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1 Introduction

Population aging is one of the major economic challenges for today’s industrialized societies. An
increasing life expectancy in conjunction with declining birth rates tends to reduce the part of the
population in working age and raises the part of the economically dependent old. For instance, the
United Nations predicts for the US a decline in the working-age-to-population ratio, i. e., the fraction
of the 20-64 year old to the 20-90 year old, from 83% in 2007 to 72% in 2075 (UN (2002)). To
meet this challenge it is necessary to understand the economic consequences of such a demographic
change.

This paper studies the economic consequences of the link between demographic changes and the
incentives of firms to engage in innovation investments that affect total factor productivity (TFP).
With a focus on the US economy and the time span between 1950 and 2200, we argue that this
link may substantially modify the predicted positive and normative implications of actual policy
reform proposals of the pension scheme. We obtain these implications in a new dynamic general
equilibrium model with endogenous economic growth and heterogeneous overlapping generations in
the spirit of Auerbach and Kotlikoff (1987).

We calibrate our model for the US economy and establish the following major results. First, we find
that the net effect of a decline in population growth on the growth rate of per-capita magnitudes
such as income per capita and consumption per capita is positive and quantitatively significant.
For instance, under the current pension system the growth rate of per-capita income is predicted
to rise from 1.8% over the period 1990-2000 to approximately 2.28% in 2100. Second, we show that
the pension system indeed matters both for the growth performance of the economy and for the
welfare of each generation. Finally, we show that the assessment of pension reform proposals differs
in an endogenous growth framework as opposed to the standard framework where TFP growth is
exogenous and costless.

Our analytical framework has a supply side that satisfies two requirements which prove useful for
our research agenda. First, endogenous growth is obtained in a competitive neoclassical economy
where TFP growth is the result of labor-saving innovation investments of profit-maximizing firms
and capital accumulation is subject to diminishing returns. Analytically, this economy can readily
be turned into the standard neoclassical growth model of Solow (1956) with exogenous and costless
technical change. This property is particularly useful for our comparative dynamic analysis that
identifies the role of endogenous growth by comparing the predicted evolution of the US economy
under endogenous and exogenous growth. Second, there is a single channel linking the demographic
trend to innovation activities. This parsimony allows for clear-cut intuitions when we compare
policy reform proposals under endogenous and exogenous growth.1

A mechanism often attributed to Hicks (1932) provides the link between the demographic trend
and TFP growth. According to Hicks’ argument, a demographic transition that reduces the labor
force may render labor scarcer relative to capital. Accordingly, the relative price of labor increases
and so does the profitability of innovation investments that raise labor productivity and TFP.

1We do not want to dispute the possible presence of other channels that may strengthen or weaken the mechanism

expounded here. However, the analytical and the quantitative analysis of such interactions is quite involved. We leave

this question for future research and shall get back to this point in the concluding Section 7.
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Figure 1 provides evidence for the US economy in support of Hicks’ intuition. It shows the long-run
relationship between the average annual growth rates of the labor force and of output per hour
worked in the US for five successive twenty-year intervals covering the 20th century.2 The striking
feature is the strong inverse relationship between both magnitudes: when the growth rate of the
labor force declines then the growth rate of output per hour worked increases.

Figure 1: 20th Century U.S. Labor Force and Productivity Growth

We interpret this negative correlation as the result of two reinforcing effects. First, reduced labor
force growth weakens the effect of capital dilution, i. e., a given amount of capital implies a higher
capital intensity and a higher labor productivity. We follow Cutler, Poterba, Sheiner, and Summers
(1990) and refer to this channel as the Solow effect. Second, since capital and labor are complements
and capital accumulation is subject to diminishing returns, firms that anticipate a higher capital
intensity due to the Solow effect will also expect a higher real wage and a lower real interest rate.
Both price movements strengthen the incentives of such firms to engage in labor-saving innovation
investments that raise labor productivity and TFP. We refer to this second channel as the Hicks
effect.3

The relevance of Hicks’ argument hinges on the economy’s ability to accumulate capital, i. e., on the
propensity of a declining population in working age to save. Hence, to account for the Hicks effect
we have to allow firms to adjust their innovation investments and households to adjust their savings
decision to a changing demographic environment. To provide for such an analytical framework we

2Our Figure 1 replicates and extends Figure 1 in Romer (1987), p. 182, by showing that the inverse relationship

between both growth rates persists for the period 1979-1999. See Appendix 8.1 for detailed information concerning

the data used.

3Additional evidence supporting Hicks’ intuition is provided by Cutler, Poterba, Sheiner, and Summers (1990).

These authors’ cross-country regressions establish a negative and significant partial correlation between productivity

growth and labor force growth. Moreover, several cross-country growth regressions find a negative and significant

partial correlation between population growth and growth of per-capita GDP (see, e. g., Barro and Sala-́ı-Martin

(2004), Kelley and Schmidt (1995), and Kormendi and Meguire (1985)). In a famous study, Habakkuk (1962) uses

ideas similar to the Hicksian argument to explain why technological progress in the 19th century was faster in the US

than in Britain.
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combine the production sector of Irmen (2005) with a household sector comprising heterogeneous
overlapping generations of Auerbach and Kotlikoff (1987).4 Since the pension system is a major
determinant of an economy’s propensity to save, this framework is well suited for our comparative
institutional analysis that asks how institutional characteristics of the pension scheme affect the
incentive to engage in labor-saving technical change during a demographic transition.

Our research builds on and contributes to a recent and growing literature that extends the seminal
framework of Auerbach and Kotlikoff (1987) to analyze the economic consequences of population
aging in different settings. To the best of our knowledge, the existing literature does neither incor-
porate the endogenous response of firms to the demographic transition through the Hicks effect, nor
does it provide an analysis of the consequences of policy reforms in endogenous growth economies.5

The present study is a first step to fill this gap.

Important existing contributions study the consequences of policy reform proposals of the social
security system in closed economies. For instance, Huang, İmrohoroğlu, and Sargent (1997), Conesa
and Krüger (1999), and Fuster, İmrohoroğlu, and İmrohoroğlu (2007) deal with the transition from
an unfunded to a more funded pension scheme, where the latter two emphasize political economy
aspects of such a switch. Closer to our analysis are the studies of İmrohoroğlu, İmrohoroğlu, and
Joines (1995) and de Nardi, İmrohoroğlu, and Sargent (1999) who focus on reform scenarios within
the pay-as-you-go system and assess their welfare implications. With respect to their results, our
findings suggests that i) the welfare ranking of reform proposals may depend on whether economic
growth is exogenous as in their papers or endogenous as in our study, and ii) the welfare effects are
much larger if economic growth is endogenous.

This paper is organized as follows. Section 2 presents the model and establishes the stationary
equilibrium. Section 3 develops important channels that drive our calibration results in a simplified
setting with two-period lived individuals. Section 4 provides the detailed description of our calibra-
tion strategy. Our main findings concerning the interplay between the demographic transition and
economic growth appear in Section 5. We begin in Section 5.1 with the analysis of a benchmark
economy where the replacement rate of the pension system is constant and the growth rate of TFP
is endogenous. We establish that the feedback from population growth onto innovation incentives
generates faster productivity growth. Section 5.2 contains our comparative dynamical analysis. It
studies the evolution of the benchmark economy under the assumption of costless exogenous growth
at the trend growth rate of the US. Here, we show that accounting for the Hicks effect substantially
increases the growth rate of per-capita GDP. In Section 6, we turn to the comparative institutional
analysis of pay-as-you-go pensions schemes with different characteristics. Section 6.1 considers three
pension reform proposals and studies their implications for economic growth. Section 6.2 deals with
the welfare implications of these reform proposals, both under endogenous and exogenous growth.
Section 7 concludes. Proofs are relegated to the Appendix.

4The production side of Irmen (2005) satisfies the aforementioned attributes. It extends the production sector

employed by Hellwig and Irmen (2001) which in turn builds on Bester and Petrakis (2003).

5A previous version of Ludwig, Schelke, and Vogel (2008) included an analysis of endogenous growth through

endogenous human capital investments of the households and a growth mechanism along the lines of Lucas (1988).

These authors do not compare different reform proposals of the pension scheme.
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2 The Model

This section describes our large-scale OLG model with heterogeneous agents in the spirit of Auerbach
and Kotlikoff (1987) and a production sector extending the setup studied in Irmen (2005).

There is final-good sector and an intermediate-good sector. Intermediate-good firms undertake
innovation investments that increase the productivity of their workers. These productivity gains
drive the evolution of the economy’s level of technological knowledge and its TFP. Intermediates
and capital produce final output that can be consumed or invested. If invested, the current final
good may either serve as future capital or as an input in innovation investments. In each period,
prices are expressed in units of the current final good.

The government collects taxes, accidental bequests, and social security contributions. In all periods,
the budget of the government and the one of the pension scheme are balanced.

2.1 Demographics and Timing

A period, t, corresponds to one year. At each t, a new generation of households is born. Newborns
have a real life age of 20 denoted by s = 1. All generations retire at age 65 (s = R = 46) and live
up to a maximum age of 94 (s = J = 75). At t, all agents of age s survive until age s + 1 with
probability φt,s where φt,0 = 1 and φt,J = 0.

Let Nt(s) denote the number of agents of age s at t. The population Nt(s) of the periods t =
0, 1, ..., 450 is calibrated as the actual and predicted US population of the years 1950 to 2400 using
the data of Krüger and Ludwig (2007).

2.2 Households

Each household comprises one worker. Households maximize intertemporal utility at the beginning
of age 1 in period t

max
J∑
s=1

βs−1
(
Πs
j=1φt+j−1,j−1

)
u(ct+s−1(s), lt+s−1(s)), (1)

where β > 0 denotes the discount factor, and per-period utility u(c, l) is a function of consumption
c and labor supply l

u(c, l) =

(
cγ(1− l)1−γ)1−θ − 1

1− θ
, θ > 0, γ ∈ (0, 1). (2)

Households are heterogeneous with regard to their age, s, their individual labor efficiency, e(s, j),
and their wealth, ω. We stipulate that an agent’s efficiency e(s, j) = ȳsεj depends on its age, s ∈
S ≡ {1, 2, ..., 75} and its efficiency type, εj ∈ E ≡ {ε1, ε2}. The purpose is to capture composition
effects that, e. g., Gómez and Hernández de Cos (2008) find relevant in explaining cross-country
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growth differences. We choose the age-efficiency profile, {ȳs}, in accordance with the US wage
profile. The permanent efficiency types ε1 and ε2 are meant to capture differences in education and
ability. We use Γ to denote the unique invariant distribution of εj ∈ E .

The net wage income in period t of an s-year old household with efficiency type j is given by
(1−τw−τb,t)wte(s, j)lt(s), where wt denotes the wage rate per efficiency unit in period t. The wage
income is taxed at the constant rate τw. Furthermore, the worker has to pay contributions to the
pension system at rate τb,t which may vary over time depending on the pension scheme. A retired
worker receives pensions b(s, j) that depend on his efficiency type j. Clearly, b(s, j) = 0 for s < R.

Households are born without assets at the beginning of age s = 1, hence ωt(1) = 0. Parents do
not leave bequests to their children, and all accidental bequests are confiscated by the government.
The household earns interest rt on his wealth ωt ∈ R. Capital income is taxed at the constant rate
τr. In addition, households receive lump-sum transfers trt from the government. As a result, the
budget constraint at t of an s-year old household with productivity type j and wealth ωt is:

bt(s, j) + (1− τw − τb,t)wte(s, j)lt(s) + [1 + (1− τr)rt]ωt(s) + trt

= ct(s) + ωt+1(s+ 1).
(3)

2.3 Firms

Firms belong either to the final-good or to the intermediate-good sector. Both sectors are compet-
itive.

2.3.1 Final Goods

The measure of all final-good firms is equal to one. At each t, firms produce output, Yt, according
to the following Cobb-Douglas production function

Yt = Kα
t X

1−α
t , 0 < α < 1, (4)

where Kt is the capital input at t and Xt denotes the amount of the intermediate good used in
period-t production. Let pt denote the price of the intermediate good at t, and δ ∈ [0, 1] the rate
at which capital depreciates within periods. Firms rent capital from households and return 1 + rt
units of their output per unit of rented capital. Moreover, they pay ptXt to the intermediate-goods
producers. Hence, per-period profits are

Yt − rtKt − ptXt − δKt. (5)

Firms take the sequence of prices {rt, pt} as given and maximize the sum of the present discounted
values of profits in all periods. This is equivalent to a series of one-period maximization problems
and gives rise to the first-order conditions

∂Yt
∂Kt

= rt + δ = αK̃α−1
t , (6)

∂Yt
∂Xt

= pt = (1− α)K̃α
t , (7)
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where K̃t ≡ Kt/Xt denotes the capital intensity in the final-good sector in period t.

2.3.2 Intermediate Goods

The set of all intermediate-good firms is represented by the set R+ of nonnegative real numbers
with Lebesgue measure.

Technology All firms have access to the same technology and face a capacity limit of 1.6 The
output of the intermediate good, xt, is given by

xt = min
{

1, at ldt
}
, (8)

where at and ldt denote the firm’s labor productivity and its labor input, respectively. Firms hire
effective labor, ldt , defined as the product of the efficiency factor e(s, j) and the ‘number’ of working
hours lt(s). Labor is assumed to be divisible between firms.

The individual firm’s labor productivity at t depends on both the indicator of the economy-wide level
of labor productivity At−1 of period t− 1 and its individual productivity growth rate qt according
to

at = At−1(1 + qt). (9)

In order to achieve productivity growth at rate qt, the firm must invest i(qt) units of the final
good in period t− 1. The input requirement function is increasing and strictly convex in qt. More
specifically, we stipulate

i(q) = v0q
v, with v0 > 0 and v > 1. (10)

Following Hellwig and Irmen (2001), the innovation reflected in at is proprietary knowledge of the
firm only for production in period t; afterwards it becomes common knowledge.7 The evolution of
At over time is described below.

Profit Maximization and Zero-Profits A firm’s innovation investment fully depreciates after
one year. Therefore, the cost of an innovation investment undertaken at t − 1 in units of the final
good at t is (1 + rt)i(qt). With wtl

d
t denoting a firm’s wage bill, a production plan {xt, ldt , qt} for

period t yields the profit

πt = pt xt − wt ldt − (1 + rt) i(qt). (11)

6The capacity limit of 1 is a shortcut that has no bearing on the evolution of any magnitude of interest in the

present model. It may be endogenized along the lines set out in Hellwig and Irmen (2001).

7A consequence of this assumption is that an intermediate-good firm can produce at t with a technology involving

at = At−1 if it decides not to undertake an innovation investment in t− 1. However, this possibility does not arise in

equilibrium.
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Firms take the sequence of real prices {pt, wt, rt} as well as the sequence of aggregate productivity
indicators {At−1} as given and maximize the sum of the present discounted values of profits in all
periods. Since production choices for different periods are independent of each other, for each t

they choose the plan {xt, ldt , qt} to maximize the profits πt from this plan.

If a firm innovates then it incurs an investment cost (1 + rt) i(qt) that is independent of the level of
output. Hence, an innovation investment can only be profit-maximizing if the margin per unit of
output is strictly positive, i. e., pt − wt/at > 0. Since this margin is independent of the amount of
produced output, an innovating firm produces the capacity output xt = 1. Accordingly, (8) delivers
its demand for effective labor as

ldt =
1

At−1(1 + qt)
. (12)

Upon substitution of the latter in (11), the profit-maximizing productivity growth rate is

q̂t = arg max
q≥0

[
pt −

wt
At−1(1 + q)

− (1 + rt) i(q)
]
. (13)

The corresponding first-order condition balances the advantage of a lower wage bill and the disad-
vantage of a higher investment cost. It is sufficient for an interior solution and given by

wt
At−1(1 + q̂t)2

= (1 + rt) iq(q̂t) = (1 + rt) v0 v (q̂t)
v−1 . (14)

This condition shows that, indeed, the incentive to engage in labor saving innovation investments
depends on (relative) factor prices. If firms face a higher wage, then, ceteris paribus, an increase
in qt implies a larger reduction in the wage bill. Similarly, a higher real interest rate reduces
innovation incentives since, ceteris paribus, it raises marginal investment costs. This is the sense
in which profit-maximizing firms adjust their innovation investments to changing factor prices as
conjectured by Hicks: if wt/(1 + rt), i. e., the relative price of labor, increases they invest more.

2.3.3 Consolidating the Production Sector

Denote nt the measure of the set of all active firms in the intermediate-good sector at t. Since all
firms have access to the same technology and face identical prices, all active firms choose the same
production plan {1, 1/ (At−1 (1 + q̂t)) , q̂t}.

In equilibrium, active intermediate-good firms must earn zero profits, i. e.,8

πt (q̂t; pt, wt, rt, At−1) = 0. (15)

The following lemma shows that the conditions for profit-maximization and zero-profits in the final-
good and the intermediate-good sector relate the growth rate of labor productivity q̂t to the capital
intensity in the final-good sector, K̃t.

8This follows since the labor supply in each period is bounded. Therefore, the set of producing intermediate-good

firms that employ more than some ε > 0 units of effective labor must have bounded measure, i. e., it must be smaller

than the set of all intermediate-good firms. Since inactive intermediate-good firms must be maximizing profits just

like active ones, we need that maximum profits of intermediate-good firms at equilibrium prices are equal to zero. See

Hellwig and Irmen (2001) for more details.
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Lemma 1 If all firms in the economy maximize profits and earn zero-profits, i. e., equations (6),
(7), (14) and (15) hold, then there is a map g : R+ → R+ such that q̂t = g

(
K̃t

)
with g (0) = 0,

limK̃t→∞ g
(
K̃t

)
=∞, and g′

(
K̃t

)
> 0.

Lemma 1 provides the link between the equilibrium incentive to innovate and the capital intensity.
Intuitively, profit-maximization in the final-good sector as stated in (6) and (7) means that a higher
K̃t lowers the real interest rate and raises the price of the intermediate good. Both price movements
raise the wage that is consistent with zero-profits in the intermediate-good sector. The function
g
(
K̃t

)
reflects the effect of these price movements onto the profit-maximizing level of innovation

activity implied by (14). We shall later see that in equilibrium the capital intensity, K̃t, is a measure
of the relative abundance of capital with respect to efficient labor. Thus, Lemma 1 links the relative
abundance of factors to innovation incentives as envisaged by Hicks: if capital is abundant relative
to efficient labor then the incentive to engage in labor-saving innovation investments is high.

Turning to the evolution of the economy-wide indicator of technological knowledge, we assume
that At = max{at(n) = At−1 (1 + q̂t(n)) |n ∈ [0, nt]}. Since in equilibrium the productivity of all
producing intermediate-good firms is at = At−1(1 + q̂t), we have At = at and

At = At−1 (1 + q̂t). (16)

Moreover, in equilibrium the aggregate demand for innovation investment at t − 1 is nti(q̂t), the
aggregate demand for effective labor at t is ntldt = nt/ (At−1 (1 + q̂t)), and the aggregate supply of
the intermediate good at t is nt.

2.4 Government

The government collects income taxes Tt in order to finance its expenditure on government consump-
tion Gt and transfers Trt. In addition, it confiscates all accidental bequests Beqt. The government
budget is balanced in every period t, i. e.,

Gt + Trt = Tt +Beqt. (17)

In view of the tax rates τw and τr, the government’s tax revenue is

Tt = τwwtLt + τrrtΩt, (18)

where Ωt is aggregate wealth at t.

Government spending is a constant fraction of final-good output

Gt = ḡ Yt. (19)
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2.5 Social Security

The social security system is a pay-as-you-go system. The social security authority collects con-
tributions from the workers to finance its pension payments to the retired agents. Pensions are a
constant fraction of the net labor income of the productivity type j

bt(s, j) =

{
0 s < R

ζ(1− τw − τb,t)wtεj l̄t s ≥ R,
(20)

where l̄t denotes the average hourly labor supply of all workers in period t.

In equilibrium, the social security budget is balanced and will be defined below. As to the institu-
tional characteristics of the pension scheme we will distinguish three different scenarios during the
transition:

1. constant replacement ratio: ζt ≡ bt
(1−τw−τb)wt l̄t

= ζ,

2. constant contribution rate starting in period t0: τb,t = τb,t0 for t ≥ t0,

3. constant replacement ratio and later retirement at age 70, i. e. R = 51.

2.6 Stationary Equilibrium

In the stationary equilibrium, individual behavior is consistent with the aggregate behavior of the
economy, firms maximize profits, households maximize intertemporal utility, and factor and goods’
markets clear. To express the equilibrium in terms of stationary variables only, we have to divide
aggregate quantities by Xt and individual variables and prices by At. Therefore, we define the
following stationary aggregate variables

B̃eqt ≡
Beqt
Xt

, T̃t =
Tt
Xt
, G̃t =

Gt
Xt
, Ω̃t =

Ωt

Xt
, C̃t =

Ct
Xt
, Ỹt =

Yt
Xt
,

and stationary individual variables

c̃t ≡
ct
At
, w̃t ≡

wt
At
, b̃t ≡

bt
At
, ω̃t ≡

ωt
At
, t̃rt ≡

trt
At
.

Let ft denote the cross-section measure of households in period t.

A stationary equilibrium for a government policy {τr, τw, τb,t, ḡ, ζt, trt}, an initial value A0 > 0, and
initial measures f0 in period 0 corresponds to a price system, an allocation, and a sequence of
aggregate productivity indicators {At} that satisfy the following conditions:

1. Population grows at the rate λt = Nt+1

Nt
− 1.

2. The ‘number’ of intermediate-good firms, nt, is equal to the total output of intermediates as
each firms produces one unit of output, xt = 1

nt = Xt. (21)
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3. The aggregate productivity indicator, At evolves according to (16).

4. Labor market equilibrium: Aggregate efficient labor supply, Lt, is equal to the aggregate labor
demand of all intermediate-good firms

Lt = ntl
d
t . (22)

5. Capital market equilibrium: aggregate wealth is equal to aggregate capital plus aggregate
innovation investment

Ωt = Kt + ntit(qt).

6. Households maximize the intertemporal utility (1) subject to the budget constraint

b̃t(s, j) + (1− τw − τb,t) w̃t e(s, j) lt(ω̃, s, j) + [1 + (1− τr)rt] ω̃t + t̃rt

= c̃t(s) + ω̃t+1(1 + qt+1).

This gives rise to the first-order conditions

1− γ
γ

c̃t(s)
1− lt(s)

= (1− τw − τb,t)w̃te(s, j), (23)

γc̃t(s)γ(1−θ)−1(1− lt(s))(1−γ)(1−θ) = β(1 + qt+1)γ(1−θ)−1φt,s [1 + (1− τr)rt+1] (24)

· γc̃t+1(s+ 1)γ(1−θ)−1(1− lt+1(s+ 1))(1−γ)(1−θ).

Individual labor supply lt(ω̃, s, j), consumption c̃t(ω̃, s, j) and optimal next period assets
ω̃′t(ω̃, s, j) of period t are functions of the individual state variables ω̃, j, and s, and also
depend on the period t.

7. Firms maximize profits satisfying (6), (7) and (14). In equilibrium, firm profits are zero. Using
(16), the zero-profit condition (15) can be rewritten as follows

w̃t = (1− α)K̃α
t − (1 + rt)i(qt). (25)

8. Aggregate variables are equal to the sum of the individual variables

Lt =
∫
e(s, j)lt(ω̃, s, j) ft(dω̃ × ds× dj),

Ω̃t = K̃t + i(qt) =
1
Lt

∫
ω̃ft(dω̃ × ds× dj),

B̃eqt+1 =
At
Xt+1

∫
(1− φt+1,s+1)(1 + rt+1(1− τr))ω̃′t(ω̃, s, j) ft(dω̃ × ds× dj)

=
1

Lt+1

1
1 + qt+1

∫
(1− φt+1,s+1)(1 + rt+1(1− τr))ω̃′t(ω̃, s, j) ft(dω̃ × ds× dj),

C̃t =
1
Lt

∫
c̃t(ω̃, s, j) ft(dω̃ × ds× dj),

T̃t = τww̃t + τrrt(K̃t + i(qt)).
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9. The government budget is balanced

ḡK̃α
t + t̃rt

Nt

Lt
= T̃t + B̃eqt. (26)

10. The budget of the social security system is balanced

1
Lt

∫
b̃t(s, j) ft(dω̃ × ds× dj) = τb,tw̃t, (27)

11. The market for the final good clears.

12. The cross-sectional measure ft evolves as

ft+1(W̃ × S × E) =
∫

Pt

(
(ω̃, s, j), W̃ × S × E

)
ft(dω̃ × ds× dj)

for all sets W̃, S, E , where the Markov transition function Pt is given by

Pt

(
(ω̃, s, j), W̃ × S × E

)
=


φt(s) if ω̃′t(ω̃, s, j) ∈ W̃,

j ∈ E , s+ 1 ∈ S

0 else,

and for the newborns

ft+1(W̃ × 1× E) = Nt+1(1) ·


Γ(E) if 0 ∈ W̃

0 else.

3 Population, Pensions, and Endogenous Economic Growth in a

Simplified Setting

In this section, we show that the relationship between population growth and endogenous economic
growth depends on the characteristics of the pay-as-you-go pension scheme. We make this point is
a simplified setting that combines the production sector of Section 2.3 with a household sector à la
Diamond (1965). We establish the existence of a steady state and study the steady-state response
of the economy’s growth rate to a decline in its population growth rate. We find that the rise of the
steady-state growth rate caused by a decline in population growth is larger under a pension scheme
that keeps the contribution rate constant than under a scheme with a constant replacement rate.
We shall see in Section 6 that the calibration exercises bring out these qualitative findings, too.

For ease of exposition, we set the depreciation rate equal to unity and assume v0 = 1 and v = 2. On
the household side, we consider two-period lived households. Generations comprise homogeneous
individuals. The labor supply when young is exogenous and normalized to one, the one when old
is zero. The population growth rate, λ, is constant over time and coincides with the growth rate of
aggregate labor supply, i. e., λ = Lt+1/Lt − 1.



Population, Pensions, and Endogenous Economic Growth 12

3.1 Households and the Pay-As-You-Go Pension Scheme

Lifetime utility of a member of cohort t is

ln cyt + β ln cot+1, β ∈ (0, 1), (28)

where cyt and cot+1 denote per-capita consumption when young and old, respectively. The maximiza-
tion of (28) is subject to the per-period budget constraints

cyt + st = (1− τb)wt, and cot+1 = st(1 + rt+1) + bt+1, (29)

where bt+1 denotes the expected benefit when old. Optimal savings of a young at t results as

st =
β

1 + β
(1− τb)wt −

1
1 + β

(
bt+1

1 + rt+1

)
. (30)

First, we consider a pay-as-you-go system with a constant contribution rate τb ∈ (0, 1). Leaving
intragenerational heterogeneity and taxes on wage income aside, the benefits at t+1 implied by the
balanced budget satisfy bt+1 Lt = Lt+1τbwt+1 such that

bt+1 = (1 + λ) τbwt+1. (31)

3.2 The Dynamical System

We use K̃t as the state variable of the dynamical system. To express the savings of the young as a
function of this state variable we employ Lemma 1 to find the equilibrium real wage as

wt = (1− α)K̃α
t At−1

(
1 + g

(
K̃t

))1−
(

α

1− α

) i
(
g
(
K̃t

))
K̃t

 . (32)

Accordingly, a rise in the capital intensity K̃t affects the wage in three ways. First, a higher K̃t

raises final-good output. Second, a rise in K̃t renders labor scarcer such that the productivity
growth rate g(K̃t) rises. Third, faster productivity growth increases investment outlays. The first
two channels increase the wage, the last decreases it.9 Observe that (32) gives the same real
wage as for a neoclassical production sector with costless exogenous productivity growth if we set
g
(
K̃t

)
= g > 0 and i(.) = 0.

Expressed in units of efficient labor at t we have

wt

At−1

(
1 + g

(
K̃t

)) = K̃α
t − α K̃α−1

t

(
K̃t + i

(
g
(
K̃t

)))
≡ w̃

(
K̃t

)
. (33)

9See Appendix 8.2.2 for the proof of the last part of this statement.
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In these units, the real wage at t is equal to the difference between final-good output and overall
debt service payments.

In equilibrium, the savings of the young must be equal to aggregate investment, i. e.,

st Lt = Kt+1 + nt+1 i (qt+1) . (34)

Using Lemma 1, optimal savings (30), the budget of the pension scheme (31), equilibrium wages
(32) for periods t and t + 1, and the full employment condition (22) in (34) gives the equation of
motion for K̃t as

ξ1 K̃
α
t

1− α

1− α

i
(
g
(
K̃t

))
K̃t

 =
(

1 + g
(
K̃t+1

)) [
ξ2 K̃t+1 + ξ3 i

(
g
(
K̃t+1

))]
, (35)

where

ξ1 ≡ β(1− α)(1− τb)
(1 + β)(1 + λ)

∈ (0, 1), (36)

ξ2 ≡ 1 +
τb

1 + β

1− α
α

> 1, (37)

ξ3 ≡ 1− τb
1 + β

∈ (0, 1). (38)

The dynamical system of the economy is given by (35) in conjunction with an initial value K̃0 > 0.
The three statements of the following theorem establish the key results that we need for the analysis
of the link between population, pensions, and endogenous economic growth.

Theorem 1 Let α > 1/3.

1. Equation (35) gives rise to a function K̃t+1 = φ
(
K̃t

)
with φ′

(
K̃t

)
> 0 for all K̃t > 0.

2. There is at least one locally stable steady state K̃∗ = φ
(
K̃∗
)
> 0.

3. There is a function K̃∗ = K̃∗ (λ, τb) with ∂K̃∗/∂λ < 0 and ∂K̃/∂τb < 0.

Statement 1 assures a unique equilibrium value K̃t+1 given K̃t.10 It guarantees that w̃
(
K̃t

)
is

increasing on R++, i. e., as dK̃t > 0 the increase in output is more pronounced than the increase in
investment costs, both measured in units of efficient labor.

10The condition on α is sufficient but by no means necessary for this results.
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Statement 2 assures the existence of at least one locally stable steady state. Hence, without a closed
form solution at hand, the focus of our analysis on steady-state effects is admissible.

The comparative statics of Statement 3 reveal that faster population growth and a higher contri-
bution rate reduce the steady-state capital intensity. Intuitively, in a steady state savings per unit
of efficient labor are such that all generations are equipped with the same amount of capital and
innovation investments per unit of efficient labor. Moreover, since the steady state is locally stable,
an increase in K̃∗ augments savings per unit of efficient labor by less than the investment needs
per unit of efficient labor. Then, a higher population growth rate has two reinforcing effects on K̃∗.
First, it increases the amount of aggregate investments necessary to maintain a given steady-state
capital intensity. Given savings per unit of efficient labor this reduces K̃∗ (Solow effect). Second,
savings per unit of efficient labor falls since, ceteris paribus, faster population growth means a higher
pension benefit in accordance with (31). The second finding of Statement 3 follows from the ob-
servation that the contribution rate affects the individual incentive to save through the well-known
income effects. An increase in τb means a lower net wage when young and a higher benefit when
old. Both effects reduce savings per unit of efficient labor. If such a hike occurs in a locally stable
steady state the value of K̃∗ must fall.

Finally, observe that the steady-state growth rate of all per-capita magnitudes in this economy is
equal to q∗ = g

(
K̃∗
)

. This follows from Lemma 1, the updating condition (16), and the equilibrium
conditions for the intermediate good market and for the labor market, (21) and (22), respectively.
Equilibrium output at t becomes Yt = Kα

t (AtLt)
1−α such that output per worker at t may be

written as Yt/Lt = K̃α
t At. Since K̃t is constant in the steady state, Yt/Lt grows at rate g

(
K̃∗
)

.

3.3 Population, Pensions, and Endogenous Economic Growth

What is the effect of population growth on the steady-state growth rate of the economy? It turns out
that the answer depends on particular properties of the pension scheme. The following proposition
has the result for the pension scheme with a constant contribution rate discussed above.

Proposition 1 Suppose the economy is in a locally stable steady state. If the pension system has
a constant contribution rate, then q∗ = g

(
K̃∗ (λ, τb)

)
and it holds that

dq∗

dλ

∣∣∣∣
τb=const.

< 0. (39)

Hence, a decline in the population growth rate increases the steady-state growth rate of the economy,
q∗. The intuition is straightforward. According to Statement 3 of Theorem 1 a decline in the
population growth rate implies a higher steady-state capital intensity (Solow effect). Moreover, in
accordance with Lemma 1, the increased relative scarcity of labor means faster productivity growth
(Hicks effect).

Next, we consider the same economy except that the pay-as-you-go pension system stipulates a
constant replacement rate and not a constant contribution rate. How does the steady-state growth
rate of such an economy respond to a demographic change?
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Consider, in accordance with (20), a constant replacement ratio ζ ∈ (0, 1) that ties the benefit when
old to the net wage of the current young, i. e.,

bt+1 = ζ wt+1(1− τ̂b,t+1), (40)

where τ̂b,t+1 adjusts such that the budget of the pension scheme is balanced. The ˆ -notation
distinguishes the contribution rate under a constant replacement rate from τb of the constant-
contribution-rate case. At all t the contribution rate consistent with a balanced budget of (31) and
(40) satisfies (1 + λ)τ̂b,t = ζ (1− τ̂b,t), or, suppressing the time argument, we have

τ̂b =
ζ

ζ + 1 + λ
≡ τ̂b (λ, ζ) , with

∂τ̂b
∂λ

< 0 and
∂τ̂b
∂ζ

> 0. (41)

Since the population growth rate is constant, so is the contribution rate. Faster population growth
reduces the dependency ratio such that a given replacement ratio can be supported with a lower
contribution rate. A higher replacement rate requires a higher contribution rate. On the one hand,
such an increase reduces benefits when old, on the other hand, it increases the contributions paid
by the young.

Another important implication of (41) is that Statement 1 and 2 of Theorem 1 also apply here.
Indeed, given K̃0 > 0 the evolution described by the dynamical system of (35) is the same under
a constant contribution rate and under a constant replacement rate if the right-hand sides of (31)
and (40) are equal, i. e., if

(1 + λ)τb = ζ(1− τ̂b). (42)

Statement 3 of Theorem 1 needs to be modified. In view of (41) the relationship between the
steady-state capital intensity and population growth is now described by K̃∗ = K̃∗ (λ, τ̂b (λ, ζ)). It
follows that

dK̃∗

dλ
=
∂K̃∗ (λ, τ̂b (λ, ζ))

∂λ
+
∂K̃∗ (λ, τ̂ (λ, ζ))

∂τ̂b

∂τ̂b (λ, ζ)
∂λ

. (43)

According to Theorem 1 and (41), all three partial derivatives are negative. Hence, the overall effect
of a decline in population growth on the steady-state capital intensity is ambiguous. The reason is
to be found in the relationship between changes in the population growth rate and the incentive
to save. Under a fixed contribution rate, a decline in population growth reduces the expected
pension benefit (see, (31)). Accordingly, savings increase. Under a constant replacement rate this
effect is weakened since a lower population growth rate also raises the contribution rate. Indeed,
from (31) and (41), we have bt+1 = (1 + λ) τ̂b (λ, ζ) wt+1 ≡ bt+1 (λ, τ̂b (λ, ζ) , wt+1). Therefore,
dbt+1/dλ = ∂bt+1/∂λ+ (∂bt+1/∂τ̂b) (∂τ̂b (λ, ζ) /∂λ), where the first term is positive and the second
is negative. Of course, (40) implies that the overall effect remains positive such that the incentive
to save is weaker. Moreover, since a higher contribution reduces the net wage of the current young,
they also save less.

As to the effect of population growth on the steady-state growth rate of the economy under a
constant replacement rate we obtain the following result.
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Proposition 2 Consider an economy in a locally stable steady state. If the pension system has a
constant replacement rate, then q∗ = g

(
K̃∗ (λ, τ̂b (λ, ζ))

)
and it holds that

dq∗

dλ

∣∣∣∣
ζ=const.

< 0. (44)

Proposition 2 holds since the direct effect of λ on K̃ in (43) dominates the indirect effect through
τ̂b such that the overall effect is negative. Hence, under a constant replacement rate we expect
the economy’s steady-state growth rate to increase following a decline in the population growth
rate just as under a constant contribution rate. However, according to the following proposition,
the strength of the steady-state response of the economy’s growth rate to a demographic change
depends on the institutional design of its pension scheme.

Proposition 3 Consider an economy in a locally stable steady state. Suppose (42) is satisfied such
that q∗ = g

(
K̃∗ (λ, τb)

)
= g

(
K̃∗ (λ, τ̂b (λ, ζ))

)
. Then, the impact of a permanent decline in the

population growth rate on the steady-state growth rate is greater under a constant contribution rate
than under a constant replacement rate, i. e.,∣∣∣∣∣ dq∗dλ

∣∣∣∣
τb=const.

∣∣∣∣∣ >
∣∣∣∣∣ dq∗dλ

∣∣∣∣
ζ=const.

∣∣∣∣∣ . (45)

Hence, the prediction is that a decline in the population growth rate increases the steady-state
growth rate of the economy by more if the pension scheme keeps the contribution rate constant.
The necessary increase of the contribution rate under a constant replacement rate discourages
savings. Hence, the induced change in K̃∗ will be less pronounced. We shall confirm this result in
our evaluation of the quantitative model in Section 6 (see, in particular Figure 7).

4 Calibration Strategy

In this section, we describe our calibration of the model parameters.

4.1 Demographics

Our projection of the US population demographics for 1950-2050 is taken from UN (2002). The
forecast for the US population development until 2400 is taken from Krüger and Ludwig (2007).
These projections are based on the assumptions that life time expectancy increases at constant rates
until the year 2100 and that the number of newborns is constant after 2200. Figure 2 illustrates the
time profile of the population growth rate 1950-2400.11 We take this evolution as exogenous and
study the consequences for economic growth, pensions, and welfare.

11The depicted growth rates are computed for the population aged 20-94 in compliance with our model of Section 2.



Population, Pensions, and Endogenous Economic Growth 17

Figure 2: Actual and Predicted US Population Growth Rates

4.2 Endowments and Preferences

We choose the discount factor β = 1.011 in accordance with the empirical estimates of Hurd (1989)
who explicitly accounts for mortality risk.12 For our choice of β, the real interest rate before taxes
amounts to 7.33% (6.25%) during 1990-2000 (at the end of the demographic transition). We set the
coefficient of risk aversion θ = 2.0. The parameter γ = 0.32 of the utility function is calibrated so
that the average labor supply of the workers is approximately 0.30.

The s-year old household of type j has the productivity e(s, j) = ȳsεj . The age-efficiency profile
{ȳs}45

s=1 is taken from Hansen (1993), interpolated to in-between years and normalized to one. The
set of the equally distributed productivity types {ε1, ε2} = {0.57, 1.43} is taken from Storesletten,
Telmer, and Yaron (2004). With this calibration, we are able to replicate the empirical distribution
of US wages. In our model, the Gini coefficient of the wage distribution is equal to 0.301 which
compares favorably with empirical values reported by, e. g., Dı́az-Giménez, Quadrini, and Ŕıos-Rull
(1997).

4.3 Production

The labor income share and the depreciation rate are set in accordance with Prescott (1986) implying
the values α = 0.35 and δ = 0.08, respectively. The labor income (capital income) share in our

12Related research that uses such a value for β includes İmrohoroğlu, İmrohoroğlu, and Joines (1995) and Huggett

(1996). In the literature, the discount factor β has often been set smaller than one. In the Appendix, we study how

a lower value, β = 0.99, affects our result. Besides an unrealistically high interest rate both our qualitative and our

quantitative results remain virtually unaffected.
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model amounts to 64.1% (35.0%), while research expenditure relative to GDP are equal to 0.93%.13

A central parameter of our model is the elasticity of the growth rate of labor productivity q with
respect to innovation investment i, 1/v. With an increasing value of 1/v, the endogenous growth rate
q becomes more sensitive to the exogenous variables of our model, in particular to the population
growth rate and to policy parameters in the hand of the government. The intuition for this comes
from Lemma 1 which states the link between the capital intensity in the final-good sector, K̃, and
the equilibrium growth rate of technological knowledge, q̂. Indeed, the elasticity of the function
g
(
K̃
)

with respect to K̃ can be derived from equation (50) of the proof of Lemma 1 as

dg
(
K̃
)

dK̃

K̃

g
(
K̃
) =

1
α+ (1− δ)K̃

(
1
v

) 1 +
(
1 + 1

v

)
g
(
K̃
)

1 + g
(
K̃
)
− 1

v

(
1− g

(
K̃
)) . (46)

It measures the response of the equilibrium growth rate of technological knowledge to a change in
the capital intensity at K̃. This elasticity is increasing in 1/v for the relevant values of g

(
K̃
)

.14

Hence, as v decreases the effect of a higher K̃ due to population aging on labor productivity is more
pronounced.

We derive an estimate for the value of v = 1.14 when we regress the log of the GDP per-capita
growth rate on the log of the R&D investment expenditure divided by GDP. We use annual time
series data for the US economy from 1973-2000. Data on business enterprize R&D expenditure in
current national prices are from OECD (1997) and OECD (2002a). Moreover, the price deflator and
GDP data are from OECD (2002b).15 The parameter v0 is set equal to 1.407 implying an average
productivity growth equal to 1.80% over the years 1990-2000.

4.4 Government

The government share ḡ = G/Y is set equal to the average ratio of government consumption in
GDP, ḡ = 0.195 in the US during 1959-93 according to the Economic Report of the President (1994).
The tax rates τw = 24.8% and τr = 42.9% are computed as the average values of the effective US
tax rates over the time period 1965-88 that are reported by Mendoza, Razin, and Tesar (1994).
The pension net replacement rate ζ = 0.50 is taken from İmrohoroğlu, İmrohoroğlu, and Joines
(1995). Government transfers, tr, and the social security contribution rate, τb, are computed using
the equilibrium condition of the government budget (17) and the social security budget (20).

13One reason why the fraction of research expenditure in GDP is relatively small is that the model does not explicitly

account for above average salaries of researchers.

14To be precise, this statement is true for the relevant range g
(
K̃
)
∈ [0, 1]. Moreover, in deriving this finding we

have to take into account the dependency of g on v as implied by (50).

15In our model, total investment expenditure, ntit, divided by total output, Yt, is equal to it/K̃
α
t . Therefore, in

our regression, we make the identification assumptions that 1) the capital intensity K̃ is approximately constant in

the US during 1973-90, and 2) the productivity growth rate q is approximately equal to the GDP per-capita growth

rate. Moreover, R2 = 0.42 and the standard deviation of the parameter 1/v (v) amounts to 0.218 (0.348).



Population, Pensions, and Endogenous Economic Growth 19

4.5 Computation of the Transition Dynamics

To compute the transition dynamics presented in the next section, we assume that the US economy
attains a new steady state with zero population growth in the year 2400.16 In addition, we assume
an arbitrary steady state with 1.1% population growth in the year 1950. Given that we simulate
the economy starting in 1950, the initialization is found to have a small effect on the transition after
2000.

In a first step, we make an initial guess of the time path of {K̃t, l̄t, τb,t, t̃rt, qt}t=2400
t=1950. We iterate

backwards in time and compute the household decisions of the newborn generation in each period
t = 2400, 2399, . . . , 1950.17 In each period, we aggregate savings of all generations and compute
new values for {K̃i

t, l̄
i
t, τ

i
b,t, t̃r

i
t, q

i
t
}. We update the time path using the Gauss-Seidel-Quasi-Newton

algorithm presented by Ludwig (2007). In particular, we use the derivatives of the final steady-
state equilibrium conditions with respect to K̃, l̄, τb, t̃r, and q to initialize the Jacobian matrix in
the Broyden algorithm. Moreover, we solve the model blockwise by first solving the transition for
{K̃1

t }t=2400
t=1950 given the initial guess {l̄0t , τ0

b,t, t̃r
0
t , q

0
t }. In the next step, we solve the transition for {l̄1t }

given the remaining variable values {K̃1
t , τ

0
b,t, t̃r

0
t , q

0
t } and so forth. When we tried to solve the model

for all endogenous aggregate variables simultaneously, the program did not converge. Therefore,
computational time is considerable and amounts to approximately 3 hours on a Pentium III, 860
MHz, for an accuracy chosen to be equal to 10−5 for both the individual decision rules and the time
path of the endogenous aggregate variables.

5 Demographic Transition and Economic Growth

In this section we study the evolution of the US economy implied by the demographic transition
depicted in Figure 2. As to the pension scheme we assume a constant pension replacement ratio
equal to ζ = 50% such that the social security contribution rate τb,t adjusts to balance the budget
of the social security system. We refer to this setup as the benchmark economy.

The analysis proceeds in two steps. First, we establish and interpret the evolution of the labor force,
the capital intensity, the factor prices, and the growth rate of technological knowledge, q, for the
period 1950-2200. Second, to identify the role of endogenous growth, we compare the benchmark
economy to an economy that differs in that growth is exogenous at a constant rate and costless,
i. e., q = 1.8% and i(1.8%) = 0.

5.1 Demographic Transition and Endogenous Growth

The transition from 1950 until 2200 is graphed in Figures 3 and 4 for the benchmark economy. As
the population ages, the share of the working age population falls from 88% in 1950 to 67% in 2200.

16In fact, the deviation of the steady-state capital intensity in 2400 from the computed capital intensity at the end

of the transition in period 2399 is less than 0.001%. Details on the transition until 2400 are given in the Appendix.

17To compute the individual household problem, we have to solve a non-linear equation system in two variables

which are the capital stocks of the 21-year old households with productivity ε1 and ε2, respectively. The methods are

described in more detail in Heer and Maussner (2008).
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Therefore, the contribution rate to the social security system τb,t increases from 5.2% to 14.0%.

Figure 3: Transition in the Benchmark Economy, Results I

The dynamics of the capital intensity, K̃ = K/AL, seems to reflect the evolution of the labor force
share; as the aggregate efficient labor supply, L, declines, K̃ increases. However, the capital intensity
is also influenced by general equilibrium effects that impinge on, e. g., the ability and willingness of
a declining labor force to save and the evolution of the level of technological knowledge, A. Overall,
the capital intensity is predicted to increase over time, though the evolution is not monotonous.
The dynamics of factor prices reflects the one of the capital intensity; while the real wage rate w
increases in K̃, the real interest rate r falls.

Since the growth rate of technological knowledge is tied to the capital intensity by the monotonous
function q̂t = g

(
K̃t

)
, the evolution of q mimics the one of K̃. The lower right diagram in Figure 3

shows that q̂t increases from an average rate of 1.8% during 1991-2000 to 2.28% in 2100. As we
approach the steady state after 2200, q̂t rises even further.18 In the steady state q̂t = q∗ = 2.38%
is constant and coincides with the growth rate of all per-capita magnitudes such as income and
consumption. Hence, our first main result, we conclude that the demographic transition is associated
with an economically significant increase of the long-run growth rate by 0.58 percentage points.

We may use these observations to shed some light on our interpretation of the data shown in Figure 1.
From Lemma 1, the updating condition (16), and the equilibrium conditions for the intermediate
good market and for the labor market, (21) and (22), respectively, we find the equilibrium output

18All endogenous variables of the model like the capital stock per capita or the aggregate efficient labor supply per

capita stabilize around the year 2200. Indeed, in 2200 the transition is almost complete. The complete transition of

K̃t and q̂t until the year 2400 is shown in Figure 9 in Appendix 8.3.
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Figure 4: Transition in the Benchmark Economy, Results II

at t to equal Yt = Kα
t (AtLt)

1−α. Then, output per efficient hour worked at t may be written as
Yt/Lt = K̃α

t At. Suppressing time subscripts and denoting the growth rate of some variable x by
gx, the growth rate of Y/L at all t is

gY/L = α gK̃ + g
(
K̃
)
. (47)

Hence, growth of labor productivity has two sources. First, there is the direct contribution of growth
in K̃, second there is the indirect contribution of K̃ on the growth of technological knowledge. As
population and effective labor decline, both channels contribute to the growth of labor productivity.
However, the impact of a rise in g

(
K̃
)

, i. e., the Hicks effect, is quantitatively much larger. For
instance, the model predicts average annual growth rates of labor productivity and technological
knowledge between 2000 and 2100 of 2.18% and 2.15%, respectively. Accordingly, growth in Y/L

is almost entirely due to the Hicks effect.

In the new steady state with a constant population, both the capital stock per capita K/AN and the
output per capita Y/AN (both measured in efficiency units and not illustrated) are much smaller
than the corresponding values in 1950 where we started the computation assuming a steady state
with population growth equal to 1.1%. The per-capita capital stock and output decline by 13.7%
and 4.6%, respectively. Even though a decline in the fertility rate results in substantial capital
deepening and higher output per worker,19 the effect of the decline in the work force share in the

19Furthermore, we have a positive composition effect in the labor force as the share of high-productive old-age

workers in the total labor force increases.



Population, Pensions, and Endogenous Economic Growth 22

total population dominates. As the share of the working-age population falls, tax revenues also
decline. In order to balance the budget, government transfers are cut, especially during the first
decades of 21st century. In 2200, government transfers are reduced by approximately 0.5% of total
consumption compared to 1950.

5.2 Endogenous versus Exogenous Growth

To highlight the role of endogenous innovation investments, we simplify the benchmark economy and
assume a production sector where q is constant at 1.8% and disregard the investment requirement
function i(q). Then, the growth rate of technological knowledge is exogenous, constant, and technical
change is costless. Indeed, these assumptions turn the production side of the economy into the one
of Solow (1956) with exogenous technical change and At = 1.018At−1.

At first sight, the transition of the variables under exogenous growth looks similar to the one in the
benchmark economy with endogenous growth. For instance, Figure 5 shows the dynamics of the
capital intensity for the benchmark economy both with endogenous and exogenous growth. When
growth is exogenous, the capital intensity increases from the present over the next 100-200 years
showing similar swings as under endogenous growth. However, form 2000 onwards the level of K̃ is
smaller under endogenous growth. The first reason for this difference can be deduced from the lower
left graph of Figure 5: from 1993 onwards the growth rate of A is higher reflecting the Hicks effect
which is absent when growth is exogenous. Then, similar to the neoclassical growth model with
exogenous technological change of Solow (1956), the capital intensity is smaller for higher growth
rates. Second, in the benchmark model not all invested resources are channeled towards capital
accumulation since innovation investments are costly.20

When growth is exogenous, a declining population affects labor productivity only through the Solow
effect in equation (47). Quantitatively, the increase in Y/L is much smaller even though K̃ rises
faster when growth is exogenous. In fact, the average annual growth rate of labor productivity
between 2000 and 2100 is only 1.87%, i. e., 14% lower than under endogenous growth.

This intuition helps to understand the differential evolution of per-capita income under endogenous
and exogenous growth. The lower right graph of Figure 5 shows that, from 2007 onwards, Y/N
grows faster under endogenous growth. Using the same steps that let to the decomposition of
equation (47) we obtain per-capita output at t as Yt/Nt = (Lt/Nt) K̃α

t At. Accordingly, at t the
growth rate of Yt/Nt is

gY/N = gL/N + gY/L, (48)

i. e. the sum of the growth rate of efficient labor per capita and the growth rate of output per unit
of efficient labor.

Both under endogenous and exogenous growth we have in the steady state that gL/N = gK̃ = 0.
Hence, in the long run gY/N = 2.38% > 1.8%. In the short and medium run, (48) suggests that the

20The upper right graph of Figure 5 reveals that the evolution of L is very similar under endogenous and exogenous

growth. Hence, the effective labor supply cannot account for the differential evolution of K̃.
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Figure 5: Transition of K̃, L, q, and the growth rate of Y/N in the Model with Endogenous and
Exogenous Growth

Hicks effect also dominates the evolution output per capita since the upper right graph of Figure 5
shows that during the transition gL/N is approximately the same under endogenous and exogenous
growth. Hence, starting in 2007, gY/N is higher under endogenous growth because of the Hicks
effect.

6 Population, Pensions, and Growth

In the previous section, we found that a decline in the population growth rate increases the growth
rate of technological knowledge. In this section, we ask whether and how the design of the pension
system affects this result. In Section 6.1 the focus is on possible growth effects. Since faster growth
is no end in itself, Section 6.2 turns to the comparison of individual welfare under different designs
of the pension scheme.

6.1 Comparative Analysis of Pension Reform Proposals

We consider the three scenarios of the pay-as-you-go pension scheme already introduced in Section 2:

1. constant replacement ratio, i. e., ζt = bt
(1−τw−τb)wt l̄t

= ζ = 50%. This is the benchmark
economy (solid line in the following figures),
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2. constant contribution rate after 2010 (broken line). More precisely, the contribution rate
adjusts until 2010 before it remains constant at the level of τb = 7.1%. We assume that this
policy change is fully anticipated by all economic agents.21

3. constant replacement ratio and later retirement at age 70, i. e., R = 51, for those agents born
in 2010 and afterwards (dotted line).

Figure 6 illustrates the dynamics of the US economy for the three pension reform scenarios under
endogenous growth. In the scenarios 1 and 3 (2), the contribution rate τb (the replacement ratio of
the pensions ζ) adjusts in order to balance the social security budget. Consequently, pensions fall
in scenario 2 as ζ is reduced from 50.0% to 23.9%. In scenario 3, agents retire at age 71 if they are
born after 2010. Therefore, the burden on the pension system declines significantly during 2055-59
when the cohorts of the 66 through 70-year old workers remain in the labor market. During this
period, the effective labor supply increases (see upper right picture of Figure 6) and the dependency
ratio falls. The social security contribution rates in the new steady states amount to 14.0%, 7.1%,
and 10.9% in the scenarios 1, 2, and 3, respectively.

In the scenarios 2 and 3, the lower social security contribution rates also increase the incentives
to supply labor as the net wage rate increases and the substitution effect dominates the income
effect. Therefore, the aggregate supply of efficient labor increases. In scenario 2, households also
accumulate higher savings for old age, while in scenario 3 households accumulate savings over a
longer working life. As a consequence, savings are also much higher in the scenarios 2 and 3. Since
both savings and the labor force increase, the net effect on the capital intensity is ambiguous. As
can be seen from the upper left picture in Figure 6, the capital intensity is higher in scenario 2 than
in the benchmark case, while it is approximately equal in the benchmark case and in the scenario
3 with the exception of the period 2055-70.

In all three scenarios, the evolution of the growth rate of technological knowledge q mimics the evo-
lution of K̃. Therefore, the long-run change in q is largest in scenario 2 that keeps the contribution
rate τb constant after 2010. As can be seen from Figure 7, qt rises from 1.80 during 1990-2000 to
2.73% in 2200.22 In both scenarios 1 and 3, qt is approximately at 2.38% in 2200. Since in 2200
the transition is almost complete we may interpret these numbers as the steady-state growth rates
of the respective scenarios. Then, the calibration exercise confirms the qualitative predictions of
Proposition 3: the effect of the demographic transition on the steady-state growth rate of the econ-
omy is larger under a constant contribution rate (scenario 2) than under a constant replacement
rate (scenario 1).

Summing up, we state as our second main result that the design of the pension system may have
large quantitative effects on the economy’s growth rate.

21Appendix 8.4.2 has the case where this reform is not anticipated.

22However, even though the growth rate increases significantly in scenario 2, it takes another 123 years until the

absolute level of the pensions overtakes the one in the benchmark case. The effect of the lower replacement ratio

dominates and lasts for many decades. For example in 2100, pensions are still 26% lower in scenario 2 than compared

to the benchmark.
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Figure 6: Transition Dynamics for Different Public Pension Reform Scenarios under Endogenous
Growth

6.2 Welfare under Endogenous and Exogenous Growth

This section addresses two questions. First, we ask how the three pension reform designs compare
in terms of welfare. Second, we want to know how the ranking of these proposals depends on
whether the growth rate is endogenous or exogenous. Our results suggest that such a ranking can
be established and that the negligence of growth rate effects of the social security system matters
for the rank order of the proposals.

To address these questions, we hypothesize that the average newborn of each generation knows her
lifetime utility associated with a life under each scenario. Equipped with this knowledge, she is able
to rank the scenarios according to the lifetime utility they deliver. Figure 8 displays this welfare
ranking for each generation born between 1960 and 2050. To provide an interpretable measure
of welfare, the vertical axis states the consumption equivalent change relative to the benchmark
economy with endogenous growth and a constant replacement rate. In other words, for all 6 scenarios
it states the percentage change of the life-time consumption profile for the average newborn that is
necessary to make her indifferent to a life in the benchmark economy.23

Obviously, the welfare effects are large and public pension reform matters. For example, consider
the generation born in the year 2050. Under endogenous growth, the compensation in consump-
tion necessary to make the average newborn indifferent between the benchmark economy and the
economy with a constant contribution rate amounts to 13.21% of total lifetime consumption, the

23Similarly, de Nardi, İmrohoroğlu, and Sargent (1999) use wealth equivalent changes.
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Figure 7: Growth Rate Effects of Different Public Pension Reform Scenarios

difference between the upper broken line and the solid horizontal line at 2050. Under exogenous
growth this compensation declines to 1.11%, the difference between the lower solid and the lower
broken curve at 2050. Of course, these huge welfare effects represent differences in the growth effects
of the individual pension reforms.

Our results with regard to the welfare effects of the public pension reform can be summarized as
follows:

1. The quantitative welfare effects of public pension reform proposals might be much larger if
growth is endogenous.

2. Endogenous productivity growth matters for the ranking of the pension reform proposals. For
instance, generations that enter the labor force between 1990-2010 support a pension reform
proposal that keeps the contribution rate τb constant after 2010 under endogenous growth,
and they reject it under exogenous growth.

3. In the case of an increase in the retirement age, the generations born in the immediate decades
following the policy change suffer. In the case of exogenous growth, welfare decreases for those
born during the next 25 years. In the case of endogenous growth, all future generations suffer
until the year 2354.

4. To keep the burden of the pension system low, a freezing of the social security contribution
rate is preferable to an increase in the retirement age. Indeed, when growth is endogenous all
generations born after 1993 prefer scenario 2 where the contribution rate is constant.
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Figure 8: Welfare of Newborn Generations – Consumption Equivalent Change

As a caveat, let us mention that we do not interpret these results as being based on a comprehensive
welfare analysis of public pension reforms. Clearly, our analysis neglects features like public debt
and a pension system where benefits are tied to previous contributions. Our point, however, is more
subtle. In fact, our results suggest that quantitative welfare results may depend on the assumption
of endogenous or exogenous growth. Therefore, welfare results concerning public pension reforms
that appear, e. g., in Huang, İmrohoroğlu, and Sargent (1997) or de Nardi, İmrohoroğlu, and Sargent
(1999) under exogenous growth may not be robust.

7 Concluding Remarks

In an economy where the production technology is endogenous, the investment decisions of firms
are guided by profit incentives. The evolution of the labor force, taken as exogenous by firms, is
then an important determinant of aggregate investment and growth. Moreover, a declining labor
force also affects an economy’s ability to save and invest. The purpose of the present paper is to
study the interdependency of these aspects in a dynamic general equilibrium model and to assess
quantitatively the resulting effects on economic growth, pensions, and welfare for the US economy.

We find that, as a consequence of the demographic transition, the US growth rates increases from
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1.8% during 1990-2000 to 2.28% (2.55%) in 2100 if the pension replacement ratio (contribution
rate) is kept at its current level. In addition, welfare increases for all generations born after 1993 if
the government keeps the pension contribution rate constant at the current level while pensions are
allowed to decrease. At the conceptual level, our results suggest that allowing for TFP growth to
be endogenous affects both the positive and the normative implications of large-scale OLG models
employed to study policy reform proposals of the social security system.

Our findings suggests several promising routes for future research:

1. In our analytical framework technical change must be labor-saving at the level of intermediate-
good firms. In a next step, one would want to fully endogenize the direction of technical
change, e. g., in the spirit of Acemoglu (2003). While the literature on capital versus labor-
saving technical change may be interpreted as providing a reason for the technology to be more
labor than capital augmenting, both forms of technical progress occur along the transition
towards a steady state and affect the economy’s growth rate.

2. On the household side, we assume a constant labor force participation rate. However, over
the last three decades, this rate has increased in the US from 58.9% in 1966 to 67.1% in 1998.
Since 1998, it has declined to 66.0% in 2005 basically due to cyclical effects (see, McEwen,
Orrenius, and Wynne (2005)). Intuitively, the labor force participation rate is likely to depend
on the demographic transition and the design of the public pension system. While a rising
participation rate reduces the relative scarcity of labor it is likely to increase aggregate savings
and capital accumulation through a rise in the economy’s wage incomes. The net effect on
investment incentives is hitherto undetermined.

3. The level of technological knowledge used in an economy is the result of innovation investments
made throughout the world. Recently, Jones (2002) documented the relevance of this channel
for the evolution of the US economy during the period from 1950 to 1993. However, to
incorporate this link one needs to know the appropriate diffusion process. In light of the
general formulation of such a process given in Benhabib and Spiegel (2005), our specification
of the evolution of technological knowledge (see equation (16)) is the one of the world’s single
technological leader. Clearly, more work needs to be done to quantify the relevant parameters
of a richer diffusion process that applies to the US economy.

4. Globalization and market liberalization in many emerging countries, notably China and India,
account for a rising global labor force. As a matter of fact, population ageing is already a
predominant phenomenon in many of these countries including China, Japan, and Europe. In
an open economy, these developments are likely to affect wages and interest rates in a way
that may mitigate the effects emphasized in our paper. However, Krüger and Ludwig (2007)
find that the decline in the labor force in Europe and Japan implies a small increase of US
relative factor prices. With the Hicks effect in their framework such a small increase is likely
to raise the growth rate of the US economy. We leave the quantitative assessment of this effect
for future research.
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8 Appendix

8.1 Details on the Data for Figure 1

Figure 1 replicates and extends Figure 1 in Romer (1987). Accordingly, for the period 1899-1979
we use the same data as described in footnote 23, p. 182, of Romer’s paper. For the period 1979-
1999, we use the same data sources that Romer uses for the time span 1949-1979. Hence, data
on man-hours for 1979-1999 is taken from Department of Labor, Bureau of Labor Statistics, Table
B-47: Hours and Earnings in Private Nonagricultural Industries. The output measure is Gross
Private Domestic Product 1979-1999 as provided by the Department of Commerce. Labor Force
corresponds to the Total Civilian Labor Force as reported by the Department of Labor, Bureau
of Statistics, Table B-12: Labor Force, Employment and Unemployment and Table B-35: Civilian
Population and Labor Force. Growth of output per man-hour is equal to the growth of output
minus the growth in the labor force plus the growth in the rate of employment and minus growth
in average hours worked.

8.2 Proofs

8.2.1 Proof of Lemma 1

Consider equations (6), (7), (14) and (15) hold. Upon combining the latter two, we obtain

pt = [(1 + qt) iq(qt) + i(qt)] (1 + rt) (49)

Acknowledging the dependency of pt and rt on K̃t through (6) and (7) in (49) gives

(1− α)K̃t

(1− δ)K̃1−α
t + α

= (1 + q̂t) iq(q̂t) + i(q̂t). (50)

Let LHS(K̃t) and RHS(q̂t) denote the left and the right-hand side of (50). One readily verifies
that LHS(K̃t) satisfies

LHS(0) = 0, lim
K̃t→∞

LHS(K̃t) =
K̃α
t

1− δ
=∞, and LHS′(K̃t) > 0 for all K̃t > 0. (51)

Similarly, in view of the specification of the input requirement function i of (10) we find for RHS(q̂t)
the properties

RHS(0) = 0, lim
q̂t→∞

RHS(q̂t) =∞, and RHS′(q̂t) > 0 for all q̂t > 0. (52)

Hence, for each value K̃t ≥ 0 there is exactly one corresponding value q̂t that satisfies (50). Moreover,
the function g must have the indicated properties. �
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8.2.2 Proof of Theorem 1

We prove each statement of the theorem separately starting with Statement 1. Recall that δ = 1,
v0 = 1, and v = 2 such that i(q) = q2.

1. Implicit differentiation of (35) gives[
ξ1 αK̃

α−1
t

(
1 +

i(g(K̃t))
K̃t

−
iq(g(K̃t))gK̃(K̃t)

1− α

)]
dK̃t = Z(K̃t+1)dK̃t+1. (53)

Here,

Z(K̃t+1) ≡ gK̃
[
ξ2 K̃t+1 + ξ3 i

]
+ (1 + g)

[
ξ2 + ξ3 iq gK̃

]
, (54)

and the arguments of i is g and the one of g is K̃t+1. The properties of the function i and the
fact that (50) with δ = 1 implies

dq̂t

dK̃t

=
1−α
α

2iq(g(K̃t)) + (1 + g(K̃t))iqq(g(K̃t))
≡ gK̃(K̃t) > 0 (55)

for all K̃t > 0 leads to the conclusion that Z(K̃t+1) > 0. Hence,

dK̃t+1

dK̃t

=
ξ1 αK̃

α−1
t

(
1 + i(g(K̃t))

K̃t
− iq(g(K̃t))gK̃(K̃t)

1−α

)
Z(K̃t+1)

≡ φ′(K̃t) (56)

exists. To prove that φ′(K̃t) > 0, we have to make sure that the numerator of (56) is greater
than zero for all K̃t > 0. Before doing this it is useful to prove the following claim.

Claim 1 Consider gK̃(K̃) of (55) and the investment requirement function (10) with v0 = 1
and v = 2. Then

lim
K̃→0

gK̃(K̃) =
(

1− α
2α

)
. (57)

Proof If K̃ > 0, equation (55) implies that

gK̃(K̃) =
(

1− α
2α

)(
1

2g(K̃) + (1 + g(K̃))

)
. (58)

Since i(0) = iq(0) = 0, (50) implies that limK̃→0 g(K̃) = 0. Hence,

lim
K̃→0

gK̃(K̃) =
(

1− α
2α

)
lim
K̃→0

1
2g(K̃) + (1 + g(K̃))

=
1− α
2α

. (59)

�
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The numerator of (56) is greater than zero for all K̃t > 0 if

1 +
i

K̃t

−
(

1
2α

)
iq

2iq + (1 + g)iqq
> 0, (60)

where the argument of i is g and the argument of g is K̃t. The fraction i/K̃t is increasing in K̃
since iq gK̃ K̃−i > 0. To see this, consider (55) and (50) to conclude that (1+g)

[
(iq)

2 − i iqq
]
>

i iq holds for the investment requirement function specified in (10). Finally, using l’Hôpital’s
rule and Claim 1,

lim
K̃→0

i(g(K̃t))
K̃t

= lim
K̃→0

iq(g(K̃t) gK̃(K̃t) = 0. (61)

Hence, a lower bound on the left-hand side (60) is

1−
(

1
α

)(
g

1 + 3g

)
(62)

which can be shown to be strictly positive for all α > 1/3 as stated in the theorem.

�

2. The steady state is determined by (35) for K̃∗ = K̃t = K̃t+1. We show that the right-hand
side, RHS(K̃), and the left-hand side, LHS(K̃), of (35) intersect on K̃ > 0 at leaste once.
First, consider

RHS(K̃) ≡
(

1 + g(K̃)
) [
ξ2 K̃ + ξ3 i(g(K̃))

]
. (63)

This function is bounded from below, i. e., RHS(K̃) > ξ2 K̃ for all K̃ > 0. From the proof of
Claim 1, we also have RHS(0) = 0. Moreover,

RHS′(K̃) = gK̃(K̃)
[
ξ2 K̃ + ξ3 i(g(K̃))

]
+
(

1 + g(K̃)
) [
ξ2 + ξ3 iq(g(K̃))gK̃(K̃)

]
> 0,(64)

and

lim
K̃→0

RHS′(K̃) = lim
K̃→0

{
gK̃(K̃)

[
ξ2 K̃ + ξ3 i(g(K̃))

]
+
(

1 + g(K̃)
) [
ξ2 + ξ3 iq(g(K̃))gK̃(K̃)

]}
= ξ2 (65)

since limK̃→0 gK̃(K̃) is positive and finite.

Next, consider the function

LHS(K̃) ≡ ξ1 K̃
α

(
1− α

1− α
i(g(K̃))
K̃

)
. (66)
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This function is bounded from above, i. e., ξ1 K̃
α > LHS(K̃) for all K̃ > 0 and satisfies

limK̃→0 LHS(0) = 0. To verify the latter we note that

lim
K̃→0

LHS(K̃) = ξ1 lim
K̃→0

K̃α − α ξ1

1− α
lim
K̃→0

i
(
g(K̃)

)
K̃1−α

= 0− α ξ1

(1− α)2
lim
K̃→0

iq gK̃
K̃−α

=
α ξ1

(1− α)2
lim
K̃→0

iq gK̃ K̃
α = 0, (67)

where the second step uses l’Hôpital’s rule and the last step applies arguments of the proof of
Claim 1.

Since α > 1/3, the term in brackets on the left-hand side of (53) is strictly positive for K̃ > 0.
Therefore, LHS′(K̃) > 0. Moreover, we have

lim
K̃→0

LHS′(K̃) = lim
K̃→0

[
ξ1 αK̃

α−1

(
1 +

i(g(K̃))
K̃

−
iq(g(K̃))gK̃(K̃)

1− α

)]
(68)

= ξ1 α

[
lim
K̃→0

1
K̃1−α

+ lim
K̃→0

(
(1− α)i− iq gK̃ K̃

(1− α)K̃2−α

)]
. (69)

The first limit is plus infinity whereas l’Hôpital’s rule applied to the second limit gives

−1
(1− α)(2− α)

[
lim
K̃→0

(
α iq gK̃
K̃1−α

)
+ lim
K̃→0

(
iqq (gK̃)2 K̃

K̃1−α

)
+ lim
K̃→0

(
iq gK̃K̃ K̃

K̃1−α

)]
. (70)

To study the last two terms of (70) we use (50) to derive

gK̃K̃ = −g2
K̃

(
3iqq + (1 + g)iqqq
2iq + (1 + g)iqq

)
. (71)

Using the latter and v = 2, these two terms become

lim
K̃→0

(gK̃)2 K̃α

[
(1 + g)(iqq)2 − iqq iq − (1 + g)iq iqqq

2iq + (1 + g)iqq

]

= lim
K̃→0

(gK̃)2 K̃α

[
4(1 + g)− 4g
4 g + 2(1 + g)

]

= lim
K̃→0

(gK̃)2 K̃α

[
2

1 + 3 g

]
. (72)

From Claim 1 we know that limK̃→0 gK̃ = (1− α)/(2α). Hence, the limit in (72) is zero.

Turning to the first term in (70), we have

lim
K̃→0

(
α iq gK̃
K̃1−α

)
= (1− α) lim

K̃→0

(
1

K̃1−α

)(
v gv−1

2v gv−1 + (1 + g)v(v − 1) gv−2

)
. (73)



Population, Pensions, and Endogenous Economic Growth 33

Evaluated at v = 2 and using l’Hôpital’s rule gives

(1− α) lim
K̃→0

(
g

K̃1−α(1 + 3g)

)

= (1− α) lim
K̃→0

(
gK̃

3gK̃ K̃
1−α + (1 + 3g)(1− α)K̃−α

)

= (1− α) lim
K̃→0

(
K̃α gK̃

3gK̃ K̃ + (1 + 3g)(1− α)

)

= 0. (74)

Hence, the expression (70) vanishes in the limit such that

lim
K̃→0

LHS′(K̃) = ξ1 α

[
lim
K̃→0

1
K̃1−α

]
=∞. (75)

Since ξ2 is finite, the comparison of (65) to (75) leads to the conclusion that LHS(K̃) >
RHS(K̃) for K̃ arbitrary close to K̃ = 0. In addition, the fact that RHS(K̃) > ξ2 K̃

and ξ1 K̃
α > LHS(K̃) for all K̃ > 0 implies that there is at least one steady state K̃∗ ∈(

0, (ξ1/ξ2)(1/(1−α))
)

that satisfies LHS′(K̃∗) < RHS(K̃∗). Then, at K̃∗ we have φ′(K̃∗) =

LHS′(K̃∗)/RHS(K̃∗) < 1 and the steady state is locally stable. �

3. Consider equation (35) at K̃t = K̃t+1 = K̃∗ and define the left-hand side of this equation
as LHS

(
K̃∗, ξ1

)
and its right-hand side as RHS

(
K̃∗, ξ2, ξ3

)
. Taking the differential with

respect to dK̃∗ and dξ1 gives

dK̃∗

dξ1
=

−LHSξ1
(
K̃∗, ξ1

)
LHSK̃∗

(
K̃∗, ξ1

)
−RHSK̃∗

(
K̃∗, ξ2, ξ3

) > 0. (76)

The sign follows since LHSξ1 > 0 and local stability implies LHSK̃∗ < RHSK̃∗ .

Then, the negative relationship between K̃∗ and λ obtains from the fact that ∂ξ1/∂λ < 0 such
that

dK̃∗

dλ
=
dK̃∗

dξ1

∂ξ1

∂λ
< 0. (77)

Turning to the relationship between K̃∗ and τb we need to take into account that ξ1, ξ2, and
ξ3 depend on τb. Total differentiation of (35) with respect to K̃∗ and τb delivers

dK̃∗

dτb
=
−LHSξ1

(
K̃∗, ξ1

)
∂ξ1
∂τb

+RHSξ2

(
K̃∗, ξ2, ξ3

)
∂ξ2
∂τb

+RHSξ3

(
K̃∗, ξ2, ξ3

)
∂ξ3
∂τb

LHSK̃∗

(
K̃∗, ξ1

)
−RHSK̃∗

(
K̃∗, ξ2, ξ3

) . (78)
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Again, due to local stability the denominator is negative. The first term of the numerator is
positive since ∂ξ1/∂τb < 0. The sum of the second and third term is also positive. To see this,
observe that

RHSξ2
∂ξ2

∂τb
+RHSξ3

∂ξ3

∂τb
=

1 + g(K̃∗)
1 + β

[
1− α
α

K̃∗ − i
(
g(K̃∗)

)]
(79)

=
1 + g(K̃∗)

1 + β

1− α
α

K̃∗

1− α

1− α

i
(
g(K̃∗)

)
K̃∗


From the proof of Statement 2, the term in brackets is positive. Hence, it follows that
dK̃∗/dτb < 0. �

8.2.3 Proof of Proposition 1

From Lemma 1 and Theorem 1, we have

dq∗

dλ

∣∣∣∣
τb=const.

= gK̃(K̃∗ (λ, τb))
∂ ˜K∗ (λ, τb)

∂λ
< 0. (80)

�

8.2.4 Proof of Proposition 2

Under a constant replacement rate we have q∗ = g(K̃∗ (λ, τ̂b (λ, ζ))). Hence,

dq∗

dλ

∣∣∣∣
ζ=const.

= gK̃

(
K̃∗
)[∂K̃∗

∂λ
+
∂K̃∗

∂τ̂b

∂τ̂b (λ, ζ)
∂λ

]
, (81)

where the argument of K̃∗ is (λ, τ̂b (λ, ζ)). To proof the proposition, we show that the term in
brackets of (81) is negative for all admissible parameter values.

Define ξ̂i ≡ ξi|τb=τ̂b(λ,ζ), i = 1, 2, 3. Using (77) and (78) we find that dK̃∗/dλ < 0 holds if and only
if

−LHSξ̂1
∂ξ̂1

∂λ
+

(
−LHSξ̂1

∂ξ̂1

∂τ̂b
+RHSξ̂2

∂ξ̂2

∂τ̂b
+RHSξ̂3

∂ξ̂3

∂τ̂b

)
∂τ̂b
∂λ

> 0, (82)

where the argument of LHS is
(
K̃∗, ξ̂1

)
, the one of RHS is

(
K̃∗, ξ̂2, ξ̂3

)
, and the one of K̃∗ is

(λ, τ̂b (λ, ζ)). From the definitions of ξ̂i, i = 1, 2, 3 and the fact that the derivatives are evaluated at
the steady state, we derive that (82) can be written as

ξ̂2K̃
∗ + ξ̂3i

1 + λ
+

(
ξ̂2K̃

∗ + ξ̂3i

1− τ̂b
+ K̃∗

1− α
α(1 + β)

− i

1 + β

)
∂τ̂b
∂λ

> 0. (83)
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Using (41) to substitute for τ̂b, condition (83) becomes

ξ̂2K̃
∗ + ξ̂3i

1 + λ

(
1− ζ

ζ + 1 + λ

)
+
(
K̃∗

1− α
α(1 + β)

− i

1 + β

)
−ζ

(ζ + 1 + λ)2 > 0. (84)

With ξ̂i, i = 1, 2, 3, one readily verifies that inequality (84) holds for all admissible parameter values.
Hence, the term in brackets of (81) is negative. With Lemma 1 the proposition follows. �

8.2.5 Proof of Proposition 3

Under a constant replacement rate where q∗ = g(K̃∗) = g(K̃∗ (λ, τ̂b (λ, ζ))), we have

dq∗

dλ

∣∣∣∣
ζ=const.

= gK̃(K̃∗)

[
∂K̃∗ (λ, τ̂b (λ, ζ))

∂λ
+
∂K̃∗ (λ, τ̂b (λ, ζ))

∂τ̂b

∂τ̂b (λ, ζ)
∂λ

]
(85)

= gK̃(K̃∗)
∂K̃∗ (λ, τ̂b (λ, ζ))

∂λ
+ gK̃(K̃∗)

∂K̃∗ (λ, τ̂b (λ, ζ))
∂τ̂b

∂τ̂b (λ, ζ)
∂λ

(86)

=
dq∗

dλ

∣∣∣∣
τb=const.

+ gK̃(K̃∗)
∂K̃∗ (λ, τ̂b (λ, ζ))

∂τ̂b

∂τ̂b (λ, ζ)
∂λ

, (87)

where the last step makes use of Proposition 1 and the fact that τb = τ̂b (λ, ζ). Since the last term
in (87) is positive the proposition is proved. �

8.3 Computation Details

As mentioned in the main text, we assume that the transition is complete in the year 2400. Figure 9
presents the complete transition from 1950 to 2400 for the capital intensity, K̃t, and the endogenous
growth rate, qt. These time paths suggest that the economy is in its new steady state from 2200
onwards.

8.4 Sensitivity Analysis

8.4.1 Investment Requirement Function

The critical parameter in our analysis is the elasticity of the growth rate of productivity, q, with
respect to innovation investment, i. Since i = v0 q

v, this elasticity is equal to 1/v. From our regres-
sion of the log of the GDP per capita growth rate on the log of the R&D investment expenditure
divided by GDP we estimated a value equal to v = 1.14. The closer the value v is to one, the higher
will be the quantitative effect of population ageing on the growth rate.

In this section, we analyze the sensitivity of the growth rate effect of population aging on the choice
of v. In particular, we determine an estimate for the lower bound of the quantitative growth rate.
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Figure 9: Complete Transition in the Benchmark Economy

We choose v = 1.14 + σv = 1.49, where σv is the standard deviation of v derived from the above
empirical regression analysis for the US economy during 1973-2000.24 The parameter v0 = 4.385
is chosen so that the average growth rate during 1990-2000 is equal to 1.80% as in the benchmark
economy. In this case, the share of expenditure on research and development relative to GDP falls
to 0.71% and is in less accordance with empirical numbers than for the case with v = 1.14.

Figure 10 presents our results. For v = 1.49 (v = 1.14), the growth rate rises from 1.8% during
1990-2000 to 2.11% (2.38%) in 2200. The relative increase of the growth rate remains substantial,
however, it is certainly smaller than the one computed for the benchmark case.

8.4.2 Perfect Foresight versus Unexpected Policy Changes

In Section 6, we analyze the pension reform that switches from a constant replacement ratio of
pensions relative to net average wages (ζt = 0.5 for t ≤ 2010), to a constant contribution rate
(τb,t = τb,2010 for t > 2010) in the year 2010. In our computations, we assume that the change in
the pension policy is fully anticipated. In this Appendix, we study the alternative scenario where
the households do not learn about this policy change until the end of the year 2010.

In Figures 11 and 12, the transition dynamics of the aggregate supply of efficient labor, L, and

24In our regression, we estimate 1̂
v

= 0.953 with a standard deviation equal to 0.218. In order to derive the mean

and the standard deviation of our estimate for v, we generate 1 million normally distributed random variables xi with

a standard deviation equal to 0.218, compute the values vi = 1/(0.953 + xi) and the associated sample mean and

standard deviation. Basically the same value results from a computation that employs bootstrapping methods.
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Figure 10: The Growth Rate q in the Benchmark Economy for v = 1.14 and v = 1.49

the capital intensity, K̃, are illustrated for the benchmark case (with constant replacement ratio
ζt = 0.5 for all t), and for the two cases of an unexpected and an expected policy change involving
a constant contribution rate for t > 2010. If the policy change is unexpected, the time paths of
the two variables coincide with the one of the benchmark case until the year 2010. Afterwards, L
decreases temporarily (the dotted line falls below the solid line until 2020), even though only to a
very small extent. Households increase their relative labor supply in old age at the expense of their
labor supply in young age because, in comparison to the benchmark case, the contribution rates τb,t
in old age are much lower so that the net wages are higher. As the substitution effect is stronger
than the income effect, labor supply in the later years of their working life increases.

In addition, households learn in 2010 that their pensions will be lower than expected. As a con-
sequence, they increase savings, especially in old age. Compared to the case with perfect foresight
(broken line), the capital intensity K̃ is always lower. As the growth rate, qt, is a monotone function
of the capital intensity, growth is also higher in the case of an expected policy change. In 2037, the
two transition paths display the maximum difference between the two growth rates amounting to
0.14 percentage points (not illustrated). Clearly, the unexpected change in policy results in a short
and medium-run decline of the compounded growth rate.

8.4.3 Sensitivity with Respect to the Discount Factor β

Figures 13 and 14 display the transition dynamics for a lower discount factor β = 0.99. For
this choice of the discount factor, the real interest rates are much higher than for our benchmark
calibration and increase to values between 9.4%-11.1% during 1950-2100. Apart from this, all
our qualitative results hold. In particular, the growth rate of productivity q increases from 1.8%
during 1990-2000 to 2.20% in 2100 and even 2.27% in the long run. All remaining qualitative and
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Figure 11: Effects of Policy Announcement on Aggregate Effective Labor

quantitative results concerning the pension reform under endogenous and exogenous growth are
available upon request from the authors.
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Figure 12: Effects of Policy Announcement on the Capital Intensity

Figure 13: Transition in the Economy with β = 0.99, Results I
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Figure 14: Transition in the Economy with β = 0.99, Results II
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