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1 Introduction

Technological knowledge diffuses across the boundaries of open economies.1 As a

consequence, backward countries with access to the knowledge contained in the

world’s technological frontier, may adopt this knowledge and, thereby, grow faster

than advanced countries (Gerschenkron (1962), Abramovitz (1986)). This paper de-

velops a new open-economy endogenous growth model where this mechanism allows

for a stable and non-degenerate world income distribution. The purpose is to detect

both country characteristics and properties of the growth process that explain a

country’s position in the eventual world income distribution.

From a macroeconomic point of view, international technology diffusion is the pro-

cess by which domestic firms incorporate new ideas and techniques from abroad into

their production technology and, thereby, raise the productivity of the available do-

mestic factors of production. At the microeconomic level, I motivate this process

by what Griffith, Redding, and Reenen (2004) call the second face of R&D, i. e.,

the fact that firms engaged in innovation activity acquire external knowledge and

assimilate discoveries of others.2 From this point of view, the intensity of domestic

innovation activity becomes a key determinant of a country’s capacity to absorb

previously unknown technological knowledge from abroad.

Following Nelson and Phelps (1966), the second component of the diffusion process

is the gap between the state of the world’s technological frontier and a country’s

current state of technological knowledge. This gap represents the pool of ideas and

techniques from which the second face of R&D can draw. I take the view that no

country has access to the entire knowledge embodied in the world’s technological

frontier. Hence, over time, the technology gap may rise or fall, however, it remains

positive throughout. In a steady state, each country absorbs a constant fraction of

the world’s technological frontier. The remaining steady-state gap turns out to be

a key determinant of a country’s relative position in the steady-state world income

distribution.

I refer to international technology diffusion as the foreign contribution to the ad-

vancement of a country’s accessible level of technological knowledge. The domestic

contribution reflects the first face of R&D, i. e., research and development of new

1Recent empirical studies in support of this include Coe and Helpman (1995), Eaton and Kortum

(1996), Nadiri and Kim (1996), and Coe, Helpman, and Hoffmaister (2008).

2Besides Griffith, Redding, and Reenen (2004), there is considerable support for this motive

in the empirical literature (see, e. g., Tilton (1971), Allen (1977), Mowery (1983)). Cohen and

Levinthal (1989) study the implications of such activity for partial industry equilibria.
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technological knowledge undertaken by domestic firms. Overall, the evolution of

a country’s accessible level of technological knowledge is given by the sum of the

domestic and the foreign contribution.

The set-up of the domestic economy adds a competitive intermediate-good sector

to an otherwise neoclassical economy to incorporate endogenous economic growth.3

Innovation investments are undertaken by intermediate-good firms in an attempt to

gain an advantage over rivals. These investments are endogenously determined, raise

the productivity of domestic labor, and, as a byproduct, bring about a knowledge

inflow from abroad.

For this set-up, I establish the intertemporal general equilibrium and the existence

of a unique steady state that pins down a country’s capital intensity and its rel-

ative position with respect to the world’s technological frontier. Similar to other

theoretical studies of technology diffusion, including Parente and Prescott (1994),

Barro and Sala-́ı-Martin (1997), or Howitt (2000), all economies share the same

steady-state growth rate of per-capita magnitudes which coincides with the exoge-

nous growth rate of the world’s technological frontier. However, differences in the

level of technological knowledge survive even in the steady state and cause cross-

country income differences, a feature consistent with empirical findings of, e. g., Hall

and Jones (1999).

A particular focus of the analysis is on human capital and on growth policies based

on subsidies for innovation investments. Besides its static labor-augmenting effect in

the spirit of Becker (1993) and Mincer (1974), I argue that human capital is favorable

to innovation because it reduces the amount of resources necessary to adapt to or

to invent something new. This follows ideas expressed in, e. g., Nelson and Phelps

(1966), Schultz (1975), or Galor and Moav (2000). However, in my context where

economic growth is endogenous, the positive effect of human capital on domestic

innovation and technology diffusion may be offset by general equilibrium effects.

The latter implies that the rate of diffusion, i. e., the rate at which the gap between

the technological frontier and the current state of the domestic technology closes,

does not necessarily increase in human capital. Thus, the Nelson-Phelps hypothesis

(Nelson and Phelps (1966), p. 70) fails in general. In a similar vein, I find that the

partial equilibrium effect of a subsidy on innovation investments is positive but may

be outweighed by general equilibrium effects.

What determines steady-state income differences across countries? I find that an

economy’s size, its available research technology, properties of the diffusion pro-

3The analytical framework extends and complements the endogenous growth model developed

in Irmen (2005). The latter, in turn, builds on Hellwig and Irmen (2001) and Bester and Petrakis

(2003).
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cess, and the behavioral assumption on savings determine both the set of country

characteristics that matter and the sign of the predicted effect. However, for open

economies that engage in innovation activity the analysis shows that independent

of these categories a) a social infrastructure that fosters the efficiency of an econ-

omy’s domestic production technology, and b) institutions that facilitate the inflow

of technological knowledge from abroad increase a country’s position in the steady-

state world income distribution. Such countries benefit more from their own R&D

and from international R&D spillovers. This is in line with the empirical evidence

provided by, e. g., Hall and Jones (1999), Sachs and Warner (1995), or Coe, Help-

man, and Hoffmaister (2008). Moreover, a high savings rate and a small population

growth rate imply a high steady-state per-capita income, a finding consistent with

the correlations that appear in the data provided by Heston, Summers, and Aten

(2002) (see, e. g., Weil (2005), p. 70 and 84).

The role of human capital and of subsidies for innovation investments as deter-

minants of cross-country income differences is strengthened if the savings rate is

endogenous à la Ramsey (1928), Cass (1965), Koopmans (1965). In this setting the

steady-state capital intensity is pinned down by a first-order condition rather than

by a market equilibrium condition. As a result, the general equilibrium effects in

the comparative statics disappear. Both variables tend to raise domestic research

activity and, thereby, increase a country’s capacity to absorb knowledge embodied

in the technological frontier. Through both channels the steady-state per-capita

income rises.

Several studies of the evolution of the world’s income distribution question the view

according to which all countries converge to parallel growth paths (see, e. g., Quah

(1997), Durlauf and Johnson (1995), or Pritchet (1997)). My framework highlights

two mechanisms in support of this view. Both are consistent with the observation

of a growing divergence between the world’s richest and poorest countries and with

the presence for convergence clubs in growth rates.

First, countries may be closed, i. e., cut-off from the evolution of the world’s tech-

nological frontier. Historical examples include China’s isolationism starting in the

15th century AD or Japan’s isolationism ending in the mid 19th century AD. I show

that closing an economy means that it falls behind forever because growth relies

solely on domestic innovation efforts. The example of China is a case in point (see,

e. g. Mokyr (1990), Chapter 9, or Landes (1998), p. 93-97). I find that the country

characteristics that generate level effects in the open economy induce also growth

effects in the closed economy. Hence, country characteristics determine whether

closed economies converge to parallel growth paths or not.

Second, an open economy may be caught up in a no-innovation trap if country

characteristics prevent profit-maximizing domestic firms from engaging in innovation
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investments. As a consequence, the second face of R&D is mute. The country

does not absorb technological knowledge from abroad and converges to a stationary

steady state as in Solow (1956). For such a setting, I show that a minimum level

of human capital is necessary to induce innovation activity in equilibrium. This is

consistent Benhabib and Spiegel (2005) who claim for a sample of 84 countries that a

minimum level of human capital corresponding to an average 1.78 years of schooling

in 1960 was necessary to catch up with US total factor productivity growth over the

following 35 years.

The paper is organized as follows. I present the details of the model in Section

2. Section 3 studies the intertemporal general equilibrium and characterizes the

dynamical system. Section 4 extends the basic model in three directions. First,

I consider an endogenous savings rate generated by infinitely lived dynasties in

Section 4.1. The closed economy and the implications for club convergence are

analyzed in Section 4.2. Section 4.3 studies the possibility no-innovation traps.

Section 5 concludes. All proves are relegated to the Appendix.

2 The Basic Model

The economy has a household sector, a final-good sector, and an intermediate-

good sector in an infinite sequence of periods t = 1, 2, ... There are four objects

of exchange, a manufactured final good, a manufactured intermediate good, labor,

and bonds. I call ‘final good’ a commodity that serves for consumption as well as

for investment. If invested, this commodity is either used as future capital in the

final-good sector or as an immediate input into innovation undertaken by firms of

the intermediate-good sector.

In each period t, there are markets for all four objects of exchange. Treating the

final good as the numéraire, pt denotes the real price of the intermediate good, wt

the real hourly wage. A bond at t is a claim on one unit of the final good at t + 1.

Accordingly, the price of a bond at t is 1/(1 + rt+1), where rt+1 is the real interest

rate from t to t + 1.

2.1 The Household Sector

The household sector has an initial endowment of B1 bonds coming due at t = 1

and owns the shares of all firms in the economy. In each period it is equipped with

a labor endowment of Lt hours of time that coincides with the aggregate supply of

labor. Due to population growth, this endowment grows at a constant rate λ > (−1)
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such that Lt = (1 + λ)t−1 for t ≥ 1 with L1 = 1 given as an initial condition. Let

h ≥ 1 denote the level of human capital that augments each hour worked.

The allocation of per-period income to consumption and savings is subject to the

budget constraint

Ct +
Bt+1

1 + rt+1

= wt Lt + Bt + Πt − Tt, (2.1)

where Ct is consumption of the final good, Bt+1 is bond demand in t, wt Lt is

wage income, Bt is capital income from the repayment of bonds due in t, Πt is

the aggregate dividend distribution, and Tt denotes the lump-sum tax levied by the

government to finance possible subsidies for innovation investments.

As to the consumption-savings decision of the household sector I assume that real

aggregate savings in t is a fixed fraction of aggregate income in t, i. e.,4

Bt+1

1 + rt+1
= s (wt Lt + Bt + Πt − Tt) , (2.2)

with s ∈ (0, 1) denoting the marginal and average propensity to save.

2.2 The Final-Good Sector

The final-good sector produces according to the production function Yt = ΓF (Kt, Xt),

where Γ > 0 and F is a neoclassical production function with the usual properties

(see, e. g., Barro and Sala-́ı-Martin (2004), pp. 26 - 28). Here, Yt is aggregate out-

put, Γ is meant to capture what Hall and Jones (1999) call social infrastructure, Kt

is capital input in t, and Xt denotes the amount of the intermediate good used in

period-t production. I assume F to be Cobb-Douglas, i. e.,

Yt = Γ Kα
t X1−α

t , 0 < α < 1. (2.3)

Capital in t must be installed one period before its use in production and, without

loss of generality, fully depreciates after being used. A capital investment of Kt

units undertaken in period t− 1 is financed by an issue of (1 + rt) Kt bonds.

In terms of the final good of period t as numéraire the profit in t of the final-good

sector is

Yt − (1 + rt) Kt − pt Xt, (2.4)

4Similar findings are obtained when I represent the household sector by two-period lived over-

lapping generations with log utility. Since the savings hypothesis of (2.2) avoids expectations over

a possibly infinite horizon to play a role it proves particularly plausible in the presence of growth

stages to which I turn in Section 4.3. I study the case of an endogenous savings rate along the

lines of Ramsey (1928), Cass (1965), and Koopmans (1965) in Section 4.1.
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where (1 + rt) Kt is capital service payments and pt Xt is the cost of the intermediate-

good input.

The final-good sector takes the sequence {pt, rt} of prices and interest rates as given

and maximizes the sum of the present discounted values of profits in all periods.

Since it simply buys capital and intermediate goods for each period, its maximization

problem is equivalent to a series of one-period maximization problems. Define the

period-t capital intensity in the final good-sector as

kt ≡
Kt

Xt

. (2.5)

Using f (kt) ≡ F (kt, 1) = kα
t the respective first-order conditions for t = 1, 2, ... are

Kt : α Γ kα−1
t = 1 + rt (2.6)

Xt : (1− α) Γ kα
t = pt. (2.7)

Initially, the final-good sector has K1 units of capital at its disposal. It stems from

investment decisions prior to period t = 1 and causes outstanding debt obligations

equal to (1 + r1) K1.

2.3 The Intermediate-Good Sector

The set of all intermediate-good firms is represented by the set ℜ+ of nonnegative

real numbers with Lebesgue measure.

2.3.1 Technology

At any date, t, all firms have access to the same technology with production function

xt = min {1, at h lt} , (2.8)

where xt is output, 1 a capacity limit,5 at the firm’s labor productivity in period t, h lt
human capital augmented labor input. The index h ≥ 1 reflects the Becker-Mincer

5The analysis is easily generalized to allow for an endogenous capacity choice requiring prior

capacity investments, with investment outlays a strictly convex function of capacity. In such

a setting profit-maximizing behavior implies that a large innovation investment is accompanied

by a large capacity investment (see, Hellwig and Irmen (2001) for details). Thus, the simpler

specification treated here abstracts from effects on firm size in an environment with changing

levels of innovation investments.
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view that human capital increases the productivity of the labor hours employed by

firms (Mincer (1974), Becker (1993)). The firm’s labor productivity is equal to

at = At−1(1 + qt); (2.9)

here At−1 is an economy-wide indicator of the level of technological knowledge ac-

cumulated up to period t − 1, and qt is an indicator of productivity growth at the

firm.

To achieve a productivity growth rate qt > 0 from period t− 1 to period t, the firm

must invest i(qt, h) units of the final good in period t − 1. The function i is time

invariant and satisfies for h ≥ 1

i(0, h) = iq(0, h) = 0, iq(q, h) > 0, i, iq →∞ as q →∞, iqq > 0 for q ≥ 0,(2.10)

and for q > 0

i(q, h) > 0, ih(q, h) < 0, iqh(q, h) < 0. (2.11)

Hence, a higher rate of productivity growth requires a larger investment, and more

human capital enhances the effect of a given investment volume on productivity

growth. The latter captures the idea enunciated by, e. g., Nelson and Phelps (1966),

Schultz (1975), or Galor and Moav (2000) that human capital is favorable to change,

for instance, because it speeds up the process of learning how to work with a new

technology.6 A functional form that fulfills these conditions is

i(q, h) = qv h−z, with 1 < v ≤ 2 and z > 0. (2.12)

It also complies with the following regularity condition that I impose on the convexity

of i. For all q > 0 let
(

iqq

iq
−

iqqq

iqq

)

>
1

1 + q
. (2.13)

If the firm innovates the assumption is that an innovation in period t is proprietary

knowledge of the firm only in t, i. e., in the period when it materializes. Subsequently,

the innovation becomes embodied in the economy-wide productivity indicators At,

At+1, ..., with no further scope for proprietary exploitation. The evolution of these

indicators will be specified below. If firms decide not to undertake an innovation

investment in period t− 1 then, for production in t, they have access to the produc-

tion technique represented by At−1 such that at = At−1. This will matter when we

discuss no-innovation traps in Section 4.3.

6Empirical evidence supporting this idea provide, e. g., Welch (1970) and Bartel and Lichtenberg

(1987).
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2.3.2 Profit Maximization and Zero-Profits

To finance an innovation investment i(qt, h) the firm issues (1 + rt) i(qt, h) bonds in

period t− 1. In period t the government grants a subsidy on such investment equal

to σ (1 + rt) i(qt, h), where σ ∈ (0, 1) is the time-invariant subsidy rate. In terms

of the final good of period t as numéraire, a production plan (qt, lt, xt) for period t

thus yields the profit

πt = pt xt − wt lt − (1 + rt) (1− σ) i(qt, h), (2.14)

where pt xt = pt min {1, At−1(1 + qt) h lt} is the firm’s revenue from output sales,

wt lt its wage bill at the real wage rate wt, and (1+ rt) (1−σ) i(qt, h) its debt service

net of subsidies.

Competitive firms take the sequence {pt, wt, rt} of real prices, the sequence {At}

of aggregate productivity indicators, the subsidy rate, σ, and the level of human

capital, h, as given and choose their production plan so as to maximize the sum of

the present discounted values of profits in all periods. Because production choices

for different periods are independent of each other, for each period t, they choose

the plan (qt, lt, xt) to maximize the profit πt from this plan in period t.

If the firm innovates, it incurs an investment cost (1 + rt) (1 − σ) i(qt, h) that is

associated with a given innovation rate qt > 0 and is independent of the output xt.

This introduces a positive scale effect, namely if the firm innovates, then it wants to

apply the innovation to as large an output as possible and produces at the capacity

limit xt = 1. The choice of (qt, lt) must then minimize the costs of producing the

capacity output.

Suppose wt > 0 and rt > (−1), then an input combination (qt, lt) that minimizes

unit costs must satisfy

lt =
1

At−1(1 + qt) h
, (2.15)

and

qt ∈ arg min
q≥0

[

wt

At−1(1 + q) h
+ (1 + rt) (1− σ) i(q, h)

]

. (2.16)

Given the convexity of the innovation cost function and the fact that iq(0, h) = 0,

(2.16) determines a unique level q∗t > 0 as the solution to the first-order condition

wt

At−1(1 + q∗t )
2 h

= (1 + rt) (1− σ) iq(q
∗
t , h). (2.17)

The latter relates the marginal reduction of the firm’s wage bill to the marginal

increase in its investment costs. As both marginal effects are proportional to the

respective factor price, condition (2.17) implies a map q that assigns to each triple
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of wt/At−1 h (1 + rt) ≥ 0, h ≥ 1, and σ ∈ (0, 1) the cost-minimizing growth rate of

labor productivity

q∗t = q

(

wt

At−1 h (1 + rt)
, h, σ

)

. (2.18)

Given At−1 the chosen growth rate of labor productivity increases in the relative

factor price ratio, and the properties of the input requirement function i imply that

q (0, h, σ) = 0 and q (∞, h, σ) = ∞. Moreover, q∗t increases in the subsidy rate

whereas the effect of an increase in the level of human capital has an ambiguous

effect. Indeed, one readily verifies that dq∗t /dh R 0 ⇔ − (∂iq/∂h) h/iq R 1. This

condition reflects the countervailing effect of the Becker-Mincer versus the Nelson-

Phelps logic on innovation incentives. As a result, we find that dq∗t /dh > 0 obtains

only if the impact of h on the reduction of the marginal investment requirement is

stronger than the disincentive through the labor-augmenting effect of human capital.

This is the case if the elasticity of the marginal investment requirement with respect

to human capital at q∗ is sufficiently strong. This intuition is confirmed for the

specification of i given in (2.12), where dq∗t /dh > 0 holds if and only if z > 1.

2.4 Consolidating the Production Sector

Turning to implications for the general equilibrium, recall that the set of intermediate-

good firms is ℜ+ with Lebesgue measure. Therefore, maximum profits that produc-

ing intermediate-good firms attain in equilibrium for any t must be zero. Indeed,

since the labor supply in each period is bounded, the set of intermediate-good firms

employing more than some ε > 0 units of labor must have bounded measure and

hence must be smaller than the set of all intermediate-good firms. Given that in-

active intermediate-good firms must be maximizing profits just like the active ones,

we need that maximum profits of intermediate-good firms at equilibrium prices are

equal to zero, i. e.,

πt = π (q∗t ; pt, wt, rt, At−1, h, σ) = 0. (2.19)

Since all intermediate-good firms face the same input and output prices, they all

choose the same growth rate of labor productivity, q∗. Moreover, the following

lemma establishes that the conditions for profit-maximization and zero-profits in the

final-good and the intermediate-good sector relate this rate of productivity growth

to the capital intensity in the final-good sector, k, to the level of human capital, h,

and to the subsidy rate, σ, according to a well-behaved function g (kt, h, σ).
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Lemma 1 If (2.6), (2.7), (2.17) and (2.19) hold for all firms in t, then there is

a map g such that for kt ≥ 0 and h ≥ 1, q∗t = g (kt, h, σ), with g (0, ·, ·) = 0,

g (∞, ·, ·) =∞,

gk > 0, gh > 0, and gσ > 0. (2.20)

The fact that gk > 0 can be traced back to the properties of the neoclassical produc-

tion function of the final-good sector. They imply that the marginal productivity of

capital falls in kt whereas the marginal productivity of the intermediate good rises.

Accordingly, rt falls and pt rises in kt. Through the zero-profit condition, these price

movements feed back onto the wage, wt, which must also rise. As a result, a higher

kt increases the relative wage in (2.18) and, therewith, the incentives that foster

labor productivity growth. Moreover, the function g captures the effect of human

capital in a changing environment, i. e., as human capital reduces total and marginal

investment outlays, we find gh > 0. Similarly, we obtain gσ > 0 since a subsidy rate

reduces marginal investment outlays.

2.5 Evolution of Technological Knowledge

As I set out in the Introduction, the evolution of the economy’s level of technological

knowledge comprises a domestic and a foreign contribution. These channels corre-

spond to the two faces of R&D that Griffith, Redding, and Reenen (2004) identify

empirically.

The domestic contribution at t − 1 reflects productivity growth achieved at the

level of those domestic intermediate good firms that produce at t. Denoting the

measure of these firms by nt, their contribution is equal to the highest level of labor

productivity attained by one of them, i. e.,

max{at(n) = At−1 (1 + q∗t (n)) |n ∈ [0, nt]}.

Since in equilibrium q∗t (n) = q∗t , the domestic contribution boils down to

at = At−1 (1 + q∗t ). (2.21)

The foreign contribution is an inflow of currently unavailable technological knowl-

edge from abroad. It begs the notions of the world’s technological frontier and of a

laggard country. Let Amax
t denote the world’s leading-edge productivity indicator at

t which grows at the constant rate γ > 0, i. e., Amax
t = (1 + γ) Amax

t−1 with Amax
0 > 0

as an initial condition. A country is called a laggard at t if Amax
t > At.
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The strength of the foreign contribution at t−1 depends positively on three factors.

First, it relies on the average investment activity of intermediate-good firms between

t− 1 and t, i(q∗t , h). Second, it hinges on the technological backwardness of the lag-

gard country measured by the gap Amax
t−1 − At−1.

7 Third, the country’s openness

to the rest of the world matters. The parameter θ is meant to capture institu-

tional or technological factors that facilitate the inflow and implementation of new

knowledge. It may be associated with the presence of restrictions on foreign trade

or migration, to country-specific barriers to technology adoption as emphasized by

Parente and Prescott (1994), to patent protection of new foreign technologies or to

their appropriateness in the sense of, e. g., Atkinson and Stiglitz (1969) and Basu

and Weil (1998). The economy is said to be open if θ > 0 and closed if θ = 0.

For simplicity, I stipulate the foreign contribution as the product of these three

factors, i. e.,

θ i(q∗t , h)(Amax
t−1 − At−1). (2.22)

Thus, the second face of R&D measured by i(q∗t , h) determines the rate of diffusion.

This specification provides a possible micro-foundation for the assumption intro-

duced by Nelson and Phelps (1966) that the ability of a laggard country to close

the technological gap depends positively on the average level of human capital in

its population. Here, however, the link between the level of human capital and the

strength of the inflow is endogenous.

Adding (2.21) to (2.22), we obtain the updating condition for the level of technolog-

ical knowledge to which innovating domestic intermediate-good firms have access at

t,

At = At−1(1 + q∗t ) + θ i(q∗t , h)(Amax
t−1 −At−1). (2.23)

This condition is a discrete time analogue of the confined exponential diffusion

process studied in Benhabib and Spiegel (2005). To see this more clearly, consider

the growth rate of A8

At − At−1

At−1
= q∗t + θ i(q∗t , h)

(

Amax
t−1

At−1
− 1

)

. (2.24)

7The representation of technological knowledge by the real line reduces a complicated, multi-

faceted object to a one-dimensional entity. Therefore, one may argue that any domestic innovation

investment of a laggard country creates knowledge that already exists. Then, it is not Amax
t−1 −At−1

that matters as a component of the foreign contribution but rather the gap net of duplication

Amax
t−1 −At−1(1 + q∗t ). It turns out that duplication introduced in this way adds a complication to

the picture that does not affect most of my results. Details for this case are available upon request.

8This may be compared to equation 2.1 in Benhabib and Spiegel (2005) where the functions

corresponding to q∗t and θ i(q∗t , h) are assumed to increase in a country’s level of education and are

not linked to microeconomic magnitudes.
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According to Lemma 1, both components of this growth rate are determined in

equilibrium. They will directly depend on the level of human capital and the subsidy

rate, and indirectly on the variables that determine the equilibrium capital intensity

in the final-good sector.

Observe that (2.24) can be linked to the idea that economic backwardness facilitates

convergence (see, e. g., Gerschenkron (1962) and Abramovitz (1986)). Indeed, ceteris

paribus, the growth rate of A increases in the gap Amax/A. A backward country may

therefore experience what Gerschenkron called “spurts”, i. e., periods of exceptional

growth rates that even exceed γ.

For further reference we note that the updating condition (2.23) can be expressed

in terms of the laggard country’s relative position with respect to the leading-edge

technology ∆t ≡ At/A
max
t . Indeed, one readily verifies the implication that

∆t =
θ i(q∗t , h)

1 + γ
+

1 + q∗t − θ i(q∗t , h)

1 + γ
∆t−1. (2.25)

3 Intertemporal General Equilibrium

I focus on a laggard country that remains throughout its evolution behind the

leading-edge technology.

3.1 Definition

I refer to a sequence {pt, wt, rt} as a price system. By an allocation I understand

a sequence {Ct, Lt, Bt, Yt, Kt, Xt, nt, qt, lt, Tt} that comprises a strategy {Ct, Lt, Bt}

for the household sector, a strategy {Yt, Kt, Xt} for the final-good sector, a measure

nt of intermediate-good firms active at t producing the capacity output xt = 1 with

input choices (qt, lt), and the government’s lump-sum tax, Tt.

An equilibrium will correspond to a price system, an allocation, and a sequence

{Πt, At, A
max
t , ∆t} of distributed aggregate profits, indicators for the domestic level

of technological knowledge, for the leading-edge, and the ensuing relative position

∆t that satisfy the following conditions: First, given the initial bond endowment

B1 and the sequence {wt, rt, Πt}, the household sector saves according to (2.2) and

supplies Lt units of labor in all periods. Second, the production sector satisfies the

assumptions underlying Lemma 1. Due to constant returns to scale in final-good

production, Πt = 0 in all periods. Third, in all periods markets clear. Forth, the

domestic productivity indicator At evolves according to (2.23) and Amax
t grows at
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rate γ > 0. Fifth, the government balances its budget, i. e., Tt = nt σ (1+ rt) i(q∗t , h)

for all t.

In specifying a consistent circular flow of income, one readily verifies that in equi-

librium wt Lt + Bt + Πt− Tt = Yt, i. e., for all periods the household sector’s income

stream is equal to final-good production. Accordingly, the equilibrium condition

requiring savings to equal investment is

Kt+1 + nt+1i(qt+1, h) = s Γ Kα
t X1−α

t for t = 1, 2, .... (3.1)

3.2 The Dynamical System

I choose the capital intensity in the final-good sector, kt ≡ Kt/Xt, and the relative

position of the domestic technology, ∆t ≡ At/A
max
t , as the state variables of the dy-

namical system. To express (3.1) in terms of k and ∆, note first that the equilibrium

in the market for intermediates and full employment in all periods imply

Xt = nt = At−1(1 + q∗t ) h Lt, (3.2)

i. e., aggregate output of the intermediate-good is equal to labor in efficiency units.

Then, Xt+1/Xt is the growth factor of efficient labor. Using the updating condition

(2.23), one finds

Xt+1

Xt
=

At

At−1

1 + q∗t+1

1 + q∗t

Lt+1

Lt

= (1 + q∗t+1)

(

1 + θ
i(q∗t , h)

1 + q∗t

(

1

∆t−1
− 1

))

(1 + λ). (3.3)

Hence, for an open economy with θ > 0 both the domestic and the foreign contri-

bution matter for the growth of efficient labor.

From (3.1), the first equality in (3.2), (3.3), and Lemma 1, we find the equation of

motion for kt. Rearranging terms that depend on kt or kt+1 gives

(1 + g(kt+1, h, σ)) (kt+1 + i(g(kt+1, h, σ), h)) =
s̃kα

t

1 + θ i(g(kt,h,σ),h)
1+g(kt,h,σ)

(

1
∆t−1
− 1
) . (3.4)

where s̃ ≡ s Γ/(1 + λ).

The equation of motion for ∆t obtains from (2.25) and Lemma 1,

∆t =
θ i(g (kt, h, σ) , h)

1 + γ
+

1 + g (kt, h, σ)− θ i(g (kt, h, σ) , h)

1 + γ
∆t−1. (3.5)
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An application of the implicit function theorem to (3.4) shows that the latter two

equations constitute a two-dimensional system of first-order, autonomous, non-linear

difference equations. This system may be stated as

(kt+1, ∆t) = φ (kt, ∆t−1) ≡
(

φk(kt, ∆t−1), φ
∆(kt, ∆t−1)

)

(3.6)

for given initial values k1 and ∆0. To assure a trajectory of ∆t−1 ∈ (0, 1) for

t = 1, 2, ... we have to impose constraints on the parameters of the model. The

following lemma makes this more precise.

Lemma 2 There is a unique k̄ > 0 such that g(k̄, h, σ) = γ. Let θ̄ ≡ (1+γ)/i(γ, h).

The function φ (kt, ∆t−1) maps
[

0, k̄
]

× (0, 1) onto itself if

θ < θ̄ and s̃
1

1−α < k̄. (3.7)

Lemma 2 states conditions on parameters such that a country remains behind the

world’s technological frontier throughout its evolution. Intuitively, θ < θ̄ imposes

an upper bound on the rate of diffusion in the updating condition (2.23). If k ≤ k̄

then, in equilibrium, domestic innovation incentives are not too strong and g ≤ γ.

Moreover, s̃
1

1−α < k̄ assures that k̄ is indeed an upper bound on the attainable level

of k through the process of capital accumulation. if not indicated otherwise, I shall

assume henceforth initial values k1 ∈ (0, k̄) and ∆0 ∈ (0, 1) and that the parameters

of the model satisfy the restrictions stated in (3.7).

Proposition 1 There is a unique steady state (k∗, ∆∗) with k∗ ∈ (0, k̄) and ∆∗ ∈

(0, 1) that satisfy

k∗ + i(g(k∗, h, σ), h) =
s̃

1 + γ
(k∗)α, (3.8)

and

∆∗ =
θ i(g (k∗, h, σ) , h)

θ i(g (k∗, h, σ) , h) + γ − g (k∗, h, σ)
. (3.9)

Proposition 1 states and proves the existence of a unique steady state for a laggard

country. Since the country’s relative position with respect to the leading-edge tech-

nological knowledge, ∆∗, is constant, At grows at rate γ, which is also the growth

rate of all domestic per-capita magnitudes such as income and consumption.

The equation for k∗ is similar to the one of the neoclassical growth model with ex-

ogenous labor-augmenting technical change. The difference occurs on the left-hand
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Figure 1: The Typical Phase Diagram.

Dk = 0

D∆ = 0∆∗

1

kt

∆t−1

→↓

←↑

←↓

→↑

k̄k∗0
The loci Dk = 0 and D∆ = 0 are those where k of ∆ are stationary.

side of (3.8), where the resources necessary to feed domestic innovation investments

are added. With two investment opportunities the role of decreasing returns in the

process of capital accumulation is more pronounced. As a consequence, the level of

k∗ is lower than in a Solow economy with costless exogenous technical change.

The analysis of the local and the global dynamics of the dynamical system is al-

gebraically involved. Figure 1 shows some qualitative features in a typical phase

diagram. Numerical results suggest that the steady state can be locally stable and

a global attractor (see, Appendix 7 for details).

Since the steady-state growth rate is exogenous, comparative statics induce level

effects. To develop an understanding for why steady-state per-capita income differs

across countries we study first the effect of parameter changes on k∗.

Corollary 1 It holds that

dk∗

ds̃
> 0,

dk∗

dγ
< 0,

dk∗

dσ
< 0. (3.10)

Moreover,

dk∗

dh
R 0 ⇔

di (g(k∗, h, σ), h)

dh

∣

∣

∣

∣

k=k∗

⋚ 0. (3.11)

Similar to the neoclassical growth model with exogenous technical change, k∗ in-

creases both in s and Γ, i. e., in the investment rate and with a better social in-

frastructure. Moreover, k∗ falls with the steady-state growth rate of labor λ, and
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with the growth rate of the leading-edge productivity indicator γ. These parameters

directly affect the impact of diminishing returns on the accumulation of final-good

sector capital.

Moreover, k∗ falls in the subsidy rate. Intuitively, the subsidy rate increases g (k∗, h, σ)

and the equilibrium amount of innovation investments, i (g (k∗, h, σ) , h) increases,

too. Accordingly, the level of k∗ has to fall to reestablish the validity of condition

(3.8).

The impact of human capital on k∗ is indeterminate in general. This is the result

of two opposing effects of h on the investment activity of intermediate-good firms.

On the one hand, more human capital increases the incentive to engage in innova-

tion investments, thus raising the productivity growth rate, g, and the investment

requirements. On the other hand, given g, more human capital lowers investment

requirements. While the former effect alone induces a lower level of k∗, the latter

implies a higher level. I show in the proof of Corollary 1 that the indeterminacy

vanishes if we impose more structure and assume an input requirement function i

with constant elasticity like i = qv h−z of (2.12). Then, the former effect dominates

and dk∗/dh < 0.

Finally, observe that, k∗ is independent of θ. The impact of the evolution of ∆ on

the evolution of k is a transitory phenomenon.

Next, I establish three results related to the steady-state rate of diffusion. The first

questions the validity of the Nelson-Phelps hypothesis according to which this rate

rises in human capital.

Proposition 2 Denote

ki
max = arg max

k

s̃

1 + γ
kα − k. (3.12)

1) (Nelson-Phelps Hypothesis) The Nelson-Phelps hypothesis holds, i. e.,

di (g(k∗, h, σ), h)

dh
> 0, (3.13)

if and only if either

di (g(k∗, h, σ), h)

dh

∣

∣

∣

∣

k=k∗

> 0 and k∗ > ki
max (3.14)

or
di (g(k∗, h, σ), h)

dh

∣

∣

∣

∣

k=k∗

< 0 and k∗ < ki
max. (3.15)
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2) (Growth Policy) It holds that

di (g(k∗, h, σ), h)

dσ
R 0 ⇔ k∗ R ki

max. (3.16)

3) (Domestic Innovation versus Diffusion) Consider the steady-state growth rate of

technological knowledge, At/At−1 − 1 = g + θ i
(

(∆∗)−1 − 1
)

. Technology diffusion

is the more important source of steady-state technological progress whenever

g < θ i
(

(∆∗)−1 − 1
)

⇔ g <
γ

2
. (3.17)

Statement 1 of Proposition 2 claims that the steady-state rate of diffusion may

but need not rise with human capital. Thus, the Nelson-Phelps hypothesis fails in

general. To gain an intuition for this result note that ki
max is the level of the steady-

state capital intensity that maximizes the steady-state rate of diffusion. Generically,

the steady state consistent with (3.8) delivers a value k∗ 6= ki
max. For instance, if

k∗ > ki
max as suggested by (3.14), a higher h that also raises the steady-state rate

of diffusion must reduce k∗. According to (3.11) of Corollary 1, such a general

equilibrium effect occurs only if di (g(k∗, h, σ), h) /dh|k=k∗ > 0. If the latter does

not hold, k∗ increases and, contrary to the Nelson-Phelps hypothesis, the steady-

state rate of diffusion declines in h. With obvious changes, the same interpretation

applies to the case shown in (3.15).

Statement 2 claims that a rise in the subsidy rate may lower the rate of diffusion.

Intuitively, a higher subsidy increases the incentives to innovate. Hence, given k∗

innovation investments increase. Then, however, condition (3.8) requires a smaller

k∗. This general equilibrium effect increases (decreases) the steady-state rate of

diffusion if k∗ > ki
max (k∗ < ki

max).

Statement 3 gives the condition under which a country’s share of steady-state pro-

ductivity growth that stems from foreign innovations exceeds the share of produc-

tivity growth due to domestic innovations. According to the estimates of Eaton and

Kortum (1996), all OECD countries but the US satisfy this condition. In view of

Corollary 1, it is straightforward to see that countries with a higher savings rate, a

better social infrastructure, and a lower population growth rate have a higher share

of steady-state productivity growth that derives from domestic innovations. The

presence of partial and general equilibrium effects, possibly of opposite sign, render

the comparative static prediction about the innovation subsidy and human capital

more involved. However, one readily verifies that k∗ > ki
max is sufficient for both, σ

and h, to have a positive effect on g.

Next, I turn to the country characteristics that determine ∆∗ of (3.9).
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Corollary 2 It holds that

d∆∗

ds̃
> 0,

d∆∗

dγ
< 0,

d∆∗

dσ
R 0 ⇔ k∗ R ki

max,

(3.18)

d∆∗

dh
R 0, and

d∆∗

dh
> 0 if (3.14) holds,

d∆∗

dθ
> 0.

The intuition for these results is straightforward. A higher k∗ increases the growth

rate of labor productivity, g, as well as the investment outlays, i. Therefore, ∆∗ is

higher the higher k∗. Then, from Corollary 1 a larger investment rate, a better social

infrastructure, a lower population growth rate, and a slower pace of the technological

frontier increase ∆∗. Again, because of partial and general equilibrium effects, the

impact of a subsidy and of human capital is in general ambiguous. Finally, a country

with better access to the world’s technological frontier ends up closer to it, i. e., a

higher θ implies a higher ∆∗.

From the final-good production function (2.3), Lemma 1, the market-clearing condi-

tion (3.2), the definition of ∆, and assuming that each worker has one unit of labor

per period we find per-capita income in the steady state as

ỹ∗
t ≡

(

Yt

Lt

)∗

= Γ (k∗)α Amax
t−1 ∆∗ (1 + g(k∗, h, σ)) h. (3.19)

Roughly, ỹ∗
t consists of three components. First, Γ (k∗)α, reflects the economy’s

overall efficiency and the final-good production function. The second component,

Amax
t−1 ∆∗ (1 + g(k∗, h, σ)) represents technical change. Third, there is the Becker-

Mincer effect of human capital.

The presence of Amax
t−1 assures growth of ỹ∗

t at rate γ. The level of ∆∗ determines the

fraction of the leading-edge knowledge at t − 1 that the country is able to absorb

within this period. The presence of the growth factor of domestic labor productivity

recalls the fact that intermediate-good firms investing in t−1 can build on the level

of knowledge At−1 = Amax
t−1 ∆∗ and that the achieved level of labor productivity

at t is At−1 (1 + g(k∗, h, σ)). Thus, a country’s domestic innovation effort does

not determine its steady-state growth rate but exerts a positive level effect on its

steady-state per-capita income. This is the key difference between the steady-state

predictions of the present model and the neoclassical growth model with exogenous

technical change.9

9To see this more clearly, replace the intermediate-good sector by the assumption of

exogenous technical change at rate γ, the final-good production function (2.3) by Yt =

Γ Kα
t (At−1(1 + γ)Lt)

1−α
, and set θ = 0. Then, the neoclassical equivalent to (3.19) is ỹ∗

t =

Γ (k∗)α At−1(1 + γ)h.
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To establish the implications of (3.19) for cross-country income differences we first

note that ỹ∗ increases in k∗ since final-good output, ∆∗, and g increase in k∗. In view

of Corollaries 1 and 2, a prediction is then that countries with a higher investment

rate, a better social infrastructure, and a lower population growth rate have a higher

steady-state per-capita income. Neither the impact of the subsidy nor of human

capital is clear cut. Both magnitudes increase g, however, from Corollaries 1 and 2,

we know that the effect on k∗ and ∆∗ may be negative or positive. Quite intuitively,

an economy that is more open than others is predicted to have a higher per-capita

income since they are able to absorb a larger fraction of the leading-edge technology.

These results are summarized in the following proposition.

Proposition 3 It holds that

dỹ∗

ds̃
> 0,

dỹ∗

dσ
R 0,

dỹ∗

dh
R 0,

dỹ∗

dθ
> 0. (3.20)

4 Extensions and Discussion

4.1 Saving à la Ramsey-Cass-Koopmans

Consider a closed economy comprising many identical and infinitely lived households.

I normalize the number of households to unity such that individual and aggregate

variables coincide. In each period households supply the same amount of labor,

(1 + λ)t−1, inelastically to the labor market, and, initially, own the same amount of

bonds coming due in t = 1.

Households choose the sequence of consumption and bond holdings per household

member {c̃t, b̃t+1}
t=∞
t=1 that solves

max
{c̃t,b̃t+1}t=∞

t=1

∞
∑

t=1

βt−1 c̃1−η
t − 1

1− η
(1 + λ)t−1, 0 < β (1 + λ) < 1, η > 0, (4.1)

subject to the budget constraint (2.1) and a Ponzi condition, which requires the

present value of a household’s bond holdings to be asymptotically non-negative.10 As

usual, β is the discount factor, and η the elasticity of marginal utility of consumption.

With ct ≡ Ct/Xt and the market-clearing condition (3.2), we obtain the Euler

condition for all t = 1, 2, ...

ct+1 At (1 + g(kt+1, h, σ)) = [β(1 + rt+1)]
1

η ct At−1 (1 + g(kt, h, σ)). (4.2)

10See the Appendix 6.8.2 for details concerning the household’s optimization problem.
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Similarly, with bt+1 ≡ Bt+1/Xt+1 and (3.2) the transversality condition is

lim
t→∞

bt+1 At (1 + g(kt+1, h, σ))

(

1 + λ

1 + r̄

)t

= 0, (4.3)

where r̄ ≡
(

∏j=t
j=1(1 + rj+1)

)1/t

− 1 is the average real interest rate.

Proposition 4 There is γ > 0 such that a unique balanced growth path for a laggard

country exists. It involves

k∗
RCK =

[

α β Γ

(1 + γ)η

]
1

1−α

(4.4)

and, in view of (3.9), ∆∗
RCK ≡ ∆∗ (k∗

RCK) < 1.

Proposition 4 establishes the existence of a steady-state equilibrium for a laggard

economy. This requires g (k∗
RCK , h, σ) < γ, i. e., k∗

RCK must not be too large. The

proof shows this to be the case if γ is sufficiently large. As for a constant savings

rate, all per-capita magnitudes grow at the exogenous rate γ.

To understand the implications for the predicted differences in per-capita income I

first note that the effect of preference and technology parameters on k∗
RCK is as in

the neoclassical growth model with exogenous technical change: a higher valuation

of future utility and an increased willingness to accept deviations from a smooth

consumption profile, i. e., a higher β or a lower η, a better infrastructure, i. e., a

higher Γ increase k∗
RCK , and faster growth of the technological frontier accentuates

the role of diminishing returns and leads to a lower k∗
RCK .

Observe that neither the growth rate of the labor force, λ, nor human capital, h,

or the subsidy, σ, affect k∗
RCK . This reflects the fact that here consumption growth

is pegged to intertemporal prices rather than the result of a market equilibrium

condition. This has direct implications both for the validity of the Nelson-Phelps

hypothesis.

Proposition 5 Consider the steady state characterized in Proposition 4.

1) (Nelson-Phelps Hypothesis) The Nelson-Phelps hypothesis holds if

di (g(k∗
RCK , h, σ), h)

dh
> 0. (4.5)

2) (Growth Policy) It holds that

di (g(k∗
RCK , h, σ), h)

dσ
> 0. (4.6)



Cross-Country Income Differences and Technology Diffusion 21

3) (Domestic Innovation versus Diffusion) Technology diffusion is the more impor-

tant source of steady-state technological progress, i. e., g < γ/2, in countries with a

small h and/or a small σ.

Absent of general equilibrium effects, the rate of diffusion increases if i increases in

h or for a higher subsidy. Similarly, the condition g < γ/2 is easier satisfied the

smaller h and/or σ. Next, we turn to the comparative statics of ∆∗
RCK .

Corollary 3 It holds that

d∆∗
RCK

dβ
> 0,

d∆∗
RCK

dη
< 0,

d∆RCK

dΓ
> 0,

d∆∗
RCK

dγ
< 0,

d∆∗
RCK

dσ
> 0, (4.7)

d∆∗
RCK

dh
> 0 if (4.5) holds,

d∆∗
RCK

dθ
> 0. (4.8)

Compared to Corollary 2 the elimination of general equilibrium effects gives rise to

three differences. First, the impact of a subsidy is unequivocal. An increase in σ

raises ∆∗
RCK since domestic innovation incentives become more pronounced and, as

a consequence, the rate of diffusion rises. Second, human capital raises ∆∗
RCK if it

raises the rate of diffusion such that the Nelson-Phelps hypothesis holds at k∗
RCK .

Moreover, ∆∗
RCK becomes independent of population growth. These findings have

implications for the steady-state level of per-capita income, which is still given by

(3.19).

Proposition 6 It holds that

dỹ∗
RCK

dβ
> 0,

dỹ∗
RCK

dη
< 0,

dỹ∗
RCK

dΓ
> 0,

dỹ∗
RCK

dγ
< 0, (4.9)

dỹ∗
RCK

dσ
> 0,

dỹ∗
RCK

dh
> 0, if (4.5) holds,

dỹ∗
RCK

dθ
> 0. (4.10)

The comparison with Proposition 3 reveals that the effect of σ and h is positive if

these parameters have a positive impact on ∆∗
RCK . Moreover, the level of steady-

state per-capita income is independent of population growth.
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4.2 The Closed Economy and Club Convergence

Consider a laggard economy as described in Sections 2 and 3 that is cut off from

the evolution of the world’s technological frontier. Then, θ = 0 and the evolution of

k is independent of ∆. The equations of motion for these variables, (3.4) and (3.5),

become

(1 + g(kt+1, h, σ)) (kt+1 + i(g(kt+1, h, σ), h)) = s̃kα
t , (4.11)

and

∆c,t =
1 + g (kt, h, σ)

1 + γ
∆c,t−1. (4.12)

To simplify I assume that the input requirement function i satisfies

iqq ≤
2 i2q
i

for all q > 0 . (4.13)

Again, a functional form that fulfills this condition is i = qv h−z, 1 < v ≤ 2.

Proposition 7 Let (s̃)1/(1−α) < k̄ and assume that (4.13) holds. For any initial

value k1 ∈ (0, k̄), the evolution of kt according to (4.11) gives rise to a unique,

globally stable steady state, k∗
c > 0, that solves

(1 + g(k∗
c , h, σ)) (k∗

c + i(g(k∗
c , h, σ), h)) = s̃(k∗

c )
α. (4.14)

The steady state satisfies

g(k∗, h, σ) < g(k∗
c , h, σ) < γ (4.15)

and
(

∆c,t

∆c,t−1

)∗

=
1 + g (k∗

c , h, σ)

1 + γ
< 1. (4.16)

The intuition behind Proposition 7 can be learned from Figure 2, which depicts

the right-hand side, s̃(kt)
α, and the left-hand side, LHS(kt+1), of (4.11). Condition

(4.13) assures that the left-hand side is a convex function in kt+1. Thus, there is a

unique and globally stable steady state, k∗
c > 0. The steady-state growth rate of all

per-capita magnitudes must be smaller than γ since k∗
c < k̄. As a consequence, ∆c,t

declines at a constant rate and the distance to the technological frontier becomes

larger over time. The latter result obtains in spite of the fact that the domestic

steady-state innovation activity in the closed economy is greater than in the open
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Figure 2: The Evolution of k in the Closed Economy.

kt, kt+1, k
∗

(1 + γ) (k∗ + i (g (k∗, h, σ) , h))

LHS (kt+1)

s̃kα
t

kt+1 = kt

k∗ k∗
c k̄

Here, LHS (kt+1) ≡ (1 + g (kt+1, h, σ)) (kt+1 + i (g (kt+1, h, σ) , h)) of equation (4.11).

economy. To see why, I multiply the steady-state condition (3.8) by 1 + γ and

show the left-hand side of the resulting equation in Figure 2. Since γ > g, we have

k∗ < k∗
c .

Steady-state per-capita income in the closed economy is ỹ∗
c,t = Γ (k∗

c )
α At−1 (1 +

g(k∗
c , h, σ)) h. It grows at rate g(k∗

c , h, σ) such that changes in country character-

istics generate level and growth effects. Nevertheless, an implication of the global

stability is that a country starting at k∗ converges to k∗
c following a cut-off from

the technological frontier. As a consequence, the growth rate of per-capita income

declines below γ and the country falls behind forever. This mechanism suggests

that China’s self-imposed isolationism in the 15th century AD is a cause for the

subsequent relative decline of its economy.

Corollary 4 Consider a steady state of Proposition 7. It holds that

dk∗
c

ds̃
> 0,

dk∗
c

dσ
< 0 (4.17)

dk∗
c

dh
R 0 ⇔ −gh (k∗

c + i)− (1 + g)
di (g(k∗

c , h, σ), h)

dh

∣

∣

∣

∣

k=k∗

c

R 0. (4.18)

The qualitative predictions of Corollary 3 mimic those for the open economy (see,

Corollary 1). The effects of s, Γ, λ, and σ are of the same sign. The effect of h is

indeterminate in general. However, due to the direct effect of h on g, which appears

in (4.18), it is more likely to be negative. Intuitively, a rise in g increases next
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period’s amount of efficient labor and, therefore, the amount of final-good capital

necessary to keep k constant. Hence, capital accumulation grinds to a halt at a

lower level of k∗
c . Denote k∗

c ≡ k∗
c (s̃, σ, h) the function resulting from Corollary 3.

Proposition 8 The steady-state growth rate of the closed economy is

q∗c = g (k∗
c (s̃, h, σ) , h, σ) (4.19)

with

dq∗c
ds̃

> 0,
dq∗c
dh

∣

∣

∣

∣

σ=0

> 0,
dq∗c
dσ

∣

∣

∣

∣

σ=0

> 0. (4.20)

Hence, steady-state growth rates differ across closed economies and reflect country

characteristics. A higher investment rate, a better social infrastructure, and a lower

population growth rate raise the steady-state growth rate of the economy. The

effects of the subsidy rate and of human capital involve partial and general equi-

librium effects of opposite sign. Low values of the subsidy rate weaken the general

equilibrium effect such that both h and σ raise the steady-state growth rate of the

closed economy. Since over time level effects are dominated by growth effects, these

comparative statics also determine ỹ∗
c,t. In a world with closed and open economies,

club convergence in growth rates occurs among open economies that eventually grow

at rate γ and groups of closed economies with country characteristics such that q∗c
is the same.

4.3 No-Innovation Traps and Club Convergence

In many countries profit-maximizing agents do not undertake innovation invest-

ments. When technology transfer is a byproduct of domestic innovation activities,

these open economies do not benefit from foreign innovations. Club convergence

results with some countries approaching a stationary steady state.11

Unprofitability of innovation investments arises if investment requirements are too

high. Suppose that iq(0, h) > 0, i. e., the first marginal unit of q is no longer

costless. Without loss of generality as to the upcoming qualitative results, we rely

on the functional form of i as given in (2.12) with v = 1 such that iq(0, h) = h−z > 0.

11The analysis of this section complements and extends the analysis in Irmen (2005).
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An immediate implication is that the equilibrium does not necessarily involve q∗t > 0.

To see this consider the first-order condition (2.17). Since iq(0, h) > 0, there are

parameter constellations such that

wt

At−1 h
≤ (1 + rt) (1− σ) iq(0, h), (4.21)

and the cost-minimizing choice is q∗t = 0. It follows that the consolidated production

sector gives rise to a function g(k, h, σ) that is piecewise defined. In view of Lemma 1

we have

g(k, h, σ) = max

{

0,
1

2

(

1− α

α

hz

1− σ
k − 1

)}

. (4.22)

Consequently, an equilibrium at t + 1 involves g > 0 if and only if

kt+1 > h−z (1− σ)
α

1− α
≡ k̂, (4.23)

and g = 0 otherwise. Intuitively, if at t intermediate-good firms expect kt+1 < k̂,

then they expect an equilibrium factor price ratio wt+1/(1+rt+1) too small to justify

an investment in labor-saving technical change. Without an investment at t, firms

produce in t + 1 with the technology of period t. Moreover, there is no technology

transfer between period t and t+1 either, and the updating condition (2.23) simplifies

to At+1 = At. Then, the equations of motion (3.4) and (3.5) for kt and ∆t become

kt+1 = s̃ kα
t , (4.24)

and

∆t+1 =
∆t

1 + γ
. (4.25)

Next, we determine the conditions under which intermediate-good firms innovate.

From (4.23), an equilibrium at t+1 without innovation ceases to exist if and only if

kt+1 = s̃ kα
t > k̂ ⇔ kt >

(

k̂

s̃

)
1

α

≡ k̂. (4.26)

It is replaced by an equilibrium with innovation. Indeed, the equation of motion for

k at t takes innovation investments into account and becomes

(1 + g(kt+1, h, σ)) (kt+1 + i(g(kt+1, h, σ), h)) = s̃ kα
t . (4.27)

The equilibrium with innovation exists and is unique since the left-hand side of

(4.27) satisfies LHS(k̂) = kt+1 and LHS ′(kt+1) > 0.
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The evolution of k between t and t+1 as given in (4.27) is not affected by an inflow

of technological knowledge from abroad since such inflow requires previous domestic

innovation investments. Only firms that innovate at t + 1 benefit from the inflow of

foreign knowledge. Thus, the evolution of k between periods t+1 and t+2 is again

governed by equation (3.4).12

The following Proposition shows what country characteristics determine whether an

evolution that is initially driven by capital accumulation alone leads to domestic

innovation and an inflow of technological knowledge from abroad.

Proposition 9 Let k1 < k̂ such that the economy experiences at least one period

without innovation investments.

1. If s̃
1

1−α ≤ k̂, then the economy evolves without innovation and converges to-

wards a stationary steady state with k∗ = s̃
1

1−α . At any time, the country’s

relative position with respect to the leading-edge technology declines at rate

γ/(1 + γ).

2. If k̄ > s̃
1

1−α > k̂, then the economy reaches a level of k in finite time and

switches into a regime with domestic innovation in the following period. The

innovation regime has a unique steady state (k∗, ∆∗) given by (3.8) and (3.9).

Proposition 9 emphasizes that economies starting out with the same initial con-

ditions may evolve in quite different ways. Using Statement 2 and the definition

of k̂ we obtain the requirement for economies to reach the regime with domestic

innovation investments and technology transfer as

(

s

1 + λ
Γ

)
1

1−α

> h−z (1− σ)
α

1− α
. (4.28)

This condition is more likely to be fulfilled the more thrifty the economy is, the lower

its growth rate of the labor force, the better its social infrastructure, the higher its

level of human capital, and the higher the subsidy rate for innovation investments.

12The evolution of the economy may well involve cycles since the inflow of technological knowl-

edge in t + 1 necessarily reduces the capital intensity kt+2. If this effect is sufficiently strong,

firms in t + 1 rationally expect kt+2 ≤ k̂ and no innovation investment occurs. However, if the

condition stated in Proposition 9 is fulfilled, such economy must again reach a period with a regime

switch as characterized above. Calibration exercises show that there are paths that converge from

the stationary regime to the steady state of Proposition 1. The complete characterization of the

dynamics involved is beyond the scope of this paper and left for future research.
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Solving (4.28) for h gives a minimum requirement of human capital for innovation

and catch-up with the technological frontier. This is consistent the empirical findings

of Benhabib and Spiegel (2005).13

Hence, the world income distribution may exhibit club convergence with some coun-

tries trapped in a stationary steady state while others experience steady growth.

5 Concluding Remarks

Arguably, the differential evolution of productivity across countries is the main force

behind cross-country income differences. To understand these income differences one

must understand what causes productivity growth. I take the view that productivity

growth is due to the growth of a country’s level of accessible technological knowledge.

In turn, growth of this knowledge is the result of the interaction between a domestic

and a foreign contribution via technology transfer. I show that the magnitudes that

affect this interaction also account for steady-state cross-country income differences.

The analysis suggests several routes for future research. First, one may want to

generalize the diffusion process and separate institutional from technological factors

that foster technology diffusion. To accomplish this, I rely on a variant of a logistic

process for which Benhabib and Spiegel (2005) find evidence. Preliminary results

suggest the emergence of multiple steady states in the basic model, thus allowing

for club convergence.

Second, one may argue that the degree of openness is not constant over time. On the

one hand, historical evidence suggests waves of globalization that are correlated with

rapid growth of the world economy (O’Rourke and Williamson (1999), Helpman

(2004)). On the other hand, technical progress per se is likely to have increased

the rate of diffusion. Finally, one may want to endogenize the growth rate of the

world’s technological frontier, to account for possible feedback effects from worldwide

innovation efforts to the evolution of domestic productivity.

13The role of skill levels for the occurrence of club convergence is also stressed in Howitt and

Mayer-Foulkes (2005).
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6 Appendix I: Proofs

6.1 Proof of Lemma 1

Without loss of generality, suppress time subscripts.

Zero-profit implies w = A−1 (1 + q∗)h [p− (1 + r) (1 − σ) i(q∗, h)]. With (2.6) and (2.7), this can

be written as

w

A−1 h (1 + r)
= (1 + q∗)

[

1− α

α
k − (1 − σ) i(q∗, h)

]

.

Using the latter in (2.17), we obtain

1− α

α
k = (1− σ) ((1 + q∗) iq(q

∗, h) + i(q∗, h)) . (6.1)

The derivatives stated in (2.20) follow from the implicit function theorem applied to (6.1) and the

properties of the input requirement function i as stated in (2.10). For further reference, we note

that

gk =
1−α

α

(1 − σ)(2 iq + (1 + g) iqq)
> 0, (6.2)

gh = −
(1 + g) iqh + ih
2 iq + (1 + g) iqq

> 0, (6.3)

gσ =
(1 + g) iq + i

(1 − σ)(2 iq + (1 + g) iqq)
> 0, (6.4)

where the argument of g is (k, h, σ), and the argument of i is (g, h). �

6.2 Proof of Lemma 2

The existence of a unique k̄ follows from the properties of the function g(k, h, σ), which satisfies

g(0, h, σ) = 0, g(∞, h, σ) =∞, and gk(k, h, σ) > 0 for all k > 0 (see Lemma 1).

The remaining part of the proof of Lemma 2 proceeds with the statement and proof of four claims.

Claim 1 There is a unique ¯̄k > 0 that solves

θ i(g(¯̄k, h, σ), h) = 1 + γ. (6.5)

Moreover, there is a function

¯̄k = ¯̄k(θ), with ¯̄k′(θ) < 0, limθ→0
¯̄k(θ) =∞, limθ→∞

¯̄k(θ) = 0. (6.6)

Proof of Claim 1 The existence of ¯̄k > 0 follows from the properties of the function g and those

of the function i as stated in (2.10). An application of the implicit function theorem to (6.5) reveals

that there is a function ¯̄k = ¯̄k(θ), with ¯̄k′(θ) < 0. To study its asymptotic properties write (6.5)
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as i(g(¯̄k, h, σ), h) = (1 + γ)/θ. Since i → ∞ as q → ∞ and g → ∞ as k → ∞, it follows that

limθ→0
¯̄k(θ) =∞. Since i(0, h) = 0 and g(0, h, σ) = 0, it follows that limθ→∞

¯̄k(θ) = 0. �

Claim 2 There is θ̄ ≡ (1 + γ)/i(γ, h) that solves ¯̄k(θ̄) = k̄. Then

¯̄k T k̄ ⇔ θ ⋚ θ̄. (6.7)

Proof of Claim 2 The existence of a unique value θ̄ and inequality (6.7) follow from the properties

of the function ¯̄k(θ) as set out in Claim 1. By construction, θ̄ satisfies θ̄ i(g(¯̄k, h, σ), h) = 1 +

g(k̄, h, σ) = 1 + γ. Hence, θ̄ = (1 + γ)/i(γ, h). �

Claim 3 The function φ∆ (kt, ∆t−1) maps ∆t−1 ∈ (0, 1) onto itself if and only if θ < θ̄ and

kt ∈ [0, k̄].

Proof of Claim 3 From (3.5) it is obvious that a trajectory with ∆t−1 ∈ (0, 1) for all t ≥ 1

requires 1 > φ∆(k, ∆t−1) > 0 for all t = 1, 2, ... or

1 >
θ i(g (k, h, σ) , h)

1 + γ
+

1 + g (k, h, σ)− θ i(g (k, h, σ) , h)

1 + γ
∆t−1 > 0. (6.8)

The following cases must be distinguished:

• θ < θ̄, thus ¯̄k > k̄:

– if k ∈ [0, k̄] and 1 + g(k, h, σ) − θ i(g(k, h, σ), h) > 0, then from the definition of

k̄ both the left-hand inequality and the right-hand inequality of (6.8) hold for all

∆t−1 ∈ (0, 1).

To see that k ∈ [0, k̄] is necessary consider values k > k̄. Since ¯̄k > k̄, there is a

bound, ∆̄ ∈ (0, 1), for all k ∈ (k̄, ¯̄k) such that the left-hand inequality is only satisfied

for ∆t−1 < ∆̄. To compute ∆̄, solve the left-hand inequality of (6.8) for ∆t−1. This

gives

∆t−1 <
1 + γ − θ i(g (k, h, σ) , h)

1 + g (k, h, σ)− θ i(g (k, h, σ) , h)
≡ ∆̄. (6.9)

Clearly, ∆̄ ∈ (0, 1) as long as 1 + γ − θ i(g (k, h, σ) , h) > 0, ∂∆̄/∂k < 0, and ∆̄ = 0

for k = ¯̄k. Hence, for k ∈ (k̄, ¯̄k) only values of ∆t−1 that satisfy ∆t−1 < ∆̄ imply

∆t ∈ (0, 1). The set of admissible values for ∆t−1 is therefore smaller than the set

(0, 1). For k ≥ ¯̄k, it is empty. Hence, for 1 + g(k, h, σ)− θ i(g(k, h, σ), h) > 0 Claim 3

holds.

– The case 1+ g(k, h, σ)− θ i(g(k, h, σ), h) ≤ 0 can only arise if there is k = k̃ <∞ that

satisfies the latter inequality as an equality. However, since ¯̄k > k̄ and 1 + g(¯̄k, h, σ)−

θ i(g(¯̄k, h, σ), h) > 0 it follows that k̃ > ¯̄k. In turn, from Claim 1, it follows for k > ¯̄k

that θ i(g(k, h, σ), h) > 1 + γ. Hence, there is no ∆t−1 ∈ (0, 1) that satisfies the

left-hand inequality of (6.8). Hence, if k ∈ [0, k̄], this case cannot arise.

• θ > θ̄, thus ¯̄k < k̄:

– The inequality 1 + g(k, h, σ) − θ i(g(k, h, σ), h) > 0 requires k ∈ (0, k̃). Since k̃ < ¯̄k

both the left-hand and the right-hand inequality of (6.8) hold for all k ∈ [0, k̃] and

∆t−1 ∈ (0, 1).
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– Consider 1 + g(k, h, σ) − θ i(g(k, h, σ), h) ≤ 0, which requires k ≥ k̃. Then, the left-

hand side inequality of (6.8) is satisfied for all ∆t−1 ∈ (0, 1) as long as k ∈ (k̃, ¯̄k). For

k ≥ ¯̄k, ∆̄ serves as a lower bound such that the left-hand inequality of (6.8) is satisfied

whenever ∆t−1 > ∆̄. As ∂∆̄/∂k > 0 and ∆̄ = 1 for k = k̄, there is no ∆t−1 ∈ (0, 1)

that satisfies this inequality for k ≥ k̄. Hence, there is k ∈ [0, k̄] and ∆t−1 ∈ (0, 1)

such that (6.8) cannot be satisfied.

• θ = θ̄, thus ¯̄k = k̄:

This constellation violates the left-hand inequality of (6.8) since 1+g(k̄, h, σ)−θ i(g(¯̄k, h, σ), h) =

0 and θ̄ i(g(¯̄k, h, σ), h)/(1 + γ) = 1. �

Claim 4 The function φ (kt, ∆t−1) maps
[

0, k̄
]

× (0, 1) onto itself if the conditions in (3.7) hold.

Proof of Claim 4 We have to show that φk(k, ∆t−1) ∈ [0, k̄] for all k ∈
[

0, k̄
]

and ∆t−1 ∈ (0, 1).

From (3.4), φk(k, ∆t−1) ≥ 0 is trivially satisfied, however k̄ ≥ φk(k, ∆t−1) may not. To make sure

that the latter holds, we first note that the left-hand side of (3.4) is increasing in kt+1. Hence,

φk(k̄, 1) = s̃ k̄α is an upper bound on kt+1 since the right-hand side of (3.4) increases in ∆t−1 and

kt. Moreover, since the slope of the left-hand side of (3.4) with respect to kt+1 is strictly greater

than one, a sufficient condition for kt+1 ≤ k̄ is s̃ k̄α < k̄, or (s̃ )
1/(1−α)

< k̄. Then, Claim 4 follows

from Claim 3. �

6.3 Proof of Proposition 1

Set ∆t = ∆t−1 = ∆∗ and kt = k∗ ∈ (0, k̄) in (3.5) and obtain (3.9). Using kt = kt−1 = k∗ and (3.9)

in (3.4) gives (3.8). It remains to be shown that (3.8) gives rise to a unique solution k∗ ∈ (0, k̄).

First, I show that (3.8) has a unique solution k∗ > 0. Define a function LHS(k) ≡ k +

i(g(k, h, σ), h). The properties of the functions g and i (see Lemma 1, (2.10), and (2.13)) im-

ply that LHS(k) is continuous in k with LHS(0) = 0 + i(g(0, h, σ), h) = 0, LHS′(k) = 1 +

iq(g(k, h, σ), h) gk(k, h, σ) > 1 for k > 0, and limk→0 LHS′(k) = 1. Moreover, LHS′′(k) =

iqq(g(k, h, σ), h) g2
k(k, h, σ) + iq(g(k, h, σ), h) gkk(k, h, σ) > 0 for k > 0 since (2.13) holds. To verify

this, we start from (6.2) and find for k > 0 that

gkk = −g2
k

3iqq + (1 + g)iqqq

2iq + (1 + g)iqq
, (6.10)

where the argument of g is (k, h, σ), and the argument of i is (g, h). Then,

LHS′′(k) > 0 ⇔
iqq

iq
+

gkk

g2
k

> 0. (6.11)

In view of (6.10) this comes down to

LHS′′(k) > 0 ⇔
iqq

iq
−

3iqq + (1 + g)iqqq

2iq + (1 + g)iqq
> 0. (6.12)

The latter inequality is satisfied whenever the regularity requirement (2.13) holds.

Define RHS(k) ≡ s̃ kα/(1+γ). This function satisfies RHS(0) = 0 and RHS′(k) > 0 for all k ≥ 0

with RHS′(0) = ∞ and limk→∞ RHS′(k) = 0. Hence, there is one and only one strictly positive

value k∗ that satisfies LHS(k∗) = RHS(k∗).

To see that the the intersection LHS(k∗) = RHS(k∗) occurs for some k < k̄ recall from Lemma 2

that k̄ is independent of s̃. Moreover, RHS(k) becomes arbitrarily small as s̃ → 0. Hence, there

are parameter constellations, (θ, γ, h, σ, α) such that k∗ ∈ (0, k̄). �
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6.4 Proof of Corollary 1

Consider the total differential of (3.8)

0 =

[

1 + iqgk −
s̃

1 + γ
α (k∗)

α−1

]

dk∗

+ [iqgh + ih] dh

(6.13)

+ iqgσ dσ

− (k∗)
α

d

(

s̃

1 + γ

)

.

In equation (6.13) the first term in brackets is positive. To see this recall the functions LHS(k)

and RHS(k) as defined in the proof of Proposition 1. Obviously, the term is brackets corresponds

to LHS′(k) − RHS′(k). The proof of Proposition 1 implies that the function LHS(k) intersects

the function RHS(k) from below at k∗. Therefore, we must have LHS(k∗) > RHS(k∗).

The comparative statics stated in (3.10) and (3.11) follow from the definition of s̃ and the properties

of the functions i and g as stated in (2.10), (2.11), and Lemma 1.

To strengthen the result in (3.11) we express the critical inequality − (iq gh + ih) R 0 in terms of

the following elasticities

εi,h ≡ −
∂i

∂h

h

i
> 0, εiq,h ≡ −

∂iq
∂h

h

iq
> 0, εi,q ≡

∂i

∂q

q

i
> 0, εiq,q ≡

∂iq
∂q

q

iq
> 0.

Using the latter and Lemma 1, we have

gh = −
(1 + g) iqh + ih
2 iq + (1 + g) iqq

=
(1 + g) εiq,h + i

iq
εi,h

2 h + (1 + g)h
q εiq,q

.

It follows that

− (iq gh + ih) R 0 ⇔
εiq,q

εi,q
+

g

1 + g

1

εi,q
R

εiq,h

εi,h
. (6.14)

If i = qv h−z, we have εi,h = εiq,h = z, εi,q = v, εiq,q = v − 1, such that (6.14) becomes

v − 1

v
+

g

1 + g

1

v
R 1 ⇔ 0 R 1. (6.15)

Hence, − (iq gh + ih) < 0 and dk∗/dh < 0. �

6.5 Proof of Proposition 2

First, observe that the steady-state condition (3.8) implies

ki
max =

(

α s̃

1 + γ

)
1

1−α

. (6.16)
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As to Statement 1, we have to study under what conditions

di(g (k∗, h, σ) , h)

dh
= iq gk

dk∗

dh
+ iqgh + ih R 0. (6.17)

From Corollary 1, we have

dk∗

dh
= −

iqgh + ih

1 + iq gk −
s̃ α
1+γ (k∗)α−1 , (6.18)

where the denominator is strictly positive. Therefore, inequality (6.17) is equivalent to

di(g (k∗, h, σ) , h)

dh
R 0 ⇔ [iqgh + ih]

[

1−
α s̃

1 + γ
(k∗)

α−1

]

R 0. (6.19)

Hence, di(.)/dh > 0 if either (3.14) or (3.15) hold.

As to Statement 2, we have to study under what conditions

di(g (k∗, h, σ) , h)

dσ
= iq gk

dk∗

dσ
+ iqgσ R 0. (6.20)

From Corollary 1, we have

dk∗

dσ
= −

iqgσ

1 + iq gk −
s̃ α
1+γ (k∗)

α−1 . (6.21)

Then, inequality (6.20) is equivalent to

di(g (k∗, h, σ) , h)

dσ
R 0 ⇔ 1−

s̃ α

1 + γ
(k∗)

α−1 R 0. (6.22)

Hence, (3.16) follows.

Statement 3 follows from (2.24), steady-state condition (3.9), and the fact that in the steady state

At/At−1 − 1 = γ. �

6.6 Proof of Corollary 2

Consider ∆∗ of (3.9). A change in one of the parameters j = s, Γ, λ affects ∆∗ only indirectly

through k∗. Hence,
d∆∗

dj
=

∂∆∗

∂k∗

dk∗

dj
, j = s, Γ, λ. (6.23)

Since
∂∆∗

∂k∗
=

θ iq gk(γ − g) + gk θ i

(θ i + γ − g)
2 > 0 (6.24)

the first result of (3.18) follows from Corollary 1.

The total effect of a change of γ involves a direct and an indirect effect. Starting with the effect

of γ, we find

∂∆∗

∂γ
= −

∆∗

θ i + γ − g
< 0, and

d∆∗

dγ
=

∂∆∗

∂γ
+

∂∆∗

∂k

dk∗

dγ
< 0 (6.25)

since dk∗/dγ < 0 (see Corollary 1).
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The total effect of a change of σ and h involve direct and indirect effects through g. As to σ, we

find

∂∆∗

∂σ
=

θ iqgσ (γ − g) + θ i gσ

(θi + γ − g)
2 > 0 (6.26)

and

d∆∗

dσ
=

∂∆∗

∂σ
+

∂∆∗

∂k

dk∗

dσ
R 0. (6.27)

Since dk∗/dσ < 0 (Corollary 1), the sign of d∆∗/dσ is indeterminate. However, using (6.24),

(6.26), and (6.13) one verifies that inequality (6.27) is equivalent to

d∆∗

dσ
R 0 ⇔ 1−

s̃ α

1 + γ
(k∗)

α−1 R 0. (6.28)

Then, (3.18) follows with the proof of Proposition 2.

As to the effect of h, we have

∂∆∗

∂h
=

θ(iq gh + ih)(γ − g) + θ i gh

(θ i + γ − g)2
R 0, (6.29)

and

d∆∗

dh
=

∂∆∗

∂h
+

∂∆∗

∂k

dk∗

dh
R 0. (6.30)

Using (6.29), (6.24), (3.8), we find that

d∆∗

dh
R 0 ⇔

(

1−
s̃ α

1 + γ
(k∗)

α−1

)

[(iq gh + ih) (γ − g) + i gh] R ih gk i (6.31)

Assume iq gh + ih > 0 and k∗ > ki
max. Then, (3.14) holds and d∆∗/dh > 0.

Finally,

d∆∗

dθ
=

i(γ − g)

(θ i + γ − g)2
> 0. (6.32)

�

6.7 Proof of Proposition 3

Denote k∗ = k∗(s, Γ, λ, γ, σ, h) and ∆∗ = ∆∗(k∗, σ, h, γ, θ) the functions defined by Corollary 1 and

2 and recall q∗ = g (k∗, h, σ). Given Amax
−1 we have per-capita income of the next period as

ỹ∗ ≡ ỹ∗ (Γ, k∗, ∆∗(k∗, γ, σ, h, θ), g (k∗, h, σ) , h) . (6.33)

From (3.19), Corollary 2 and Lemma 1 we have

dỹ∗

dk∗
=

∂ỹ∗

∂k∗
+

∂ỹ∗

∂∆∗

∂∆∗

∂k∗
+

∂ỹ∗

∂q∗
∂g

∂k∗
> 0. (6.34)

Using Corollary 1 in addition gives

dỹ∗

ds
=

dỹ∗

dk∗

dk∗

ds
> 0,

dỹ∗

dΓ
=

∂ỹ∗

∂Γ
+

dỹ∗

dk∗

dk∗

dΓ
> 0,

dỹ∗

dλ
=

dỹ∗

dk∗

dk∗

dλ
< 0. (6.35)
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Similarly, we obtain
dỹ∗

dγ
=

dỹ∗

dk∗

dk∗

dγ
+

∂ỹ∗

∂∆∗

∂∆∗

∂γ
< 0, (6.36)

which proves the first two results in (3.20). Invoking Corollary 1, 2, and Lemma 1, we find

dỹ∗

dσ
=

dỹ∗

dk∗

dk∗

dσ
+

∂ỹ∗

∂∆∗

d∆∗

dσ
+

∂ỹ∗

∂q∗
gσ R 0 (6.37)

and
dỹ∗

dh
=

dỹ∗

dk∗

dk∗

dh
+

∂ỹ∗

∂∆∗

d∆∗

dh
+

∂ỹ∗

∂q∗
gh +

∂ỹ∗

∂h
R 0. (6.38)

These two comparative statics involve terms of opposite sign such that the sum cannot be signed

in general. Finally, Corollary 2 implies

dỹ∗

dθ
=

∂ỹ∗

∂∆∗

∂∆∗

∂θ
> 0 (6.39)

which proves the remaining terms in (3.20). �

6.8 Proposition 4

This section comprises three parts. Subsection 6.8.1 has the details concerning the representative

household’s optimization problem. Subsection 6.8.2 has the proof of Proposition 4. Section ??

proves the property of the steady-state savings rate stated in the main text.

6.8.1 The Problem of the Representative Household

Denote per-capita magnitudes with a tilde, e. g., τ̃t ≡ Tt/Lt. The household solves

max
{c̃t,b̃t+1}∞

t=1

∞
∑

t=1

(β (1 + λ))
t−1 c̃1−η

t − 1

1− η
, 0 < β (1 + λ) < 1, η > 0, (6.40)

subject to the flow budget constraint

c̃t + b̃t+1
1 + λ

1 + rt+1
≤ wt + b̃t − τ̃t, t = 1, 2, ... (6.41)

and the Ponzi condition

lim
t→∞

b̃t+1

(

1 + λ

1 + r̄

)t

≥ 0, (6.42)

where r̄ ≡
(

∏j=t
j=1(1 + rj+1)

)1/t

− 1 is the average real interest rate. In (6.41) we use the fact that

dividends are zero in equilibrium, i. e., π̃t = 0. Since limc̃→0 (c̃)
−η

=∞, the flow budget constraint

is binding at all t, and optimal plan involves c̃ > 0 at all t.

Setting up the Lagrangian gives

L =

∞
∑

t=1

βt−1

[

c̃1−η
t − 1

1− η
(1 + λ)t−1 + µt

(

wt + b̃t − τ̃t − c̃t − b̃t+1
1 + λ

1 + rt+1

)

]

,
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and the following first-order conditions

(β (1 + λ))
t−1

(c̃t)
−η
− µt = 0, t = 1, 2, ... (6.43)

−µt
1 + λ

1 + rt+1
+ β µt+1 = 0, t = 1, 2, ... (6.44)

wt + b̃t − τ̃t − c̃t − b̃t+1
1 + λ

1 + rt+1
= 0, t = 1, 2, ... (6.45)

lim
t→∞

βt−1 µt b̃t+1
1 + λ

1 + rt+1
= 0. (6.46)

From (6.43) and (6.44), we obtain the Euler condition

c̃t+1 = [β (1 + rt+1)]
1
η c̃t. (6.47)

To express the latter in terms of efficient labor we use the definition ct ≡ Ct/Xt = c̃t+1 Lt/Xt and

the market-clearing condition (3.2). This gives (4.2).

Condition (6.44) implies the following evolution of the multiplier µt,

µt = µ1

(

1 + λ

β

)t−1
1

∏j=t−1
j=1 (1 + rj+1)

, t = 2, 3, .... (6.48)

Using the latter, the transverslity condition becomes

0 = lim
t→∞

βt−1 µ1

(

1 + λ

β

)t−1
1

∏j=t−1
j=1 (1 + rj+1)

b̃t+1
1 + λ

1 + rt+1

= lim
t→∞

µ1
(1 + λ)t

∏t
j=1(1 + rj+1)

b̃t+1

= lim
t→∞

(

1 + λ

1 + r̄

)t

b̃t+1, (6.49)

where the last step uses (6.43) to conclude that µ1 > 0 and the definition of r̄. Invoking the

definition bt+1 ≡ Bt+1/Xt+1 = b̃t+1 Lt+1/Xt+1 and the market-clearing condition (3.2) gives (4.3).

6.8.2 Proof of Proposition 4

To describe the evolution of the economy we use, as before, kt and ∆t−1 as the state variables of

the dynamical system. Since aggregate consumption equals output minus investment, we obtain

with Lemma 1 and the equilibrium conditions (3.2)

ct = Γ kα
t − (1 + λ)

At

At−1

1 + g(kt+1, h, σ)

1 + g(kt, h, σ)
(kt+1 + i(g(kt+1, h, σ), h)) . (6.50)

In equilibrium rt+1 is a function of kt+1 (see condition (2.6)) and, from (2.23), the growth factor

At/At−1 is a function of kt and ∆t−1. Therefore, the Euler condition becomes a difference equation

in kt, kt+1, kt+2, ∆t−1, and ∆t.
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The bond market equilibrium assures that bt+1 = (1 + rt+1) (kt+1 + i(g(kt+1, h, σ), h)) for all

t = 1, 2, .... Invoking (2.6) and the definition At ≡ ∆t Amax
t , the transversality condition can be

expressed in terms of the state variables of the system. As a result, the dynamical system comprises

the Euler condition, the equation of motion for ∆ as stated in (3.5), initial values k1, ∆0, and ∆1,

and the transversality condition.14

In the steady state all magnitudes in efficiency units are constant, i. e., ct+1 = ct = c and kt+1 =

kt = k. With (2.6) it follows from (4.2) that the steady-state level, k∗
RCK , must satisfy

At

At−1
=
[

α β Γ (k∗
RCK)

α−1
]

1
η

. (6.51)

Since At/At−1 = 1 + γ, the finding (4.4) of Proposition 4 is immediate.

Next we have to show that k∗
RCK can be part of an equilibrium allocation of a laggard country.

First, consider the transversality condition. Since b̃t+1 ≡ At+1 bt+1 > 0, (6.49) at the steady state

can be stated as

lim
t→∞

(

1 + λ

α Γ (k∗
RCK)

α−1

)t

At+1 = lim
t→∞

(

(1 + λ)(1 + γ)

(1 + γ)
η
/β

)t

= 0, (6.52)

where the last step uses uses (4.4). To satisfy (6.52) we need

β(1 + λ) < (1 + γ)η−1. (6.53)

Since β(1 + λ) < 1, the latter condition is only binding if 0 < η < 1. In this case, it is satisfied

whenever

γ < [β(1 + λ)]
−1

1−η − 1 ≡ γ̄. (6.54)

Second, we have to make sure that k∗
RCK < k̄. This requirement imposes a lower bound on γ.

Consider the function k∗
RCK(γ) ≡ [α β Γ/ (1 + γ)η]

1/(1−α)
. It satisfies

k∗(0) = (α β Γ)
1

1−α ,
∂k∗(γ)

∂γ
< 0, and lim

γ→∞
k∗(γ) = 0. (6.55)

Next, consider the properties of the function g and g(k̄, h, σ) = γ. The latter equation implicitly

defines a function k̄(γ) with the following properties

k̄(0) = 0,
∂k̄(γ)

∂γ
=

1

gk
> 0, and lim

γ→∞
k̄(γ) > 0. (6.56)

Hence, the functions k∗
RCK(γ) and k̄(γ) intersect once and only once at some γ > 0. Let k∗

RCK(γ) =

k̄(γ). Then it holds that

k∗
RCK(γ) < k̄(γ) ⇔ γ > γ. (6.57)

Accordingly, if η ≥ 1 the balanced growth path exists for any γ > γ, if η ∈ (0, 1) it exists for any

γ ∈ (γ, γ̄) . There are parameter constellations, (β, λ, η) such that (γ, γ̄) is non-empty. �

14In fact, given k1 and ∆0, ∆1 is fully determined by (3.5).
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6.9 Proof of Proposition 5

Proposition 5 follows immediately from Lemma 1, the definition of the rate of diffusion, and the

observation that k∗
RCK is independent of h and σ. �

6.10 Proof of Corollary 3

A change in one of the parameters j = β, η, Γ affects ∆∗
RCK only indirectly through k∗

RCK . Hence,

d∆∗
RCK

dj
=

∂∆∗
RCK

∂k∗
RCK

dk∗
RCK

dj
, j = β, ǫ, Γ. (6.58)

From Corollary 2, we know that d∆∗
RCK/dk∗

RCK > 0. Hence, the first three results of (4.7) follow

immediately from (4.4).

The effect of a change of γ involves a direct and an indirect effect through k∗
RCK . From (4.4)

and Corollary 2 both are negative. The parameters σ, h, and θ induce effects that are given in

equations (6.26), (6.29), and (6.32) in the proof of Corollary 2. �

6.11 Proof of Proposition 6

Denote k∗
RCK = k∗

RCK(β, η, Γ, γ) the function defined by the steady state (4.4), ∆∗ = ∆∗(k∗
RCK , σ, h, γ, θ)

the function defined by Corollary 3, and recall q∗ = g (k∗
RCK , h, σ). Given Amax

−1 we have per-capita

income of the next period as

ỹ∗
RCK ≡ ỹ∗

RCK (Γ, k∗
RCK , ∆∗

RCK(k∗
RCK , γ, σ, h, θ), g (k∗

RCK , h, σ) , h) . (6.59)

From (3.19), Corollary 2 and Lemma 1 we have

dỹ∗
RCK

dk∗
RCK

> 0 (6.60)

for the same reason as in equation (6.34) in the proof of Proposition 3. Then, the first three results

stated in (4.9) result from (6.60) and the properties of the function k∗
RCK(.). The comparative

static with respect to γ follows from the analogue of equation (6.36).

Invoking Corollary 3 and Lemma 1, we find

dỹ∗
RCK

dσ
=

∂ỹ∗
RCK

∂∆∗

∂∆∗
RCK

∂σ
+

∂ỹ∗
RCK

∂q∗
gσ > 0 (6.61)

and
dỹ∗

RCK

dh
=

∂ỹ∗
RCK

∂∆∗

∂∆∗
RCK

∂h
+

∂ỹ∗
RCK

∂q∗
gh +

∂ỹ∗
RCK

∂h
R 0. (6.62)

Invoking Corollary 3 reveals that the latter is strictly positive if iqgh + ih > 0. Finally, Corollary 3

also implies
dỹ∗

RCK

dθ
=

∂ỹ∗
RCK

∂∆∗

∂∆∗
RCK

∂θ
> 0. (6.63)

�
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6.12 Proof of Proposition 7

Consider the left-hand side of (4.14) and define

LHS(k) ≡ (1 + g(k, h, σ)) (k + i(g(k, h, σ), h)) .

The properties of the functions g and i (see Lemma 1, (2.10), and (2.13)) imply that LHS(k)

is a continuous function with LHS(0) = 0, LHS′(k) = gk (k + i(g, h)) + (1 + g) (1 + iqgk) > 1

for k > 0, and limk→0 LHS′(k) = 1. Moreover, LHS′′(k) = gkk(k + i) + 2gk (1 + iqgk) + (1 +

g)
(

iqqg
2
k + iqgkk

)

> 0 for k > 0 if condition (4.13) is satisfied. To verify the latter, recall from the

proof of Proposition 1 that (2.13) implies iqqg
2
k + iqgkk > 0 for k > 0. As I show below, condition

(4.13) is sufficient for LHS′′(k) > 0 and k > 0 since it assures that gkk(k + i) + 2gk (1 + iqgk) ≥ 0

for k > 0. Indeed, with (6.10) the latter can be written

2

gk
+ 2iq ≥

3iqq + (1 + g)iqqq

2iq + (1 + g)iqq
(k + i) . (6.64)

From (6.12) in the proof of Proposition 1 we know that the function i is such that

iqq

iq
>

3iqq + (1 + g)iqqq

2iq + (1 + g)iqq
. (6.65)

Hence, (6.64) is satisfied whenever

2

gk
+ 2iq ≥

iqq

iq
(k + i) . (6.66)

Next, we use (6.2) and the fact that (6.1) relates k to i, α, and σ. We obtain successively

2(1− σ)α

1− α
(2iq + (1 + g)iqq) + 2iq ≥

iqq

iq

(

(1 − σ)α

1− α
((1 + g)iq + i) + i

)

=
(1− σ)α

1− α

(

(1 + g)iqq + i
iqq

iq

)

+ i
iqq

iq
.

Rearranging terms gives

(1− σ)α

1− α
(1 + g)iqq +

(1 − σ)α

1− α

(

4iq − i
iqq

iq

)

+

(

2iq − i
iqq

iq

)

≥ 0. (6.67)

Since iq > 0 whenever q > 0, the latter is satisfied if 2i2q ≥ i iqq, which coincides with (4.13).

The right-hand side of (4.14) defines RHS(k) ≡ s̃kα, a strictly concave function with RHS(0) = 0,

RHS′(0) = ∞, and RHS′(∞) = 0. Hence, there is one and only one value k∗
c > 0 that satisfies

LHS(k∗
c ) = RHS(k∗

c ).15 A simple graphical argument shows that any sequence {kt} that starts

below or above k∗
c converges monotonically.

15If LHS(k) is not convex on k ∈ (0, k̄) there may be multiple steady states. To see this observe

that RHS′(k) = 1 at k = (αs̃)
1/(1−α)

. If the functions LHS(k) and RHS(k) intersect for the first

time at some k∗
c ≥ (αs̃)

1/(1−α)
, then, since LHS′(k) > 1, the steady state is unique and globally

stable. If the functions RHS(k) and LHS(k) intersect for the first time at some k∗
c < (αs̃)1/(1−α),

they may intersect more than once if LHS(k) is concave with sufficient curvature. In any case,

the argument that proves the existence of a unique k∗
c > 0 implies that the total number of steady

states must be odd. Moreover, the first, third, fifth,... intersection of RHS(k) and LHS(k) is

locally stable since it satisfies RHS′(k∗
c ) < LHS′(k∗

c ). Those associated with an even number

must be locally unstable.
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Since, (s̃)1/(1−α) is the steady state if LHS′(k) = 1 for all k, we have k∗
c < (s̃)1/(1−α) < k̄. Hence,

g(k∗
c , h, σ) < γ and (4.16) holds. Moreover, a comparison of (4.14) with (3.8) reveals readily the

validity of result (4.15). Result (4.16) is immediate from (4.12).

�

6.13 Proof of Corollary 4

Consider the total differential of (4.14)

0 =
[

gk (k∗
c + i) + (1 + g) (1 + iq gk)− s̃ α (k∗

c )α−1
]

dk∗
c

+ [gh (k∗
c + i) + (1 + g)(iq gh + ih)] dh

+ [gσ (k∗
c + i) + (1 + g)iq gσ] dσ

− (k∗
c )

α
ds̃, (6.68)

where the argument of i is (g, h) and the argument of g is (k∗
c , h, σ).

The first term in brackets is positive since, at k∗
c , the slope of the left-hand side of (4.14) is greater

than the slope of the right-hand side.

The comparative statics stated in (4.17) and (4.18) follow from (6.68), the definition of s̃, the

properties of the functions i and g as stated in (2.10), (2.11), and Lemma 1. Moreover, the result

for i = qv h−z follows from gh > 0 and Corollary 1. �

6.14 Proof of Proposition 8

Throughout this proof the argument of g is (k∗
c , h, σ) and the argument of i is (g, h).

The parameters j = s, Γ, λ affect q∗c indirectly through their effect on k∗
c , i. e.,

dq∗c
dj

= gk
dk∗

c

dj
.

The signs given in (4.20) follow directly from gk > 0 and Corollary 3. As to the the comparative

statics of σ and h there is a direct and an indirect effect, namely

dq∗c
dj

= gk
dk∗

c

dj
+ gj , j = σ, h. (6.69)

In view of Corollary 3 and the properties of the function g, these effects may be of opposite sign.

As to σ, we obtain using (6.68)

dk∗
c

dσ
= −

gσ (k∗
c + i) + (1 + g) iq gσ

gk (k∗
c + i) + (1 + g) (1 + iq gk)− s̃ α (k∗

c )
α−1

= −
gσ

gk

k∗
c + i + (1 + g) iq

k∗
c + i + 1+g

gk
(1 + iq gk)− s̃ α

gk
(k∗

c )
α−1

= −
gσ

gk

k∗
c + i + (1 + g) iq

k∗
c + i + (1 + g) iq + 1

gk

(

1 + g − s̃ α (k∗
c )

α−1
) . (6.70)
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Hence, (6.69) and (6.70) imply

dq∗c
dσ

R 0 ⇔
gk

gσ

dk∗
c

dσ
+ 1 R 0 ⇔ 1 + g − s̃ α (k∗

c )α−1 R 0.

Using the steady-state condition (4.14), the latter inequality can be expressed as

1−
α

k∗
c

(k∗
c + i) R 0 ⇔

1− α

α
k∗

c R i.

From (6.1) in the proof of Lemma 1, the left-hand side of the latter inequality becomes

(1− σ) ((1 + g) iq + i) R i, (6.71)

where the argument of i is (g, h) and the argument of g is (k∗
c , h, σ). Hence, dq∗c /dσ > 0 at σ = 0.

Turning to the effect of h, we obtain with (6.68) and (4.14)

dk∗
c

dh
= −

gh (k∗
c + i) + (1 + g)(iq gh + ih)

gk (k∗
c + i) + (1 + g) (1 + iq gk)− s̃ α (k∗

c )
α−1

= −
gh

gk

k∗
c + i + 1+g

gh
(iq gh + ih)

k∗
c + i + 1+g

gk
(1 + iq gk)− α

gk k∗

c
(1 + g) (k∗

c + i)

= −
gh

gk

k∗
c + i + (1 + g) iq + 1+g

gh
ih

k∗
c + i + (1 + g) iq + 1+g

gk

(

1− α
k∗

c
(k∗

c + i)
) (6.72)

Here, (6.69) and (6.72) imply

dq∗c
dh

R 0 ⇔ −
gk

gh

dk∗
c

dh
+ 1 R 0.

The latter inequality is satisfied whenever

−
ih
gh

+
1

gk

(

1−
α

k∗
c

(k∗
c + i)

)

R 0. (6.73)

The same steps that lead to (6.71) reveal that dq∗c/dh > 0 at σ = 0. �

6.15 Proof of Proposition 9

From (4.26) we know that k1 < k̂ induces intermediate-good firms not to undertake innovation

investments. Hence, initially k evolves according to the equation of motion (4.24) that gives rise

to a globally stable steady state equal to s̃
1

1−α .

If s̃
1

1−α ≤ k̂, then the economy never reaches the critical level of k necessary to switch into the

regime with innovation. For t = 1, 2, .. the evolution of ∆ is given by (4.25) and ∆t+1/∆t − 1 =

−γ/(1 + γ).

If s̃
1

1−α > k̂, then the economy initially grows according to (4.24). However, before reaching the

steady state associated with this equation of motion it arrives at the critical level given in (4.26).

The switch into the regime with innovation investments is as described in the main text.



Cross-Country Income Differences and Technology Diffusion 41

To prove the existence of a unique steady state we need to show that there is a unique k∗ ∈
(

k̂, k̄
)

that solves (1 + γ) (k∗ + i (g (k∗, h, σ) , h)) = s̃ (k∗)α, which restates (3.8). First, we observe that

(4.22) and the definitions of k̂ and k̄ imply k̄ > k̂ for all γ > 0. Hence, there are parameter constella-

tions such that k̄ > s̃
1

1−α > k̂. Next, consider the functions LHS(k) ≡ (1+γ) (k + i (g (k, h, σ) , h))

and RHS(k) ≡ s̃ (k∗)α. The function LHS(k) satisfies LHS(k̂) = k̂, LHS′(k) = 1 + (1 −

α)/ (2α(1 − σ)) > 1 for k ≥ k̂, LHS(k̄) = k̄ + i (γ, h, σ) > s̃
1

1−α . The function RHS(k) satisfies

RHS(k̂) > k̂ because (s̃)
1

1−α > k̂, and RHS(k̄) < LHS
(

k̄
)

. Since LHS(k) is linear and RHS(k)

concave on (k̂, k̄) both functions intersect once and only once on this interval. Since k∗ < k̄ the

steady state involves ∆∗ ∈ (0, 1) as given by (3.9). �
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7 Appendix II: Phase Diagram and Local Stabil-

ity

This section develops the phase diagram and the equations underlying the local stability analysis

of the steady state characterized in Proposition 1.

7.1 Phase Diagram

We develop the phase diagram in the (∆, k) – plane.

First, consider the locus Dk ≡ kt+1 − kt. From (3.4) and omitting time subscripts, it follows that

Dk = 0 ⇔ ∆t−1 ≡ ∆k(k) = (1− ζ(k))
−1

, (7.1)

where

ζ(k) ≡
(1 + g) (k + i)− s̃kα

θ i (k + i)
, (7.2)

and the argument of i is (g, h) and the argument of g is (k, h, σ). We summarize important

properties of (7.1) and (7.2) as Result 1.

Result 1

(a) Let k > 0, then ζ(k) = 0 if and only if k = k∗
c .

(b) The function ∆k(k) satisfies limk→0 ∆k(k) = 0, ∆k(k∗
c ) = 1, and is continuous on k ∈ [0, k∗

c ].

(c) It holds that

k̄ > k∗
c > k∗ > 0.

Proof

(a) For k > 0 the denominator of (7.2) is strictly positive. The numerator can be expressed as

LHS(k)−RHS(k), where the two functions LHS(k) and RHS(k) are those defined in the proof

of Proposition 7. Then, Result 1 (a) follows from the properties of the functions LHS(k) and

RHS(k) as indicated in the proof of Proposition 7.

(b) It holds that

lim
k→0

∆k(k) =
1

1− limk→0 ζ(k)
. (7.3)

Moreover, an application of l’Hôpital’s rule reveals that

lim
k→0

ζ(k) = lim
k→0

(1 + g)(k + i)− s̃kα

θ i (k + i)
= −∞. (7.4)

Hence, limk→0 ∆k(k) = 0. Moreover, ∆k(k∗
c ) = 1 is immediate from (a). Continuity of ζ follows

from the continuity of the functions i and g and the fact that (1 + g) (k + i) ≤ s̃kα for k ∈ [0, k∗
c ].
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(c) Follows from the proof of inequality (4.15) of Proposition 7. �

Next, we turn to the locus D∆ ≡ ∆t −∆t−1. Omitting time subscripts, one obtains from (3.5)

D∆ = 0 ⇔ ∆t−1 ≡ ∆∆(k) =
θ i(g (k, h, σ) , h)

θ i(g (k, h, σ) , h) + γ − g (k, h, σ)
. (7.5)

Result 2 The function ∆∆(k) has the following properties.

∆∆(0) = 0, ∆∆(k̄) = 1, for k > 0 ∂∆∆(k)/∂k > 0, and (7.6)

for k ∈ (0, k∗
c ) ∆∆(k) R ∆k(k) ⇔ k ⋚ k∗. (7.7)

Proof The properties under (7.6) follow immediately from the properties of the functions i and

g, the definition of k̄, and the fact that

∂∆∆(k)

∂k
= [iqgk(γ − g) + gk i]

θ

(θ i + γ − g)
2 > 0 for k > 0.

The property stated under (7.7) follows from the fact that on k ∈ (0, k∗
c ) the functions ∆k(k) and

∆∆(k) intersect only once at k∗ (see Proposition 1), while both are continuous and ∆k(k∗
c ) = 1 >

∆∆(k∗
c ) since k∗

c < k̄. �

To understand the forces that affect the evolution of both state variables, consider the Dk = 0 -

locus first. Above this locus, we have ∆t−1 > ∆k(k) and the right-hand side of (3.4) is greater.

Since the left-hand side is increasing in kt+1, it holds that Dk > 0. An analogous argument shows

that Dk < 0 below the Dk = 0 - locus.

Next, consider the D∆ = 0 - locus. From (3.5) we obtain

D∆ =
θ i(g (k, h, σ) , h)

1 + γ
−∆t−1

(

θ i(g (k, h, σ) , h) + γ − g (k, h, σ)

1 + γ

)

. (7.8)

Since θ i(g (kt, h, σ) , h) + γ− g (kt, h, σ) > 0 for all admissible values of k it holds that D∆ < 0 for

all ∆t−1 > ∆∆(k) and, similarly, D∆ > 0 for all ∆t−1 < ∆∆(k). These qualitative features are

depicted in Figure 1.

7.2 Local Stability

The steady state is a fixed point of the system (3.6). To study the local behavior of the system

around the steady state, we have to know the eigenvalues of the Jacobian matrix

D φ(k∗, ∆∗) ≡

[

∂φk

∂kt

∂φk

∂∆t−1

∂φ∆

∂kt

∂φ∆

∂∆t−1

]

. (7.9)

We study each of the four elements of the Jacobian in turn.

• An application of the implicit function theorem to (3.4) shows that ∂φk/∂kt = NUMk/DEN ,

where

NUMk ≡
s̃ α kα−1

t

(

1 + θ i(g,h)
1+g

(

1
∆t−1

− 1
))

− s̃ kα
t θ

iq gk (1+g)−gk i
(1+g)2

(

1
∆t−1

− 1
)

(

1 + θ i(g,h)
1+g

(

1
∆t−1

− 1
))2 ; (7.10)
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θ

µ1, µ2

0

µ2(θ)

µ1(θ)

θ̄

1

Figure 3: The Eigenvalues of the Jacobian (7.9) - A Typical Finding.

here the argument of g is (kt, h, σ), and

DEN ≡ gk (kt+1 + i) + (1 + g) (1 + iq gk) , (7.11)

where the argument of g is (kt+1, h, σ) and the argument of i is (g, h). Evaluated at (k∗, ∆∗),

NUMk becomes

NUMk = (1 + g)α

(

1 +
i

k∗

)

−

(

k∗

i
+ 1

)(

1 + g

1 + γ

)

iq gk(γ − g) + (k∗ + i)
gk(γ − g)

(1 + γ)
.(7.12)

It follows that NUMk/DEN < 1 if and only if

(1 + g)

(

α

(

1 +
i

k∗

)

− 1− iq gk

)

− [+]− gk (k∗ + i)

(

1−
γ − g

1 + γ

)

< 0. (7.13)

In the steady state, we have from (3.8)

α

(

1 +
i

k∗

)

= α
k∗ + i

k∗
=

α s̃

1 + γ
(k∗)

α−1
. (7.14)

Hence, for the reason set out in the proof of Corollary 1, the first term in (7.13) is negative.

Moreover, the last term is negative since 1 > (γ − g)/(1 + γ). Hence ∂φk(k∗, ∆∗)/∂kt < 1.

• An application of the implicit function theorem to (3.4) also shows that ∂φk/∂∆t−1 =

NUM∆/DEN , where,

NUM∆ =
s kα

t

(

θ i(g,h)
1+g

1
∆2

t−1

)

(

1 + θ i(g,h)
1+g

(

1
∆t−1

− 1
))2 , (7.15)

where the argument of g is (kt, h, σ). Evaluated at (k∗, ∆∗), NUM∆ becomes

NUM∆ = (k∗ + i)

(

1 + g

1 + γ

)

(θ i + γ − g)2

θ i
. (7.16)

• From (3.5) we obtain

∂φ∆

∂kt
=

θ iq gk

1 + γ
+

gk − θ iq gk

1 + γ
∆∗. (7.17)
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• From (3.5) we also have

∂φ∆

∂∆t−1
=

1 + g − θ i

1 + γ
. (7.18)

Figure 3 shows a typical result for both eigenvalues µ1(θ) and µ2(θ) which are strictly between zero

and one and declining in θ. The calibration uses h = 1 and the investment requirement function

i = q2. Moreover, α = 1/3, σ = 0, γ = .14, and s̃ = .3. Hence, the steady state is locally stable.
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