intermediate good, labor,
and bonds. I call ‘final good’” a commodity that serves for consumption as well as
for investment. If invested, this commodity is either used as future capital in the
final-good sector or as an immediate input into innovation undertaken by firms of
the intermediate-good sector.

In each period ¢, there are markets for all four objects of exchange. Treating the
final good as the numéraire, p, denotes the real price of the intermediate good, w;
the real hourly wage. A bond at ¢ is a claim on one unit of the final good at ¢ + 1.
Accordingly, the price of a bond at ¢ is 1/(1 + r,41), where ryy; is the real interest
rate from ¢ to ¢t + 1.

2.1 The Household Sector

The household sector has an initial endowment of B; bonds coming due at t = 1
and owns the shares of all firms in the economy. In each period it is equipped with
a labor endowment of L; hours of time that coincides with the aggregate supply of
labor. Due to population growth, this endowment grows at a constant rate A > (—1)
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such that L; = (1+ >\)t_1 for ¢ > 1 with L; = 1 given as an initial condition. Let
h > 1 denote the level of human capital that augments each hour worked.

The allocation of per-period income to consumption and savings is subject to the
budget constraint

7:tht+Bt+Ht—Tt, (21)

where C} is consumption of the final good, B;,; is bond demand in ¢, w; L; is
wage income, B, is capital income from the repayment of bonds due in ¢, II; is
the aggregate dividend distribution, and 7; denotes the lump-sum tax levied by the
government to finance possible subsidies for innovation investments.

As to the consumption-savings decision of the household sector I assume that real

aggregate savings in t is a fixed fraction of aggregate income in ¢, i.e.,*
i:S(U)tlzt‘I—Bt—‘—]._[t—7—‘t), (22)
L4 7

with s € (0,1) denoting the marginal and average propensity to save.

2.2 The Final-Good Sector

The final-good sector produces according to the production function Y; = T'F' (K}, X3),
where I' > 0 and F' is a neoclassical production function with the usual properties
(see, e.g., Barro and Sala-i-Martin (2004), pp. 26 - 28). Here, Y; is aggregate out-
put, I" is meant to capture what Hall and Jones (1999) call social infrastructure, K
is capital input in ¢, and X; denotes the amount of the intermediate good used in
period-t production. I assume F' to be Cobb-Douglas, i.e.,

V,=TK}X}™, 0O<a<l. (2.3)

Capital in ¢ must be installed one period before its use in production and, without
loss of generality, fully depreciates after being used. A capital investment of K;
units undertaken in period ¢ — 1 is financed by an issue of (1 + ;) K; bonds.

In terms of the final good of period t as numéraire the profit in t of the final-good
sector is
}/; — (1 + Tt) Kt — Pt Xt7 (24)

4Similar findings are obtained when I represent the household sector by two-period lived over-
lapping generations with log utility. Since the savings hypothesis of (2.2) avoids expectations over
a possibly infinite horizon to play a role it proves particularly plausible in the presence of growth
stages to which I turn in Section 4.3. I study the case of an endogenous savings rate along the
lines of Ramsey (1928), Cass (1965), and Koopmans (1965) in Section 4.1.



Cross-Country Income Differences and Technology Diffusion 6

where (1 4 r;) K is capital service payments and p, X is the cost of the intermediate-
good input.

The final-good sector takes the sequence {p;,r,} of prices and interest rates as given
and maximizes the sum of the present discounted values of profits in all periods.
Since it simply buys capital and intermediate goods for each period, its maximization
problem is equivalent to a series of one-period maximization problems. Define the
period-t capital intensity in the final good-sector as

K,
= —. 2.
ki X, (2.5)

Using f (k) = F (ki, 1) = kf the respective first-order conditions for ¢t = 1,2, ... are

K, : alk'=14mn (2.6)
Xe © 1—a)TkF=p. (2.7)

Initially, the final-good sector has K units of capital at its disposal. It stems from
investment decisions prior to period ¢ = 1 and causes outstanding debt obligations
equal to (14 7r) Kj.

2.3 The Intermediate-Good Sector

The set of all intermediate-good firms is represented by the set R, of nonnegative
real numbers with Lebesgue measure.

2.3.1 Technology

At any date, t, all firms have access to the same technology with production function
xy=min{l,a;hi;}, (2.8)

where z, is output, 1 a capacity limit,® a, the firm’s labor productivity in period ¢, hl,
human capital augmented labor input. The index h > 1 reflects the Becker-Mincer

5The analysis is easily generalized to allow for an endogenous capacity choice requiring prior
capacity investments, with investment outlays a strictly convex function of capacity. In such
a setting profit-maximizing behavior implies that a large innovation investment is accompanied
by a large capacity investment (see, Hellwig and Irmen (2001) for details). Thus, the simpler
specification treated here abstracts from effects on firm size in an environment with changing
levels of innovation investments.
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view that human capital increases the productivity of the labor hours employed by
firms (Mincer (1974), Becker (1993)). The firm’s labor productivity is equal to

ay = At—l(l + C_It), (29)

here A;_; is an economy-wide indicator of the level of technological knowledge ac-
cumulated up to period t — 1, and ¢; is an indicator of productivity growth at the
firm.

To achieve a productivity growth rate ¢, > 0 from period ¢t — 1 to period ¢, the firm
must invest i(q;, h) units of the final good in period t — 1. The function i is time
invariant and satisfies for h > 1

i(0,h) =i,(0,h) =0, i,(q,h) >0, i, —00asq— 00, i4 >0forqg>0(2.10)
and for ¢ > 0

Hence, a higher rate of productivity growth requires a larger investment, and more
human capital enhances the effect of a given investment volume on productivity
growth. The latter captures the idea enunciated by, e. g., Nelson and Phelps (1966),
Schultz (1975), or Galor and Moav (2000) that human capital is favorable to change,
for instance, because it speeds up the process of learning how to work with a new
technology.® A functional form that fulfills these conditions is

i(¢g,h) =q¢"h™7, with 1<v<2 and z>0. (2.12)

It also complies with the following regularity condition that [ impose on the convexity

of 7. For all ¢ > 0 let
f e ) o 1 (2.13)
iq lgq 1+4+4¢

If the firm innovates the assumption is that an innovation in period t is proprietary
knowledge of the firm only in ¢, i. e., in the period when it materializes. Subsequently,
the innovation becomes embodied in the economy-wide productivity indicators A,
Agi1, ..., with no further scope for proprietary exploitation. The evolution of these
indicators will be specified below. If firms decide not to undertake an innovation
investment in period ¢ — 1 then, for production in ¢, they have access to the produc-
tion technique represented by A;_; such that a; = A; ;. This will matter when we
discuss no-innovation traps in Section 4.3.

6Empirical evidence supporting this idea provide, e. g., Welch (1970) and Bartel and Lichtenberg
(1987).
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2.3.2 Profit Maximization and Zero-Profits

To finance an innovation investment (g, k) the firm issues (1 + ;) (g, h) bonds in
period t — 1. In period t the government grants a subsidy on such investment equal
to o (1 + r¢)i(q:, h), where o € (0,1) is the time-invariant subsidy rate. In terms
of the final good of period ¢ as numéraire, a production plan (g, l;, z;) for period ¢
thus yields the profit

T :ptxt—wtlt— (1"—7}) (1—U)Z(qt,h), (214)

where pyz; = p, min {1, A;_1(1+ ¢;) hl;} is the firm’s revenue from output sales,
wy [y its wage bill at the real wage rate wy, and (1+7;) (1—0)i(q;, h) its debt service
net of subsidies.

Competitive firms take the sequence {p;, wy, r;} of real prices, the sequence {A;}
of aggregate productivity indicators, the subsidy rate, o, and the level of human
capital, h, as given and choose their production plan so as to maximize the sum of
the present discounted values of profits in all periods. Because production choices
for different periods are independent of each other, for each period ¢, they choose
the plan (g, [, ;) to maximize the profit 7; from this plan in period ¢.

If the firm innovates, it incurs an investment cost (1 + ) (1 — o) i(q, h) that is
associated with a given innovation rate ¢; > 0 and is independent of the output x;.
This introduces a positive scale effect, namely if the firm innovates, then it wants to
apply the innovation to as large an output as possible and produces at the capacity
limit #; = 1. The choice of (¢;,{;) must then minimize the costs of producing the
capacity output.

Suppose w; > 0 and r, > (—1), then an input combination (g,[;) that minimizes

unit costs must satisfy
1

= —
T AL +q)h

(2.15)

and

¢, € arg min L (14r)(1-0)i(g )] (2.16)

>0 | A (14+q)h

Given the convexity of the innovation cost function and the fact that i,(0,h) = 0,
(2.16) determines a unique level ¢; > 0 as the solution to the first-order condition

Wy

A (1 +¢q)?h

=(14r)(1—0)i,q, h). (2.17)

The latter relates the marginal reduction of the firm’s wage bill to the marginal
increase in its investment costs. As both marginal effects are proportional to the
respective factor price, condition (2.17) implies a map ¢ that assigns to each triple
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of wy/Ar_1h(1+17)>0,h>1, and o € (0,1) the cost-minimizing growth rate of

labor productivity
Wy
r = h . 2.18
Qt q(At_lh(1+7’t)’ ,U) ( )

Given A;_; the chosen growth rate of labor productivity increases in the relative

factor price ratio, and the properties of the input requirement function ¢ imply that
q(0,h,0) = 0 and ¢ (00, h,0) = oo. Moreover, ¢; increases in the subsidy rate
whereas the effect of an increase in the level of human capital has an ambiguous
effect. Indeed, one readily verifies that dg; /dh E 0 < —(0i,/0h)h/i, E 1. This
condition reflects the countervailing effect of the Becker-Mincer versus the Nelson-
Phelps logic on innovation incentives. As a result, we find that dg;/dh > 0 obtains
only if the impact of h on the reduction of the marginal investment requirement is
stronger than the disincentive through the labor-augmenting effect of human capital.
This is the case if the elasticity of the marginal investment requirement with respect
to human capital at ¢* is sufficiently strong. This intuition is confirmed for the
specification of ¢ given in (2.12), where dg;/dh > 0 holds if and only if z > 1.

2.4 Consolidating the Production Sector

Turning to implications for the general equilibrium, recall that the set of intermediate-
good firms is ;. with Lebesgue measure. Therefore, maximum profits that produc-
ing intermediate-good firms attain in equilibrium for any ¢ must be zero. Indeed,
since the labor supply in each period is bounded, the set of intermediate-good firms
employing more than some € > 0 units of labor must have bounded measure and
hence must be smaller than the set of all intermediate-good firms. Given that in-
active intermediate-good firms must be maximizing profits just like the active ones,
we need that maximum profits of intermediate-good firms at equilibrium prices are
equal to zero, i.e.,

m = 7 (q); p, wy, Ty, Ay—1,h,0) = 0. (2.19)

Since all intermediate-good firms face the same input and output prices, they all

*

choose the same growth rate of labor productivity, ¢*. Moreover, the following
lemma establishes that the conditions for profit-maximization and zero-profits in the
final-good and the intermediate-good sector relate this rate of productivity growth
to the capital intensity in the final-good sector, k, to the level of human capital, h,

and to the subsidy rate, o, according to a well-behaved function g (k, h, o).
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Lemma 1 If (2.6), (2.7), (2.17) and (2.19) hold for all firms in t, then there is
a map g such that for ky > 0 and h > 1, ¢ = g(ki, h,0), with g(0,-,-) = 0,
g (OO, ) ) = 00,

g.>0, ¢,>0, and g, >0. (2.20)

The fact that g, > 0 can be traced back to the properties of the neoclassical produc-
tion function of the final-good sector. They imply that the marginal productivity of
capital falls in k; whereas the marginal productivity of the intermediate good rises.
Accordingly, r, falls and p; rises in k;. Through the zero-profit condition, these price
movements feed back onto the wage, w;, which must also rise. As a result, a higher
k: increases the relative wage in (2.18) and, therewith, the incentives that foster
labor productivity growth. Moreover, the function g captures the effect of human
capital in a changing environment, i. e., as human capital reduces total and marginal
investment outlays, we find g, > 0. Similarly, we obtain g, > 0 since a subsidy rate
reduces marginal investment outlays.

2.5 Evolution of Technological Knowledge

As I set out in the Introduction, the evolution of the economy’s level of technological
knowledge comprises a domestic and a foreign contribution. These channels corre-
spond to the two faces of R&D that Griffith, Redding, and Reenen (2004) identify
empirically.

The domestic contribution at t — 1 reflects productivity growth achieved at the
level of those domestic intermediate good firms that produce at ¢. Denoting the
measure of these firms by n;, their contribution is equal to the highest level of labor
productivity attained by one of them, i.e.,

max{a;(n) = A1 (1+¢;(n)) |n € [0,n]}.
Since in equilibrium ¢;(n) = ¢, the domestic contribution boils down to
ay = At—l (1 + q:) (221)

The foreign contribution is an inflow of currently unavailable technological knowl-
edge from abroad. It begs the notions of the world’s technological frontier and of a
laggard country. Let A7*** denote the world’s leading-edge productivity indicator at
t which grows at the constant rate v > 0, i.e., A7"* = (1 + ~) A7"%" with A7 > 0
as an initial condition. A country is called a laggard at ¢ if A7** > A,.
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The strength of the foreign contribution at t — 1 depends positively on three factors.
First, it relies on the average investment activity of intermediate-good firms between
t—1and t, (g, h). Second, it hinges on the technological backwardness of the lag-
gard country measured by the gap A4 — A, ;.7 Third, the country’s openness
to the rest of the world matters. The parameter # is meant to capture institu-
tional or technological factors that facilitate the inflow and implementation of new
knowledge. It may be associated with the presence of restrictions on foreign trade
or migration, to country-specific barriers to technology adoption as emphasized by
Parente and Prescott (1994), to patent protection of new foreign technologies or to
their appropriateness in the sense of, e.g., Atkinson and Stiglitz (1969) and Basu
and Weil (1998). The economy is said to be open if 6 > 0 and closed if 6 = 0.

For simplicity, I stipulate the foreign contribution as the product of these three
factors, i.e.,
0i(q;, h)(A"Y — Arr). (2.22)

Thus, the second face of R&D measured by i(g;, h) determines the rate of diffusion.
This specification provides a possible micro-foundation for the assumption intro-
duced by Nelson and Phelps (1966) that the ability of a laggard country to close
the technological gap depends positively on the average level of human capital in
its population. Here, however, the link between the level of human capital and the
strength of the inflow is endogenous.

Adding (2.21) to (2.22), we obtain the updating condition for the level of technolog-
ical knowledge to which innovating domestic intermediate-good firms have access at
2

Ap = A (T +q7) +0i(gr, ) (AT — Aea). (2.23)

This condition is a discrete time analogue of the confined exponential diffusion
process studied in Benhabib and Spiegel (2005). To see this more clearly, consider
the growth rate of A%

=q; +0i(g,h) ( =L 1). (2.24)

"The representation of technological knowledge by the real line reduces a complicated, multi-
faceted object to a one-dimensional entity. Therefore, one may argue that any domestic innovation
investment of a laggard country creates knowledge that already exists. Then, it is not A7*%* — A,
that matters as a component of the foreign contribution but rather the gap net of duplication
AP — Ay (14 ¢f). It turns out that duplication introduced in this way adds a complication to
the picture that does not affect most of my results. Details for this case are available upon request.

8This may be compared to equation 2.1 in Benhabib and Spiegel (2005) where the functions
corresponding to ¢; and 0i(g;, h) are assumed to increase in a country’s level of education and are
not linked to microeconomic magnitudes.
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According to Lemma 1, both components of this growth rate are determined in
equilibrium. They will directly depend on the level of human capital and the subsidy
rate, and indirectly on the variables that determine the equilibrium capital intensity
in the final-good sector.

Observe that (2.24) can be linked to the idea that economic backwardness facilitates
convergence (see, e. g., Gerschenkron (1962) and Abramovitz (1986)). Indeed, ceteris
paribus, the growth rate of A increases in the gap A™* /A. A backward country may
therefore experience what Gerschenkron called “spurts”, i.e., periods of exceptional
growth rates that even exceed 7.

For further reference we note that the updating condition (2.23) can be expressed
in terms of the laggard country’s relative position with respect to the leading-edge
technology A, = A;/A7**. Indeed, one readily verifies the implication that

A 2 ileh) | 14 —0ilgr, h)
! 1+~ I+~

Ap1. (2.25)

3 Intertemporal General Equilibrium

I focus on a laggard country that remains throughout its evolution behind the
leading-edge technology.

3.1 Definition

I refer to a sequence {ps, w;,r;} as a price system. By an allocation 1 understand
a sequence {Cy, Ly, By, Yy, Ky, Xy, ny, i, 1y, Ty} that comprises a strategy {Cy, Ly, By}
for the household sector, a strategy {Y;, K;, X;} for the final-good sector, a measure
n; of intermediate-good firms active at ¢ producing the capacity output z; = 1 with
input choices (g,1;), and the government’s lump-sum tax, 7;.

An equilibrium will correspond to a price system, an allocation, and a sequence
{II;, Ay, A7 A} of distributed aggregate profits, indicators for the domestic level
of technological knowledge, for the leading-edge, and the ensuing relative position
A; that satisfy the following conditions: First, given the initial bond endowment
Bj and the sequence {wy, r, II;}, the household sector saves according to (2.2) and
supplies L; units of labor in all periods. Second, the production sector satisfies the
assumptions underlying Lemma 1. Due to constant returns to scale in final-good
production, II; = 0 in all periods. Third, in all periods markets clear. Forth, the
domestic productivity indicator A; evolves according to (2.23) and A" grows at
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rate v > 0. Fifth, the government balances its budget, i.e., T, = nyo (1 + 1) i(q}, h)
for all ¢.

In specifying a consistent circular flow of income, one readily verifies that in equi-
librium wy; Ly + By +1I; — T, = Y;, i. e., for all periods the household sector’s income
stream is equal to final-good production. Accordingly, the equilibrium condition
requiring savings to equal investment is

Kot +nys1i(quer, h) = sT KX > for t = 1,2, ... (3.1)

3.2 The Dynamical System

I choose the capital intensity in the final-good sector, k; = K;/X;, and the relative
position of the domestic technology, A, = A;/ A" as the state variables of the dy-
namical system. To express (3.1) in terms of k£ and A, note first that the equilibrium
in the market for intermediates and full employment in all periods imply

Xt =Ny = At_l(l + q:) th, (32)

i.e., aggregate output of the intermediate-good is equal to labor in efficiency units.
Then, X,y1/X; is the growth factor of efficient labor. Using the updating condition
(2.23), one finds

Xin _ Ay 1+qf L
Xy A 1+q Ly
) i(g; s h) ( 1 ))
= (1+ 1+6 —1 14+ A). 3.3
i) (100012 (S - 1)) asn. 6y

Hence, for an open economy with ¢ > 0 both the domestic and the foreign contri-
bution matter for the growth of efficient labor.

From (3.1), the first equality in (3.2), (3.3), and Lemma 1, we find the equation of
motion for k;. Rearranging terms that depend on k; or ki q gives

g 23
sk

(Ut glhieas o)) s+ lgthiens o)) = = (3.4)
1+g(kt,h,0') Ay_q
where § =sI'/(1+ A).
The equation of motion for A; obtains from (2.25) and Lemma 1,
0i(g (ke, h h)y 1 ke, h,o) —0i(g (kt, h h
At: Z(g(tv 70)7 )+ +g(t7 70) Z(g(ta 70)7 )At—1~ (35)

1+~ 1+~
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An application of the implicit function theorem to (3.4) shows that the latter two
equations constitute a two-dimensional system of first-order, autonomous, non-linear
difference equations. This system may be stated as

(kt+17At) = ¢(/€t,At—1) = (¢k(kt,At—1)a ¢A(ktaAt—1)) (3-6)

for given initial values k; and Ay. To assure a trajectory of A, ; € (0,1) for
t = 1,2,... we have to impose constraints on the parameters of the model. The
following lemma makes this more precise.

Lemma 2 There is a unique k > 0 such that g(k,h,o) = . Let = (1+7)/i(7, h).
The function ¢ (ky, Ay—1) maps [O, l?:] x (0,1) onto itself if

0<0 and 7= <k (3.7)

Lemma 2 states conditions on parameters such that a country remains behind the
world’s technological frontier throughout its evolution. Intuitively, § < # imposes
an upper bound on the rate of diffusion in the updating condition (2.23). If k < k
then, in equilibrium, domestic innovation incentives are not too strong and g < 7.
Moreover, 57 < k assures that k is indeed an upper bound on the attainable level
of k through the process of capital accumulation. if not indicated otherwise, I shall
assume henceforth initial values k; € (0, k) and Ay € (0, 1) and that the parameters
of the model satisfy the restrictions stated in (3.7).

Proposition 1 There is a unique steady state (k*, A*) with k* € (0,k) and A* €
(0,1) that satisfy

k* +i(g(k*, h,o),h) = (k*)7, (3.8)

and

Oi(g (k*, h,o),h)

A" = .
el(g (k*>h'7 U)>h) +7 _g(k*>h7 U)

(3.9)

Proposition 1 states and proves the existence of a unique steady state for a laggard
country. Since the country’s relative position with respect to the leading-edge tech-
nological knowledge, A*, is constant, A; grows at rate v, which is also the growth
rate of all domestic per-capita magnitudes such as income and consumption.

The equation for £* is similar to the one of the neoclassical growth model with ex-
ogenous labor-augmenting technical change. The difference occurs on the left-hand
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Figure 1: The Typical Phase Diagram.
1At_1

Dk =0 <—l
l—>

T J

L g
0 * k
The loci Dk =0 and DA = 0 are those where k of A are stationary.

side of (3.8), where the resources necessary to feed domestic innovation investments
are added. With two investment opportunities the role of decreasing returns in the
process of capital accumulation is more pronounced. As a consequence, the level of
k* is lower than in a Solow economy with costless exogenous technical change.

The analysis of the local and the global dynamics of the dynamical system is al-
gebraically involved. Figure 1 shows some qualitative features in a typical phase
diagram. Numerical results suggest that the steady state can be locally stable and
a global attractor (see, Appendix 7 for details).

Since the steady-state growth rate is exogenous, comparative statics induce level
effects. To develop an understanding for why steady-state per-capita income differs
across countries we study first the effect of parameter changes on k*.

Corollary 1 [t holds that

dk* dk* dk*
— — . 1
o >0, 7 <0, - <0 (3.10)
Moreover,
dk* < di (g(k*,h,o),h) <
=0 =0 3.11
an <’ 7 dh —— (3.11)

Similar to the neoclassical growth model with exogenous technical change, k* in-
creases both in s and I, i.e., in the investment rate and with a better social in-
frastructure. Moreover, k* falls with the steady-state growth rate of labor A, and
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with the growth rate of the leading-edge productivity indicator «v. These parameters
directly affect the impact of diminishing returns on the accumulation of final-good
sector capital.

Moreover, k* falls in the subsidy rate. Intuitively, the subsidy rate increases g (k*, h, o)
and the equilibrium amount of innovation investments, i (g (k*, h, o), h) increases,
too. Accordingly, the level of £* has to fall to reestablish the validity of condition
(3.8).

The impact of human capital on k* is indeterminate in general. This is the result
of two opposing effects of A on the investment activity of intermediate-good firms.
On the one hand, more human capital increases the incentive to engage in innova-
tion investments, thus raising the productivity growth rate, g, and the investment
requirements. On the other hand, given g, more human capital lowers investment
requirements. While the former effect alone induces a lower level of £*, the latter
implies a higher level. T show in the proof of Corollary 1 that the indeterminacy
vanishes if we impose more structure and assume an input requirement function i
with constant elasticity like i = ¢ h=* of (2.12). Then, the former effect dominates
and dk*/dh < 0.

Finally, observe that, k* is independent of 6. The impact of the evolution of A on
the evolution of £ is a transitory phenomenon.

Next, I establish three results related to the steady-state rate of diffusion. The first
questions the validity of the Nelson-Phelps hypothesis according to which this rate
rises in human capital.

Proposition 2 Denote

k' = argmax

ke — k. 3.12

1) (Nelson-Phelps Hypothesis) The Nelson-Phelps hypothesis holds, 1. e.,

di (g(k*, h,o),h)
dh

> 0, (3.13)

if and only if either

dilgRh o) bl ks R (3.14)
dh k=k*
o di (g(k*, h, o), h
gk ho) W g i k< (3.15)
dh -
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2) (Growth Policy) It holds that

di (g(k*, h,o),h)
do

AIV

0 & kZk (3.16)

3) (Domestic Innovation versus Diffusion) Consider the steady-state growth rate of
technological knowledge, AjJAr1 —1 =g + 0i ((A*)_l —1). Technology diffusion
1s the more important source of steady-state technological progress whenever

g<0i((AH7'-1) & g< % (3.17)

Statement 1 of Proposition 2 claims that the steady-state rate of diffusion may
but need not rise with human capital. Thus, the Nelson-Phelps hypothesis fails in
general. To gain an intuition for this result note that & is the level of the steady-
state capital intensity that maximizes the steady-state rate of diffusion. Generically,
the steady state consistent with (3.8) delivers a value k* # k! . For instance, if
k* > ki .. as suggested by (3.14), a higher h that also raises the steady-state rate
of diffusion must reduce k*. According to (3.11) of Corollary 1, such a general
equilibrium effect occurs only if di (g(k*,h,0),h) /dh|,_,. > 0. If the latter does
not hold, k* increases and, contrary to the Nelson-Phelps hypothesis, the steady-
state rate of diffusion declines in h. With obvious changes, the same interpretation

applies to the case shown in (3.15).

Statement 2 claims that a rise in the subsidy rate may lower the rate of diffusion.
Intuitively, a higher subsidy increases the incentives to innovate. Hence, given k*
innovation investments increase. Then, however, condition (3.8) requires a smaller
k*. This general equilibrium effect increases (decreases) the steady-state rate of
diffusion if &* > k! (k* <K' ..).

max max

Statement 3 gives the condition under which a country’s share of steady-state pro-
ductivity growth that stems from foreign innovations exceeds the share of produc-
tivity growth due to domestic innovations. According to the estimates of Eaton and
Kortum (1996), all OECD countries but the US satisfy this condition. In view of
Corollary 1, it is straightforward to see that countries with a higher savings rate, a
better social infrastructure, and a lower population growth rate have a higher share
of steady-state productivity growth that derives from domestic innovations. The
presence of partial and general equilibrium effects, possibly of opposite sign, render
the comparative static prediction about the innovation subsidy and human capital

more involved. However, one readily verifies that k* > k!  is sufficient for both, o

max
and h, to have a positive effect on g.

Next, I turn to the country characteristics that determine A* of (3.9).
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Corollary 2 It holds that

dA dA* dA* o L
iE > 0, 0 <0, io 20 & K Z ke
(3.18)
7~ 20, and —= >0 if (3.14) holds, —=>0.

The intuition for these results is straightforward. A higher k* increases the growth
rate of labor productivity, g, as well as the investment outlays, . Therefore, A* is
higher the higher £*. Then, from Corollary 1 a larger investment rate, a better social
infrastructure, a lower population growth rate, and a slower pace of the technological
frontier increase A*. Again, because of partial and general equilibrium effects, the
impact of a subsidy and of human capital is in general ambiguous. Finally, a country
with better access to the world’s technological frontier ends up closer to it, i.e., a
higher 6 implies a higher A*.

From the final-good production function (2.3), Lemma 1, the market-clearing condi-
tion (3.2), the definition of A, and assuming that each worker has one unit of labor
per period we find per-capita income in the steady state as

Y *

= (1) =T A AT g0 b)) (3.19)
t

Roughly, g7 consists of three components. First, I' (k*)*, reflects the economy’s

overall efficiency and the final-good production function. The second component,

AP A* (1 + g(k*, h,0)) represents technical change. Third, there is the Becker-

Mincer effect of human capital.

The presence of A"%" assures growth of g at rate . The level of A* determines the
fraction of the leading-edge knowledge at t — 1 that the country is able to absorb
within this period. The presence of the growth factor of domestic labor productivity
recalls the fact that intermediate-good firms investing in £t — 1 can build on the level
of knowledge A;_; = A"%4" A* and that the achieved level of labor productivity
at tis As—1 (1 + g(k*, h,0)). Thus, a country’s domestic innovation effort does
not determine its steady-state growth rate but exerts a positive level effect on its
steady-state per-capita income. This is the key difference between the steady-state
predictions of the present model and the neoclassical growth model with exogenous
technical change.’

9To see this more clearly, replace the intermediate-good sector by the assumption of
exogenous technical change at rate 7, the final-good production function (2.3) by Y;
D K® (A—1(14+7)Ly)' ™, and set & = 0. Then, the neoclassical equivalent to (3.19) is §; =
T (k)" Ai_1(1 +7) h.
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To establish the implications of (3.19) for cross-country income differences we first
note that ¢* increases in k* since final-good output, A*, and ¢ increase in k*. In view
of Corollaries 1 and 2, a prediction is then that countries with a higher investment
rate, a better social infrastructure, and a lower population growth rate have a higher
steady-state per-capita income. Neither the impact of the subsidy nor of human
capital is clear cut. Both magnitudes increase g, however, from Corollaries 1 and 2,
we know that the effect on k* and A* may be negative or positive. Quite intuitively,
an economy that is more open than others is predicted to have a higher per-capita
income since they are able to absorb a larger fraction of the leading-edge technology.

These results are summarized in the following proposition.

Proposition 3 It holds that

dy* dy* -
a0

> 0. (3.20)

4 Extensions and Discussion

4.1 Saving a la Ramsey-Cass-Koopmans

Consider a closed economy comprising many identical and infinitely lived households.
I normalize the number of households to unity such that individual and aggregate
variables coincide. In each period households supply the same amount of labor,
(1+ X)L, inelastically to the labor market, and, initially, own the same amount of
bonds coming due in ¢t = 1.

Households choose the sequence of consumption and bond holdings per household
member {¢, Bt+1}§‘f" that solves
- & -1
max DT — (1N, 0<B1+N)<Ln>0, (41
{éobii 2 T 1—n

subject to the budget constraint (2.1) and a Ponzi condition, which requires the
present value of a household’s bond holdings to be asymptotically non-negative.l® As
usual, 3 is the discount factor, and 7 the elasticity of marginal utility of consumption.
With ¢, = C;/X; and the market-clearing condition (3.2), we obtain the Euler
condition for all t = 1,2, ...

et A (Lt glkign o) = [BO+ 7)) e Ay (14 g(ki hyo). (42)

10Gee the Appendix 6.8.2 for details concerning the household’s optimization problem.
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Similarly, with b,,1 = B;11/X;41 and (3.2) the transversality condition is

. 1+ A\
tllglo bt Ay (L + g(ket1, b, o)) <1+r) =0, (4.3)

. 1/t
where 7 = ( ;;i(l + rj+1)> — 1 is the average real interest rate.

Proposition 4 There isy > 0 such that a unique balanced growth path for a laggard
country exists. It involves

P {%} e (4.4)

and, in view of (3.9), Ajep = A (kjox) < 1.

Proposition 4 establishes the existence of a steady-state equilibrium for a laggard
economy. This requires g (kjcox, h,0) < 7, i.€., ko must not be too large. The
proof shows this to be the case if v is sufficiently large. As for a constant savings
rate, all per-capita magnitudes grow at the exogenous rate ~.

To understand the implications for the predicted differences in per-capita income I
first note that the effect of preference and technology parameters on ko is as in
the neoclassical growth model with exogenous technical change: a higher valuation
of future utility and an increased willingness to accept deviations from a smooth
consumption profile, i.e.,; a higher § or a lower 7, a better infrastructure, i.e., a
higher I" increase kjq g, and faster growth of the technological frontier accentuates
the role of diminishing returns and leads to a lower k%o

Observe that neither the growth rate of the labor force, A\, nor human capital, h,
or the subsidy, o, affect £}, . This reflects the fact that here consumption growth
is pegged to intertemporal prices rather than the result of a market equilibrium
condition. This has direct implications both for the validity of the Nelson-Phelps
hypothesis.

Proposition 5 Consider the steady state characterized in Proposition 4.

1) (Nelson-Phelps Hypothesis) The Nelson-Phelps hypothesis holds if

di (g(kECKv h’v U)? h)
dh

> 0. (4.5)

2) (Growth Policy) It holds that

di (g(kjop, by o), h)

. 4.
1 >0 (4.6)
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3) (Domestic Innovation versus Diffusion) Technology diffusion is the more impor-
tant source of steady-state technological progress, i.e., g < v/2, in countries with a
small h and/or a small o.

Absent of general equilibrium effects, the rate of diffusion increases if ¢ increases in
h or for a higher subsidy. Similarly, the condition g < /2 is easier satisfied the
smaller h and/or 0. Next, we turn to the comparative statics of A% .

Corollary 3 It holds that

dARCK >0 dARCK <0 dARCK <~ 0 dARCK dARCK

4.
dgs ’ dn ’ dr ’ dry <0, do >0, (47)
dARok dA%ok
o 0 if (4.5) holds, 7R 0. (4.8)

Compared to Corollary 2 the elimination of general equilibrium effects gives rise to
three differences. First, the impact of a subsidy is unequivocal. An increase in o
raises Ay since domestic innovation incentives become more pronounced and, as
a consequence, the rate of diffusion rises. Second, human capital raises A}, if it
raises the rate of diffusion such that the Nelson-Phelps hypothesis holds at kjq -
Moreover, A}~ becomes independent of population growth. These findings have
implications for the steady-state level of per-capita income, which is still given by
(3.19).

Proposition 6 [t holds that

—dgjgf( > 0, —d%fff <0, —dgcf}r@“ff >0, —dgjﬁff <0, (4.9)
dyRCK dYrork . dYrork
0 0, T 0, if (4.5) holds, 7R 0. (4.10)

The comparison with Proposition 3 reveals that the effect of o and h is positive if
these parameters have a positive impact on A},~;. Moreover, the level of steady-
state per-capita income is independent of population growth.
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4.2 The Closed Economy and Club Convergence

Consider a laggard economy as described in Sections 2 and 3 that is cut off from
the evolution of the world’s technological frontier. Then, § = 0 and the evolution of
k is independent of A. The equations of motion for these variables, (3.4) and (3.5),

become
(1 + g(kt-i-l’ ha U)) (kt+1 + Z.(g(k‘ilt-i-la h> U)’ h)) = §k§éa (4'11)
and
1 + g (kb h7 U)
Aoy = —FT" Ny 4.12
o= T A (412)

To simplify I assume that the input requirement function 7 satisfies

2
g < % forall ¢ > 0 . (4.13)

Again, a functional form that fulfills this condition is i =¢"h™*, 1 < v < 2.
Proposition 7 Let (3)%"% < k and assume that (4.13) holds. For any initial

value ky € (0,k), the evolution of k, according to (4.11) gives rise to a unique,
globally stable steady state, k: > 0, that solves

(L4 g(kZ, h,0)) (k. +i(g(kZ, hy o), h)) = s(k2)*. (4.14)
The steady state satisfies
g(k* h,o) < g(kz, h,o) <~ (4.15)

and

< Do ) _ 1ok o) (4.16)
Ac,t—l I+~

The intuition behind Proposition 7 can be learned from Figure 2, which depicts
the right-hand side, 5(k;)®, and the left-hand side, LH S(k¢41), of (4.11). Condition
(4.13) assures that the left-hand side is a convex function in k; ;. Thus, there is a
unique and globally stable steady state, k¥ > 0. The steady-state growth rate of all
per-capita magnitudes must be smaller than 7 since k¥ < k. As a consequence, Ay
declines at a constant rate and the distance to the technological frontier becomes
larger over time. The latter result obtains in spite of the fact that the domestic
steady-state innovation activity in the closed economy is greater than in the open
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Figure 2: The Evolution of k£ in the Closed Economy.

(I+7) (k" +i(g (k" h,0), h))
LHS (K1)

ki = ke

= 1.
5k

ki, keyr, kK

k* k* k
Here, LHS (ki+1) = (14 g (ki41, h, 0)) (kis1 + 3 (9 (41, h,0) , b)) of equation (4.11).

economy. To see why, I multiply the steady-state condition (3.8) by 1 + 7 and
show the left-hand side of the resulting equation in Figure 2. Since v > g, we have
k* < k.

Steady-state per-capita income in the closed economy is g, = TI' (k})* Ay (1 +
g(k¥ h,o))h. It grows at rate g(k;, h,o) such that changes in country character-
istics generate level and growth effects. Nevertheless, an implication of the global
stability is that a country starting at k* converges to k following a cut-off from
the technological frontier. As a consequence, the growth rate of per-capita income
declines below v and the country falls behind forever. This mechanism suggests
that China’s self-imposed isolationism in the 15th century AD is a cause for the
subsequent relative decline of its economy.

Corollary 4 Consider a steady state of Proposition 7. It holds that

dk dk

e 0, —£<0 (4.17)
e 20 oog - (1+g BBl DN] 2o g
ah dh -

(&

The qualitative predictions of Corollary 3 mimic those for the open economy (see,
Corollary 1). The effects of s, I', A\, and o are of the same sign. The effect of h is
indeterminate in general. However, due to the direct effect of h on g, which appears
in (4.18), it is more likely to be negative. Intuitively, a rise in g increases next
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period’s amount of efficient labor and, therefore, the amount of final-good capital
necessary to keep k constant. Hence, capital accumulation grinds to a halt at a

lower level of k). Denote k¥ = k7 (5,0, h) the function resulting from Corollary 3.

Proposition 8 The steady-state growth rate of the closed economy is

g =g (k; (5,h,0),h,0) (4.19)
with
dq: dq: dg*
- ‘ . : 4.2
ik 0, ., > 0, do |, >0 (4.20)

Hence, steady-state growth rates differ across closed economies and reflect country
characteristics. A higher investment rate, a better social infrastructure, and a lower
population growth rate raise the steady-state growth rate of the economy. The
effects of the subsidy rate and of human capital involve partial and general equi-
librium effects of opposite sign. Low values of the subsidy rate weaken the general
equilibrium effect such that both h and o raise the steady-state growth rate of the
closed economy. Since over time level effects are dominated by growth effects, these
comparative statics also determine g ,. In a world with closed and open economies,
club convergence in growth rates occurs among open economies that eventually grow
at rate v and groups of closed economies with country characteristics such that ¢}
is the same.

4.3 No-Innovation Traps and Club Convergence

In many countries profit-maximizing agents do not undertake innovation invest-
ments. When technology transfer is a byproduct of domestic innovation activities,
these open economies do not benefit from foreign innovations. Club convergence
results with some countries approaching a stationary steady state.!!

Unprofitability of innovation investments arises if investment requirements are too
high. Suppose that i,(0,h) > 0, i.e., the first marginal unit of ¢ is no longer
costless. Without loss of generality as to the upcoming qualitative results, we rely
on the functional form of 7 as given in (2.12) with v = 1 such that i,(0,h) = h™* > 0.

"The analysis of this section complements and extends the analysis in Irmen (2005).
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An immediate implication is that the equilibrium does not necessarily involve ¢; > 0.
To see this consider the first-order condition (2.17). Since 4,(0,h) > 0, there are
parameter constellations such that

A:i’tl < (14 m) (1= 0)iy(0. ), (4.21)

and the cost-minimizing choice is ¢; = 0. It follows that the consolidated production
sector gives rise to a function g(k, h, o) that is piecewise defined. In view of Lemma 1

g(k,h,a):max{o,%(l_a " k—l)}. (4.22)

we have

a 1-—0

Consequently, an equilibrium at ¢ + 1 involves g > 0 if and only if

«

ki1 >h™* (1—0) k, (4.23)

1l -«

and g = 0 otherwise. Intuitively, if at ¢ intermediate-good firms expect k;1; < k,
then they expect an equilibrium factor price ratio w1 /(147,1) too small to justify
an investment in labor-saving technical change. Without an investment at ¢, firms
produce in t + 1 with the technology of period t. Moreover, there is no technology
transfer between period t and ¢+1 either, and the updating condition (2.23) simplifies
to A1 = A;. Then, the equations of motion (3.4) and (3.5) for k; and A; become

ki = SkY, (4.24)
and
Ay
A= . 4.25
=T (1.25)

Next, we determine the conditions under which intermediate-good firms innovate.
From (4.23), an equilibrium at ¢ 4+ 1 without innovation ceases to exist if and only if

Il
|75

k1 =85k >k o k:t><k> . (4.26)

5

It is replaced by an equilibrium with innovation. Indeed, the equation of motion for
k at ¢ takes innovation investments into account and becomes

(1 + g(kt+l> h, U)) (kt-‘rl + 'é(g(kt-i-l? h, U)a h)) =5 kiftx (427)

The equilibrium with innovation exists and is unique since the left-hand side of

~

(4.27) satisties LHS (k) = kiyq and LHS'(kiyq) > 0.
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The evolution of k between ¢ and ¢+ 1 as given in (4.27) is not affected by an inflow
of technological knowledge from abroad since such inflow requires previous domestic
innovation investments. Only firms that innovate at ¢ 4+ 1 benefit from the inflow of
foreign knowledge. Thus, the evolution of k£ between periods ¢ + 1 and ¢ + 2 is again
governed by equation (3.4).12

The following Proposition shows what country characteristics determine whether an
evolution that is initially driven by capital accumulation alone leads to domestic
innovation and an inflow of technological knowledge from abroad.

Proposition 9 Let k; < k such that the economy experiences at least one period
without innovation investments.

1. If §Ta < l%, then the economy evolves without innovation and converges to-
1

wards a stationary steady state with k* = §i-o. At any time, the country’s

relative position with respect to the leading-edge technology declines at rate

7/ (L +7).

2. If k > §Ta > k, then the economy reaches a level of k in finite time and
switches into a regime with domestic innovation in the following period. The
innovation regime has a unique steady state (k*, A*) given by (3.8) and (3.9).

Proposition 9 emphasizes that economies starting out with the same initial con-
ditions may evolve in quite different ways. Using Statement 2 and the definition
of k we obtain the requirement for economies to reach the regime with domestic
innovation investments and technology transfer as

1

S 1=a «
r (- . 4.2
() s 29

This condition is more likely to be fulfilled the more thrifty the economy is, the lower
its growth rate of the labor force, the better its social infrastructure, the higher its
level of human capital, and the higher the subsidy rate for innovation investments.

12The evolution of the economy may well involve cycles since the inflow of technological knowl-
edge in t 4+ 1 necessarily reduces the capital intensity kiyo. If this effect is sufficiently strong,
firms in ¢ + 1 rationally expect ko < k and no innovation investment occurs. However, if the
condition stated in Proposition 9 is fulfilled, such economy must again reach a period with a regime
switch as characterized above. Calibration exercises show that there are paths that converge from
the stationary regime to the steady state of Proposition 1. The complete characterization of the
dynamics involved is beyond the scope of this paper and left for future research.
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Solving (4.28) for h gives a minimum requirement of human capital for innovation
and catch-up with the technological frontier. This is consistent the empirical findings
of Benhabib and Spiegel (2005).13

Hence, the world income distribution may exhibit club convergence with some coun-
tries trapped in a stationary steady state while others experience steady growth.

5 Concluding Remarks

Arguably, the differential evolution of productivity across countries is the main force
behind cross-country income differences. To understand these income differences one
must understand what causes productivity growth. I take the view that productivity
growth is due to the growth of a country’s level of accessible technological knowledge.
In turn, growth of this knowledge is the result of the interaction between a domestic
and a foreign contribution via technology transfer. I show that the magnitudes that
affect this interaction also account for steady-state cross-country income differences.

The analysis suggests several routes for future research. First, one may want to
generalize the diffusion process and separate institutional from technological factors
that foster technology diffusion. To accomplish this, I rely on a variant of a logistic
process for which Benhabib and Spiegel (2005) find evidence. Preliminary results
suggest the emergence of multiple steady states in the basic model, thus allowing
for club convergence.

Second, one may argue that the degree of openness is not constant over time. On the
one hand, historical evidence suggests waves of globalization that are correlated with
rapid growth of the world economy (O’Rourke and Williamson (1999), Helpman
(2004)). On the other hand, technical progress per se is likely to have increased
the rate of diffusion. Finally, one may want to endogenize the growth rate of the
world’s technological frontier, to account for possible feedback effects from worldwide
innovation efforts to the evolution of domestic productivity.

13The role of skill levels for the occurrence of club convergence is also stressed in Howitt and
Mayer-Foulkes (2005).
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6 Appendix I: Proofs

6.1 Proof of Lemma 1

Without loss of generality, suppress time subscripts.
Zero-profit implies w = A_1 (1 +¢*)h[p— (1+7) (1 — o) i(g*, h)]. With (2.6) and (2.7), this can
be written as

w 11—«

A0y L)

k—1—=o0)i(¢g*,h)| .

Using the latter in (2.17), we obtain

l—«

ok =0=0) (1 +d")igld", k) +ilg", 1)) (6.1)
The derivatives stated in (2.20) follow from the implicit function theorem applied to (6.1) and the
properties of the input requirement function i as stated in (2.10). For further reference, we note
that

11—

woToas 0)(21q i (1+9)igq) >0, (6.2)

(1 —l—g)iqh + iy

—_—— , 6.3
" 21q+ (14 g) iqq (6:3)
(1+g)ig+i
90 = ; X > O, 6.4
(1—-0)(2ig+ (14 9)igq) (6.4)
where the argument of g is (k, h, o), and the argument of i is (g, h). |

6.2 Proof of Lemma 2

The existence of a unique & follows from the properties of the function g(k, h, o), which satisfies
g(0,h,0) =0, g(oo, h,0) = 00, and gi(k, h,o) > 0 for all kK > 0 (see Lemma 1).

The remaining part of the proof of Lemma 2 proceeds with the statement and proof of four claims.

Claim 1 There is a unique k > 0 that solves

0i(g(k,h,0),h) =1++. (6.5)

Moreover, there is a function
k = k(8), with k/(8) < 0, limg_ k(8) = oo, limg_.o0 k(6) = 0. (6.6)
Proof of Claim 1 The existence of k > 0 follows from the properties of the function g and those

of the function 7 as stated in (2.10). An application of the implicit function theorem to (6.5) reveals
that there is a function k = k(6), with &’(9) < 0. To study its asymptotic properties write (6.5)
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as i(g(lzc_, h,o),h) = (14 v)/0. Since i — 0o as ¢ — oo and g — o0 as k — oo, it follows that
k

limg 0 k(#) = oo. Since i(0,h) = 0 and g(0, h, ) = 0, it follows that limg_.o, k(f) = 0. O
Claim 2 There is § = (1+7)/i(y, h) that solves k(d) = k. Then

- _

K=k & 6026 (6.7)

Proof of Claim 2 The existence of a unique value § and inequality (6.7) follow from the properties
of the function k(f) as set out in Claim 1. By construction, 6 satisfies 8i(g(k,h, o), h) = 1 +
g(k,h,0) = 1+~. Hence, 6 = (1 +~)/i(v,h). O

Claim 3 The function ¢ (k;, A;_1) maps Ay_; € (0,1) onto itself if and only if # < 6 and
ke € [0, K].

Proof of Claim 3 From (3.5) it is obvious that a trajectory with A,_; € (0,1) for all ¢ > 1
requires 1 > ¢*(k,Ar_1) > 0 for all t = 1,2, ... or

0i(g(k,h,o),h) n 14+g(k,h,0)—0i(g(k,h,0),h)

1>
1+~ 1+~

A1 > 0. (6.8)
The following cases must be distinguished:

° 9<§,thusl?:>l;::

— if k € [0,k] and 1 + g(k,h,0) — 0i(g(k,h,0),h) > 0, then from the definition of

k both the left-hand inequality and the right-hand inequality of (6.8) hold for all
Ay € (0, 1)
To see that k € [0,k] is necessary consider values k > k. Since k > k, there is a
bound, A € (0,1), for all k € (F, ]zf) such that the left-hand inequality is only satisfied
for Ay_1 < A. To compute A, solve the left-hand inequality of (6.8) for A; ;. This
gives

1+g(k,h,a)—9Z(g(k,h,0),h)

Apq < A. (6.9)

Clearly, A € (0,1) as long as 1+~ — 0i(g (k,h,0),h) > 0, 0A/Ok < 0, and A = 0

for k = k. Hence, for k € (k,k) only values of A;_; that satisfy A, ; < A imply
A; € (0,1). The set of admissible values for A;_; is therefore smaller than the set
(0,1). For k > k, it is empty. Hence, for 1+ g(k, h,o) — 0i(g(k,h,0),h) > 0 Claim 3
holds.

— The case 1+ g(k, h,0) —0i(g(k, h,0),h) <0 can only arise if there is k = k < oo that
satisfies the latter inequality as an equahty However, since k>kand1+ g(k h,o)—
0i(g(k,h,o),h) > 0 it follows that k > k. In turn, from Claim 1, it follows for k > k
that 0i(g(k,h,0),h) > 1+ ~. Hence, there is no A,_; € (0,1) that satisfies the
left-hand inequality of (6.8). Hence, if k € [0, k], this case cannot arise.

° 9>§,thusl?:<l;::

— The inequality 1+ g(k, h,o) — 0i(g(k, h,o), h) > 0 requires k € (0,k). Since k < k
both the left-hand and the right-hand inequality of (6.8) hold for all k € [0, k] and
A1 € (O, 1)
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— Consider 1+ g(k,h,o) — 8i(g(k,h,0),h) < 0, which requires k > k. Then, the left-
hand side inequality of (6.8) is satisfied for all A;_; € (0,1) as long as k € (k, k). For
k > k, A serves as a lower bound such that the left-hand inequality of (6.8) is satisfied
whenever A; 1 > A. As 9A/0k > 0 and A = 1 for k = k, there is no A;_1 € (0,1)
that satisfies this inequality for k > k. Hence, there is k € [0,k] and A;_; € (0,1)
such that (6.8) cannot be satisfied.

0929,thusl:f=l;: )
This constellation violates the left-hand inequality of (6.8) since 1+g(k, h,o)—0i(g(k, h,0), h) =
0 and Gi(g(k, h,0),h)/(1+7) = 1. O

Claim 4 The function ¢ (k¢, A¢—1) maps [0,k] x (0,1) onto itself if the conditions in (3.7) hold.

Proof of Claim 4 We have to show that ¢*(k,A;_1) € [0,k] for all k € [0,k] and A,y € (0,1).
From (3.4), ¢*(k, A;_1) > 0 is trivially satisfied, however k > ¢*(k, A;_;) may not. To make sure
that the latter holds, we first note that the left-hand side of (3.4) is increasing in k4. Hence,
#*(k,1) = 5k is an upper bound on k;,; since the right-hand side of (3.4) increases in A;_; and
k:. Moreover, since the slope of the left-hand side of (3.4) with respect to k¢4 is strictly greater
than one, a sufficient condition for k; 41 < k is k% < k, or (5)1/(1_a) < k. Then, Claim 4 follows
from Claim 3. |

6.3 Proof of Proposition 1

Set Ay = Ay = A* and k; = k* € (0, k) in (3.5) and obtain (3.9). Using k; = k;_; = k* and (3.9)
in (3.4) gives (3.8). It remains to be shown that (3.8) gives rise to a unique solution k* € (0, k).

First, I show that (3.8) has a unique solution k* > 0. Define a function LHS(k) = k +
i(g(k,h,0),h). The properties of the functions g and i (see Lemma 1, (2.10), and (2.13)) im-
ply that LHS(k) is continuous in k with LHS(0) = 0+ i(9(0,h,0),h) = 0, LHS'(k) = 1 +
iq(g(k,h,0),h) gk(k,h,0) > 1 for k > 0, and limy_o LHS'(k) = 1. Moreover, LHS" (k) =
iqq(g(kyh,0),h) g2k, h,o) +iq(g(k, h,o),h) gri(k,h,o) > 0 for k > 0 since (2.13) holds. To verify
this, we start from (6.2) and find for k£ > 0 that

9 3igq + (1+ 9)igqq

= , 6.10
It I 2iq + (1+ g)igq (6:10)
where the argument of g is (k, h, o), and the argument of i is (g, h). Then,
LHS"(k) >0 <« 2% o (6.11)
lq Ik

In view of (6.10) this comes down to

N Ty
LHS" (k) >0 < ‘oSt (19l (6.12)
iq 2ig + (1 + g)igq

The latter inequality is satisfied whenever the regularity requirement (2.13) holds.

Define RHS(k) = §k*/(14 ). This function satisfies RHS(0) = 0 and RHS’(k) > 0 forall k >0
with RHS’(0) = oo and limy_,oc RHS’(k) = 0. Hence, there is one and only one strictly positive
value k* that satisfies LHS(k*) = RHS(k*).

To see that the the intersection LHS(k*) = RHS(k*) occurs for some k < k recall from Lemma 2
that k is independent of 5. Moreover, RH S(k) becomes arbitrarily small as § — 0. Hence, there
are parameter constellations, (6, v, h, o, @) such that k* € (0, k). [
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6.4 Proof of Corollary 1

Consider the total differential of (3.8)

. s a—1
0 = |1 - a(k* dk*
+ 29k 1+~ « ( )
+  liggn +in]dh
(6.13)
+ g9, do

(i)

In equation (6.13) the first term in brackets is positive. To see this recall the functions LHS(k)
and RHS(k) as defined in the proof of Proposition 1. Obviously, the term is brackets corresponds
to LHS'(k) — RHS'(k). The proof of Proposition 1 implies that the function LHS(k) intersects
the function RHS(k) from below at k*. Therefore, we must have LHS(k*) > RHS(k*).

The comparative statics stated in (3.10) and (3.11) follow from the definition of § and the properties
of the functions ¢ and g as stated in (2.10), (2.11), and Lemma 1.

To strengthen the result in (3.11) we express the critical inequality — (i gn, + in) E 0 in terms of
the following elasticities
0i h Oig h 0i q _0ig q

Sih="gp o0 fn =gy 520 s =55 200 fa =500
q q

Using the latter and Lemma 1, we have

(1+9)ign +in (1+9)€ign+ i Ei,h

i+ (L+g)igg  2h+(1+9)le,,

gh =

It follows that

Eigq g 1 S €ign

. N
- =0 & — = —. 6.14
(iq g + i) < €i,q 1+geiq < €in ( )
If i = ¢" h™?, we have &, 4 = €, n = 2, €i,g = V, €i,,¢ = v — 1, such that (6.14) becomes
v—1 g 13 >
—=-z21 & 0zZL 6.15
v l+gv = < (6.15)
Hence, — (iqg gn +in) < 0 and dk*/dh < 0. [

6.5 Proof of Proposition 2

First, observe that the steady-state condition (3.8) implies

1
) as @
kb= . 6.16
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As to Statement 1, we have to study under what conditions

di(g (k*, hyo),h) . dk* .
dh = 1q gk% + 199n + th = 0. (617)

From Corollary 1, we have

di* . .
= (6.18)
dh L4iq 9k — 755 (k*)
where the denominator is strictly positive. Therefore, inequality (6.17) is equivalent to
dl(g (k*,h,U),h) > . . O[§ sya—1 >
I 20 & [iggn +in] [1- Ty (k™) = 0 (6.19)
Hence, di(.)/dh > 0 if either (3.14) or (3.15) hold.
As to Statement 2, we have to study under what conditions
di(g (k* h,o),h) . dk* . o
- =i, ng +i¢90 Z 0. (6.20)
From Corollary 1, we have
dk* 0o
R L . AR— (6.21)
do L4iq 9k — 755 (k*)
Then, inequality (6.20) is equivalent to
di(g (k*,h,0) ,h) > Sa a-1 >
=0 & 1- K = 0 6.22
2B 2 ST 2 (6.2

Hence, (3.16) follows.

Statement 3 follows from (2.24), steady-state condition (3.9), and the fact that in the steady state
A JAr 1 —1=1. u

6.6 Proof of Corollary 2

Consider A* of (3.9). A change in one of the parameters j = s,T', A affects A* only indirectly
through k*. Hence,
dA*  OA* dk*
i Ok* dj’

— 5T\ (6.23)
Since ) .
A" _ Oiggr(y —9) + 9x0i
* . 2 >
Ok Oi+y—9)
the first result of (3.18) follows from Corollary 1.

0 (6.24)

The total effect of a change of v involves a direct and an indirect effect. Starting with the effect
of 7, we find
OA* A* dA*  0A*  OA* dk*

92 - % 0, and _ & 0 6.25
oy bitr—g 0 ™ Ty T ok ay S (6.25)

since dk*/dy < 0 (see Corollary 1).
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The total effect of a change of o and h involve direct and indirect effects through g. As to o, we
find

0A*  _ Oigo (v —9)+0igs _ (6.26)

do i+~ —g)°

and
dA*  9A*  OA*dk* <
deo 9o + ok do < 0- (6.27)

Since dk*/do < 0 (Corollary 1), the sign of dA*/do is indeterminate. However, using (6.24),
(6.26), and (6.13) one verifies that inequality (6.27) is equivalent to

dA*

Sa

2 _ sya—1 2
o 20 e 1o ()T 20 (6.28)
Then, (3.18) follows with the proof of Proposition 2.
As to the effect of h, we have
OA* 0(i ' - 0i
_ Wlggn i)y =9) +0ign > (6.29)
Oh Oi+vy—g)? <
and
dA*  OA*  OA* dk* o
an = on "ok an = (6.30)
Using (6.29), (6.24), (3.8), we find that
dA* §O[ a—1 . . . . .
20 e (155D @) M b -g) gl Zhad (63D

Assume 4 gp, + iy > 0 and £* > Kt

max*

Then, (3.14) holds and dA*/dh > 0.

Finally,

dA* i(y—g)
- (9i+7—g)2>0' (6.32)

6.7 Proof of Proposition 3

Denote k* = k*(s, T, A, 7, 0, h) and A* = A*(k*, 0, h,, ) the functions defined by Corollary 1 and
2 and recall ¢* = g (k*, h,0). Given A™{* we have per-capita income of the next period as

g* = g* (F’ k*7 A*(k*’ ’Y? U? h’ 0)’ g (k*’ h7 U) Y h) * (6'33)

From (3.19), Corollary 2 and Lemma 1 we have
dyg*  0y*  O0y* 0A*  0y* g

% 00 O 34
dk ok~ 9A* 0k | g 0k~ (6.:34)
Using Corollary 1 in addition gives
dj*  dg* di g g dj* dk* dj*  dg* dk
ds —dkeds " ar o Tawar 0% ax T oak ax Y (6.35)
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Similarly, we obtain
dy*  dy*dk*  0y* OA*
dy  dk* dy = OA* Ov

which proves the first two results in (3.20). Invoking Corollary 1, 2, and Lemma 1, we find

<0, (6.36)

At dg* dk* | 0g* dA* | O
do _ dk* do 0N do T og*?

s =0 (6.37)

and
djt _didk* 9 AN 05 L O
dh ~ dk* dh oA dn T ag " Tan

These two comparative statics involve terms of opposite sign such that the sum cannot be signed

Z 0. (6.38)

in general. Finally, Corollary 2 implies

dy*  0y* OA*
0~ 9AF 00 >0 (6.39)
which proves the remaining terms in (3.20). [

6.8 Proposition 4

This section comprises three parts. Subsection 6.8.1 has the details concerning the representative
household’s optimization problem. Subsection 6.8.2 has the proof of Proposition 4. Section 77
proves the property of the steady-state savings rate stated in the main text.

6.8.1 The Problem of the Representative Household

Denote per-capita magnitudes with a tilde, e.g., 7 = T3/ L;. The household solves
= i1 & 11
max > (BA+N) T 0<B(1+AN)<1,7>0, (6.40)

{CTRONRY FP

subject to the flow budget constraint

~ 14+ A ~
Ct+br—m < wp+b—T7, t=1,2,.. 6.41
t t+1 T+ t t t ( )
and the Ponzi condition
- 1+ A\’
lim b > 0 6.42
tggo t+1 <1+ r) = ) ( )

._ 1/t
where 7 = (H;;i(l + rj+1)) — 1 is the average real interest rate. In (6.41) we use the fact that

dividends are zero in equilibrium, i.e., 7; = 0. Since limz_¢ (¢)” " = oo, the flow budget constraint
is binding at all ¢, and optimal plan involves ¢ > 0 at all ¢.

Setting up the Lagrangian gives

00 1—n
1 ]c -1 _ ~ .= 1+ A
e = E:ﬁt 1[1&1_77 (1+)\)t 1+ut(wt-l-bt—Tt—Ct—bt+171+n+1>‘|7
t=1
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and the following first-order conditions

BOA+) @) T = = 0, t=1,2,.. (6.43)
1+
—_ R —— _|_ = O, t: 1,27... 644
o r— B ptt1 (6.44)
_ - 14
+b—FH—C—by—— = 0, t=12,.. 6.45
Wt t Tt Ct t+1 1+7’t+1 ( )
~ 14+ A
li t—1 b = 0. 6.46
A e (040

From (6.43) and (6.44), we obtain the Euler condition

Gor = [BA+71)]7 G (6.47)

To express the latter in terms of efficient labor we use the definition ¢; = C;/ Xy = é41 Lt/ X and
the market-clearing condition (3.2). This gives (4.2).

Condition (6.44) implies the following evolution of the multiplier i,

1+)\)t1 1
we = p1 ( —— , t=23,... (6.48)
s [P A+ rje)

Using the latter, the transverslity condition becomes

T+2\"! 1 S )
0 = limpgtu ( ) —
t—o0 R L5 (A +r) T
. a+N -
= lim pyg —4¥—————bip1
t=eo TNy (L4 r41)
T+ A\ -
()

where the last step uses (6.43) to conclude that p; > 0 and the definition of 7. Invoking the
definition byy1 = Biy1/ X1 = biy1 Leg1/Xe41 and the market-clearing condition (3.2) gives (4.3).

6.8.2 Proof of Proposition 4

To describe the evolution of the economy we use, as before, k; and A;_; as the state variables of
the dynamical system. Since aggregate consumption equals output minus investment, we obtain
with Lemma 1 and the equilibrium conditions (3.2)

Ay 1+ g(kt+1, h,O’)

=TkX—(14+ X
“ k ( * )Atfl 1+g(kt7haa)

(kt+1 +i(g(/€t+1,h,0),h)). (650)

In equilibrium 7¢41 is a function of k:11 (see condition (2.6)) and, from (2.23), the growth factor
At /A¢_q is a function of k; and A;_;. Therefore, the Euler condition becomes a difference equation
in kt, kt+1, kt+2, Atfl, and At.



Cross-Country Income Differences and Technology Diffusion 36

The bond market equilibrium assures that biy1 = (1 + 7441) (kg1 + i(g(kig1, h,0), b)) for all
t =1,2,.... Invoking (2.6) and the definition A; = A; A7*%*, the transversality condition can be
expressed in terms of the state variables of the system. As a result, the dynamical system comprises
the Euler condition, the equation of motion for A as stated in (3.5), initial values k1, Ag, and Ay,
and the transversality condition.!4

In the steady state all magnitudes in efficiency units are constant, i.e., ¢;y1 = ¢ = ¢ and kyyq =
ky = k. With (2.6) it follows from (4.2) that the steady-state level, k},j, must satisfy

A
A

1
n

= lagr (k;CK)“‘l} . (6.51)

Since A;/Ai—1 = 1+ 7, the finding (4.4) of Proposition 4 is immediate.
Next we have to show that k%, can be part of an equilibrium allocation of a laggard country.

First, consider the transversality condition. Since 5t+1 = Apy1 b1 > 0, (6.49) at the steady state
can be stated as

t
. 1+ A o (1+)\)(1+7)>t_
e <ar<k;%m<>a‘l> an = (G 25) o (652

where the last step uses uses (4.4). To satisfy (6.52) we need
B1+A) < (14~)" L. (6.53)

Since B(1 + \) < 1, the latter condition is only binding if 0 < 1 < 1. In this case, it is satisfied
whenever

v < [BL+N]TT —1=7. (6.54)

Second, we have to make sure that ko < k. This requirement imposes a lower bound on 7.

Consider the function kjqp(v) = [T/ (14 7)7]]1/(1—0[)' It satisfies
1 k*
k(0) = (apT)=s, 2 ay) <0, and lim k*(y) = 0. (6.55)
Y00

Next, consider the properties of the function g and g(k,h,o) = 7. The latter equation implicitly
defines a function k(v) with the following properties
ok(v) 1

k0)=0, —X=_">0 and lim k(y)> 0. 6.56
(0) o o lim k() (6.56)

Hence, the functions k. (v) and k() intersect once and only once at some y > 0. Let ki (v) =

k(7). Then it holds that

krex(V) <k(y) < v>7. (6.57)

Accordingly, if > 1 the balanced growth path exists for any v > v, if n € (0, 1) it exists for any
v € (7,7) - There are parameter constellations, (3, A,n) such that (y,¥) is non-empty. [

4Tn fact, given k; and Ay, Ay is fully determined by (3.5).



Cross-Country Income Differences and Technology Diffusion 37

6.9 Proof of Proposition 5

Proposition 5 follows immediately from Lemma 1, the definition of the rate of diffusion, and the
observation that k% is independent of h and o. |

6.10 Proof of Corollary 3

A change in one of the parameters j = 3,7, I affects A%, only indirectly through k% p. Hence,

dAkek _ OBk dFrox
dj e A

j=p,eT. (6.58)

From Corollary 2, we know that dA%,~ /dkFox > 0. Hence, the first three results of (4.7) follow
immediately from (4.4).

The effect of a change of v involves a direct and an indirect effect through Ak} ). From (4.4)
and Corollary 2 both are negative. The parameters o, h, and 6 induce effects that are given in
equations (6.26), (6.29), and (6.32) in the proof of Corollary 2. [

6.11 Proof of Proposition 6

Denote ko i = kior (8;m,T',7) the function defined by the steady state (4.4), A* = A*(k%sox, 0, 1,7, 6)
the function defined by Corollary 3, and recall ¢* = g (ko x, b, 0). Given AT{* we have per-capita
income of the next period as
Urox = Urek (U, krek, Aok (Krex, 7,0, 1,0), 9 (Krek, hyo) ). (6.59)
From (3.19), Corollary 2 and Lemma 1 we have
drok
—==>0 (6.60)
dkrok

for the same reason as in equation (6.34) in the proof of Proposition 3. Then, the first three results
stated in (4.9) result from (6.60) and the properties of the function k},-(.). The comparative
static with respect to v follows from the analogue of equation (6.36).

Invoking Corollary 3 and Lemma 1, we find

dg}%CK _ 6@}%01( aA*RCK 6@}%01(
T = T Do o >0 (6.61)
and dij: Ol e DA 0 0
YroK Yrok RCK Yrok YrRCK >
= > 0. 6.62
dh oA+ oh T oag T o < (6.62)

Invoking Corollary 3 reveals that the latter is strictly positive if 7495, + 45 > 0. Finally, Corollary 3
also implies
drok _ Orox OARok
do OA* 00

> 0. (6.63)
u
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6.12 Proof of Proposition 7

Consider the left-hand side of (4.14) and define
LHS(k) = (1+g(k,h,0)) (k+i(g(k,h,0),h)).

The properties of the functions g and ¢ (see Lemma 1, (2.10), and (2.13)) imply that LHS(k)
is a continuous function with LHS(0) = 0, LHS (k) = gx (k+i(g,h)) + (1 + g) (1 +iqgx) > 1
for k > 0, and limy_,o LHS'(k) = 1. Moreover, LHS" (k) = g (k + 1) + 295 (1 + iq9%) + (1 +
9) (iqq9t + iqgrr) > 0 for k > 0 if condition (4.13) is satisfied. To verify the latter, recall from the
proof of Proposition 1 that (2.13) implies iqqg7 + iqgkk > 0 for k > 0. As I show below, condition
(4.13) is sufficient for LHS" (k) > 0 and k > 0 since it assures that gk (k +4) + 295 (1 + iqgx) > 0
for k > 0. Indeed, with (6.10) the latter can be written

2 + 20, igq + (1 + 9)iqqq

! g k+1). 6.64
gk T 2+ (1 + g)igq ( ) ( )

From (6.12) in the proof of Proposition 1 we know that the function 4 is such that

iﬂ 3igq + (1 + 9)igqq

. 6.65
iq 2ig + (1 + g)igq ( )
Hence, (6.64) is satisfied whenever
2 ) lgq )
242, > (k). (6.66)
9k q
Next, we use (6.2) and the fact that (6.1) relates k to i, «, and 0. We obtain successively
20 —-o0)a ,_. ) , igq ((1—0)a S
— (2 1 2 > = ——((1
1—a (2ig + (1 + g)igq) +2ig = iy 1—a (1+9)ig+1i)+1i
_ (I-o0)a . lgq lgq
= T (1+g)zqq+ziq —i—ziq.
Rearranging terms gives
(1-0)a . 1—-o)a( . i .
ﬁ (1 + g)qu =+ ﬁ 4.Zq — Ziiqq =+ 2Zq — Ziiqq 2 0. (667)

Since iy > 0 whenever ¢ > 0, the latter is satisfied if 2i2 > i iqq, which coincides with (4.13).

The right-hand side of (4.14) defines RHS(k) = 5k, a strictly concave function with RHS(0) = 0,
RHS'(0) = 0o, and RHS’'(00) = 0. Hence, there is one and only one value k) > 0 that satisfies
LHS(k}) = RHS(k}).'> A simple graphical argument shows that any sequence {k;} that starts
below or above k) converges monotonically.

151f LHS(k) is not convex on k € (0, k) there may be multiple steady states. To see this observe
that RHS'(k) =1at k= (aé)l/(l_a). If the functions LHS(k) and RH S (k) intersect for the first
time at some kY > (aé)l/(l_a), then, since LHS'(k) > 1, the steady state is unique and globally
stable. If the functions RHS(k) and LHS(k) intersect for the first time at some & < (a§)/ =),
they may intersect more than once if LHS(k) is concave with sufficient curvature. In any case,
the argument that proves the existence of a unique k) > 0 implies that the total number of steady
states must be odd. Moreover, the first, third, fifth,... intersection of RHS(k) and LHS(k) is
locally stable since it satisfies RHS'(k}) < LHS'(k}). Those associated with an even number
must be locally unstable.
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Since, (3)"/7) is the steady state if LHS’(k) = 1 for all k, we have k* < (3)"/~%) < k. Hence,
g(k¥, h,o) <~ and (4.16) holds. Moreover, a comparison of (4.14) with (3.8) reveals readily the
validity of result (4.15). Result (4.16) is immediate from (4.12).

|
6.13 Proof of Corollary 4
Consider the total differential of (4.14)
0 = oe(ki+i)+ (1 +9)(1+is00) —5a (k)| dk;
+ lon (k2 +1) + (1+ g)(iqg gn + in)] dh
+ 9o (ke +1) + (1 + g)iq gol do
— (k)™ ds, (6.68)

where the argument of i is (g, k) and the argument of g is (k¥, h, o).

The first term in brackets is positive since, at k%, the slope of the left-hand side of (4.14) is greater
than the slope of the right-hand side.

The comparative statics stated in (4.17) and (4.18) follow from (6.68), the definition of §, the
properties of the functions ¢ and g as stated in (2.10), (2.11), and Lemma 1. Moreover, the result
for i = ¢ h=7 follows from g, > 0 and Corollary 1. |

6.14 Proof of Proposition 8

Throughout this proof the argument of g is (k¥, h, o) and the argument of 4 is (g, h).

The parameters j = s,I', A affect ¢ indirectly through their effect on £, i.e.,

dq; _ dk;
g Mg

The signs given in (4.20) follow directly from g > 0 and Corollary 3. As to the the comparative
statics of ¢ and h there is a direct and an indirect effect, namely

dq’ di

dj dj

= 9k

+9;, Jj=o,h (6.69)

In view of Corollary 3 and the properties of the function g, these effects may be of opposite sign.
As to o, we obtain using (6.68)

dkz 9o (ki +i)+ (1 +9)iq 9o
do g (k; +i) + (L+g) (L +igge) — 5o (k)"
9o kX i+ (14 g)ig

« . . S wya—1
9k kc—l—z—l—lg%(l—i—zqgk)—g—k (k)
9 ki+i+ (1+9)ig

= (6.70)
Ik kx+i+ (1+9g)ig+ o (1+g—§a (k)™ )
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Hence, (6.69) and (6.70) imply

dgz > gk dkg
do < Jo do

~ *Otfl
Z0 & l4+g-35a(k) 20

Using the steady-state condition (4.14), the latter inequality can be expressed as

l—-«
* > * > .

From (6.1) in the proof of Lemma 1, the left-hand side of the latter inequality becomes
(1—0) ((1+g)iq+1i) Z 4, (6.71)
where the argument of 4 is (g, h) and the argument of g is (k%, h, o). Hence, dg¥/do > 0 at 0 = 0.

Turning to the effect of h, we obtain with (6.68) and (4.14)

dke gn (K} +1) + (14 9)(iq gn + in)
dh g (k2 +0) + (14 g) (1 +iggr) — 5a (k)
gn kz+i+%(iq9h+ih)

Gk ki 4i+ 2L (14 gr) — (14 g) (kx +1)

Ik k*

EX+i+(14g)e —i——zh
_ 9 ( )ia (6.72)

9k kp i+ (14 g)ig+ 22 (1- 2 (kr +9)

Here, (6.69) and (6.72) imply

Cigj; 20 o zz Cﬁzkh 120
The latter inequality is satisfied whenever
o 1 <1 - — (K —I—z)) Z0. (6.73)
gn Gk k& =
The same steps that lead to (6.71) reveal that dg¥/dh > 0 at o = 0. [

6.15 Proof of Proposition 9

From (4.26) we know that k; < k induces intermediate-good firms not to undertake innovation

investments. Hence, initially k evolves according to the equation of motion (4.24) that gives rise
1

to a globally stable steady state equal to s7==.

If §7= < i€, then the economy never reaches the critical level of k£ necessary to switch into the
regime with innovation. For ¢ = 1,2,.. the evolution of A is given by (4.25) and Ay11/A; — 1 =

=/ + 7).

If 570 > l%, then the economy initially grows according to (4.24). However, before reaching the
steady state associated with this equation of motion it arrives at the critical level given in (4.26).
The switch into the regime with innovation investments is as described in the main text.
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To prove the existence of a unique steady state we need to show that there is a unique £* € (l%, I_s)
that solves (1 +7) (k* +i (g (k*,h,0),h)) = §(k*)®, which restates (3.8). First, we observe that
(4.22) and the definitions of k and k imply k > k for all v > 0. Hence, there are parameter constella-
tions such that k > §7-= > k. Next, consider the functions LHS(k)=(1+7)(k+i(g9(k h,0),h))
and RHS(k) = §(k*)*. The function LHS(k) satisfies LHS(k) = k, LHS'(k) = 1+ (1 —
o)/ (2a(1 — o)) > 1 for k >k, LHS(k) = k + i (y,h,0) > §7a. The function RHS (k) satisfies
RHS(k) > lAfAbecause (5)ﬁ >k, and RHS(k) < LHS (k). Since LHS(k) is linear and RH S(k)
concave on (k, k) both functions intersect once and only once on this interval. Since k* < k the
steady state involves A* € (0,1) as given by (3.9). [ |
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7 Appendix II: Phase Diagram and Local Stabil-
ity

This section develops the phase diagram and the equations underlying the local stability analysis
of the steady state characterized in Proposition 1.

7.1 Phase Diagram

We develop the phase diagram in the (A, k) — plane.
First, consider the locus Dk = k¢11 — k;. From (3.4) and omitting time subscripts, it follows that
Dk=0 < A=Ak =01-C(k), (7.1)

where

(14 g) (k+1i) — 3k
0i(k+1) ’

(k) = (7.2)
and the argument of i is (g,h) and the argument of ¢ is (k,h,0). We summarize important
properties of (7.1) and (7.2) as Result 1.

Result 1

(a) Let k > 0, then ((k) = 0 if and only if k = k.

(b) The function A¥(k) satisfies limy_.o A*(k) = 0, A¥(k}) = 1, and is continuous on k € [0, k}].
(¢) It holds that

k>k:>k*>0.

Proof

(a) For k > 0 the denominator of (7.2) is strictly positive. The numerator can be expressed as
LHS(k) — RHS(k), where the two functions LHS(k) and RHS(k) are those defined in the proof
of Proposition 7. Then, Result 1 (a) follows from the properties of the functions LHS(k) and
RHS (k) as indicated in the proof of Proposition 7.

(b) It holds that

ke 1
i ANK) = T oty (7.3)

Moreover, an application of I’Hopital’s rule reveals that

(IL+g)(k+i) -5k (7.4)

fm C(k) = iy —— 0

Hence, limy_.o A¥(k) = 0. Moreover, A¥(k}) = 1 is immediate from (a). Continuity of ¢ follows
from the continuity of the functions ¢ and g and the fact that (1 + g) (k +14) < §k© for k € [0, kX].
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(¢) Follows from the proof of inequality (4.15) of Proposition 7. |

Next, we turn to the locus DA = A; — Ay—1. Omitting time subscripts, one obtains from (3.5)
0i(g (k h,o),h)

DA=0 & Ar1=A%k)= : 7.5
= A = G o) )+ — g (R o) (7

Result 2 The function A® (k) has the following properties.
AR(0)=0, A?Kk)=1, fork>0 0A”(k)/0k >0, and (7.6)

for ke (0,k7) AXK)ZA*K) & kSk"

Proof The properties under (7.6) follow immediately from the properties of the functions ¢ and
g, the definition of k, and the fact that

DA (k) 0
= liggr(y — 9) + ge i) ————— >0 for k> 0.
an = a9y = 9) + g ](9i+7_g)2

The property stated under (7.7) follows from the fact that on k € (0,k}) the functions A*(k) and
A (k) intersect only once at k* (see Proposition 1), while both are continuous and AF(k*) =1 >
A2 (k¥) since kf < k. [

To understand the forces that affect the evolution of both state variables, consider the Dk = 0 -
locus first. Above this locus, we have A;_; > AF(k) and the right-hand side of (3.4) is greater.
Since the left-hand side is increasing in k41, it holds that Dk > 0. An analogous argument shows
that Dk < 0 below the Dk = 0 - locus.

Next, consider the DA = 0 - locus. From (3.5) we obtain
Oi(g(k,h h Oi(g(k,h h —g(k,h
DA: 7/(g( Y 70)’ ) —At71 < Z(g( ) ,0.)7 )+FY g( ) ,0.)) . (7.8>
T+~ 1+~

Since 0i(g (ki, h,0),h) +~v— g (ki, h,o) > 0 for all admissible values of k it holds that DA < 0 for
all A1 > A®(k) and, similarly, DA > 0 for all A;_; < A®(k). These qualitative features are
depicted in Figure 1.

7.2 Local Stability

The steady state is a fixed point of the system (3.6). To study the local behavior of the system
around the steady state, we have to know the eigenvalues of the Jacobian matrix

ok ok
Do(k*,A*) = l kO 1 (7.9)
Ok OAt_1

We study each of the four elements of the Jacobian in turn.

e An application of the implicit function theorem to (3.4) shows that 9¢* /0k; = NUM* /DEN,
where

Saky ! (1405 (G — 1)) - skp ol tigot (1)

. 2
i(g,h)
(1 +0 1£z|-g (Ar,la B 1))

NUM* = ;. (7.10)
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M1, 2

pa(0)

I N T ()

0

0 0

Figure 3: The Eigenvalues of the Jacobian (7.9) - A Typical Finding.

here the argument of g is (k¢, h, o), and
DEN = gi (key1+14) + (1+g) (1 +1iq9x) (7.11)

where the argument of g is (k¢41, h, o) and the argument of ¢ is (g, h). Evaluated at (k*, A*),
NUMP becomes

NUM* = (14 g)a (1 + ki> - (k? + 1) G%gy) iq k(v —g) + (K* +1) %}?(7.12)

It follows that NUM*/DEN < 1 if and only if

(1+g) <a <1+ki*) —1—iqgk> — [+ = ge (k" +14) <1_ZT_$) <0. (7.13)

In the steady state, we have from (3.8)

i - k*+l_ O[§ wna—1
a(l—i—F)—a e —1+7(k) - (7.14)

Hence, for the reason set out in the proof of Corollary 1, the first term in (7.13) is negative.
Moreover, the last term is negative since 1 > (y — g)/(1 + ). Hence 9¢* (k*, A*)/0k, < 1.

e An application of the implicit function theorem to (3.4) also shows that 9¢*/0A;_, =
NUMA/DEN, where,

@ i(g,h
sk (0945 o)

NUMA = " 5, (7.15)
i(g,h 1
(1055 (s 1))
where the argument of g is (k¢, h, o). Evaluated at (k*, A*), NUM* becomes
(1+g\ (0i+y—g)?
NUM*® = (k* : 7.16
o (22) 2 -

e From (3.5) we obtain

99" Biggr | gk —Oiqgk
= A*. 7.17
ok 14y * 1+~ (7.17)
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e From (3.5) we also have

90% 1+g—0i

= 7.18
8At,1 1 +")/ ( )

Figure 3 shows a typical result for both eigenvalues () and p2(6) which are strictly between zero
and one and declining in 6. The calibration uses h = 1 and the investment requirement function
i = q*. Moreover, a = 1/3, 0 = 0, v = .14, and 3 = .3. Hence, the steady state is locally stable.
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