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In this paper, we consider a decision-maker who tries to learn the distribution of
outcomes from previously observed cases. For each observed sequence of cases
the decision-maker predicts a set of priors expressing his beliefs about the under-
lying probability distribution. We impose a version of the concatenation axiom
introduced in BILLOT, GILBOA, SAMET AND SCHMEIDLER (2005) which in-
sures that the sets of priors can be represented as a weighted sum of the observed
frequencies of cases. The weights are the uniquely determined similarities be-
tween the observed cases and the case under investigation.
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1 Introduction
How will existing information in�uence probabilistic beliefs? How do data enter the inductive

process of determining a prior probability distribution? KEYNES (1920) discusses in great

detail the epistemic foundations of probability theory. In particular, in Part III of his "A Trea-

tise on Probability", he critically reviews most of the then existing inductive arguments for

this probability-generating process. One can view the approach of BILLOT, GILBOA, SAMET

AND SCHMEIDLER (2005) as an attempt to model this inductive process with the concept of a

similarity function, covering both Bayesian and frequentist arguments.

The frequentist approach and the Bayesian belief-based approach to probability theory use

available information differently. Both approaches lead, however, to similar statistical results

if data are derived from statistical experiments, which are explicitly designed to obtain con-

trol over the data-generating process. Classical examples are urn experiments where balls of

different colors are drawn from urns with unknown proportions of balls with different colors.

Statistical experiments with identically repeated trials represent an ideal method of data col-

lection. In this case, decision makers can aggregate information directly into a probability

distribution over unknown states.

In most real-life decision problems, however, decision makers do not have available data derived

from explicitly designed experiments with suf�ciently many identical repetitions. Usually, they

face the problem to predict the outcome of an action based on a set of data which may be

more or less adequate for the decision problem under consideration. This requires aggregating

data with different degree of relevance. The case-based decision making approach of GILBOA

AND SCHMEIDLER (2001) offers a systematic way to deal with this information aggregation

problem: to evaluate an action, the outcomes of past observations are summed up, weighted by

their perceived degree of relevance, their similarity to the current decision situation.

In a recent paper, BILLOT, GILBOA, SAMET AND SCHMEIDLER (2005), henceforth BGSS

(2005), show that, under few assumptions, a probability distribution over outcomes can be

derived as a similarity-weighted average of the frequencies of observed cases. Moreover,

GILBOA, LIEBERMAN AND SCHMEIDLER (2004) demonstrate how one can estimate the sim-

ilarity weights from a given database.

The case-based approach in BGSS (2005) associates a database with a single probability distri-
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bution. This appears reasonable if the database is large and if the cases recorded in the database

are clearly relevant for the decision problem under consideration. Indeed, BGSS (2005) note

also that this approach

"... might be unreasonable when the entire database is very small. Speci�cally, if there
is only one observation, [....] However, for large databases it may be acceptable to assign
zero probability to a state that has never been observed." (BGSS (2005), p. 1129)

In order to deal with this problem it appears desirable to choose an approach which allows us

to include some notion of ambiguity about the probability distribution associated with a given

database. For small and heterogeneous databases ambiguity may be large, while it may vanish

for large and homogeneous databases. The multiple-prior approach to decision making offers

a framework which captures such ambiguity. Even if a decision maker considers a speci�c

probability distribution as most likely based on the information contained in the data, there may

be probability distributions which the decision maker may not want to rule out completely. For

example, a decision maker may not trust the information that balls are drawn from an urn with

equal numbers of black and white balls. Based on a database consisting of three draws yielding

one "black" and two "white" balls, the decision maker may feel ambiguity about whether the

probability is 0.5 for the two colors or whether there is a higher probability of a "white" draw.

This ambiguity may shrink as the database gets larger and one can be more con�dent that the

proportions of "black" and "white" draws re�ect the actual probabilities.

In this paper we modify the approach of BGSS (2005) such that it is possible to consider the

weight of increasing evidence. Given a database, we model ambiguity about the most likely

probability distribution by a set of probability distributions. We relax the main axiom of BGSS

(2005), Concatenation, to capture the idea that small data-sets may represent more ambiguous

information about the actual probability distribution. At the same time, our modi�cation main-

tains the main property of the representation derived in BGSS (2005): the similarity function

is unique and independent of the content and the size of the data-set.

We then proceed to study more closely the relationship between the amount of data available

and the precision of the probabilistic predictions (the size of the set of probability distributions).

We assume that the con�dence of the decision maker increases as data accumulate and that the

set of probability distributions converges to the observed frequency when the data-set becomes

large and characterize the similarity function for this situation.

As in BGSS (2005), the question remains open which decision criterion one should use given
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the decision maker's beliefs. In order to obtain a decision rule together with a multiple prior

representation one may embed these ideas in a behavioral model in the spirit of GILBOA,

SCHMEIDLER & WAKKER (2002) or derive decision criteria re�ecting degrees of optimism

or pessimism in the face of ambiguity as in the work of COIGNARD AND JAFFRAY (1994) and

GONZALES AND JAFFRAY (1998). We pursue this approach in EICHBERGER AND GUERD-

JIKOVA (2008).

There are several ways to model ambiguity of a decision maker in the literature: a represen-

tation of ambiguous beliefs by means of capacities was introduced by SCHMEIDLER (1989).

BEWLEY (1986)'s approach is based on incomplete preferences. The paper of KLIBANOFF,

MARINACCI AND MUKERJI (2005) models ambiguity as second-order risk with respect to

the probability distribution determining the outcome. The multiple-prior approach developed

by GILBOA AND SCHMEIDLER (1989) generalized by GHIRARDATO, MACCHERONI AND

MARINACCI (2004) and CHATEAUNEUF, EICHBERGER AND GRANT (2007) represents am-

biguity by a set of probability distributions which a decision maker considers when evaluating

her expected utility. In the spirit of these models, we model ambiguity by a set of probability

distributions over outcomes. The degree of ambiguity can be measured by set inclusion. The

smaller the set of probability distributions over outcomes, the less ambiguous the prediction.

While in the setting of GILBOA AND SCHMEDLER (1989), the set of priors is purely subjective,

several recent papers, AHN (2008), GAJDOS, HAYASHI, TALLON AND VERGNAUD (2007),

STINCHCOMBE (2003) provide a framework to analyze decisions in situations, in which the

set of priors is objectively given, which allows them to separate the objectively given Knight-

ian uncertainty from the subjective attitude towards ambiguity. In our framework, the decision

maker associates with each data-set a set of probability distributions, which takes into account

the objective information contained in the data (i.e. the nature and frequency of cases observed,

as well as the number of observations) and combines it with the subjective attitude of the de-

cision maker towards ambiguity. Hence, our approach provides a method to endogenize the

relevant set of priors and connect it to the data-generating process.

EPSTEIN AND SCHNEIDER (2007) analyze statistical learning in the context of ambiguity.

Their approach distinguishes between two types of scenarios: those, in which it is possible to

learn the objective probability distribution over outcomes and, thus, in the limit the ambiguity

disappears, and scenarios, in which the ambiguity persists even in the limit. Our framework
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distinguishes between controlled statistical experiments, and situations in which relevant, but

not completely identical cases have been observed. We postulate that the decision-maker will be

able to learn the objective probability distribution in controlled statistical experiments satisfying

the ergodicity property. However, when cases are distinct from the situation under considera-

tion, the decision maker might entertain a set of probability distributions, even in the limit, when

a large number of data has been collected.

GONZALES AND JAFFRAY (1998) model preferences over Savage-type acts for a given set of,

possibly imprecise, data. They derive a representation of preferences in form of a linear combi-

nation of the maximal and the minimal potential outcome of an act and its expected utility with

respect to the observed frequency of states. The weights attached to the maximal and minimal

outcomes can be interpreted as degrees of optimism and pessimism. They decrease over time

relative to the weight attached to the expected utility part of the representation. Because obser-

vations may be imprecise a decision maker associates with a set of data a set of priors centered

around the observed frequency. The size of the set of probabilities depends negatively on the

amount of data.

While we do not derive a decision rule from behavior, our approach encompasses a richer class

of situations which allows for, but is not restricted to, the case of controlled statistical exper-

iments considered in both COIGNARD AND JAFFRAY (1994) and GONZALES AND JAFFRAY

(1998). The concept of similarity allows us to consider also heterogenous data.

The remainder of the paper is organized as follows. Section 2 presents the model and Section

3 provides some motivating examples. In Section 4 we state the axioms and derive the main

representation result, Theorem 4.1. Section 5 deals with the special case of data collected

in controlled experiments and Section 6 concludes the paper. All proofs are collected in the

Appendix.

2 The Model
The basic element of a database is a case which consists of an action taken and the outcome

observed together with information about characteristics which the decision maker considers

as relevant for the outcome. We denote by X a set of characteristics, by A a set of actions,

and by R a set of outcomes. All three sets are assumed to be �nite. A case c = (x; a; r) is an

element of the �nite set of cases C = X � A � R. A database of length T is a sequence of
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cases indexed by t = 1:::T :

D = ((x1; a1; r1) ; :::; (xT ; aT ; rT )) 2 CT .

The set of all databases of length T is denoted by DT := CT .

We also assume that the decision maker is able to make predictions based on the hypothetical

evidence of a data-set of in�nite length with well-de�ned frequency. As in the St. Petersburg

paradoxon one can consider thought experiments producing potentially in�nite data sets. Thus,

while it might be impossible to observe such data-sets in practice, the assumption that people

are able to make predictions based on such data-sets appears natural. We, therefore, de�ne4:

D1 =
�
(ct)

1
t=1 j for each c 2 C, limT!1

jft j ct = c; t � Tgj
T

exists
�

The set of data sets of any length is D := [
T2f1;2:::1g

DT .

Consider a decision maker with a given database of previously observed cases, D, who wants

to evaluate the uncertain outcome of an action a0 2 A given relevant information about the

environment described by the characteristics x0 2 X: Based on the information in the database
D; the decision maker will form a belief about the likelihood of the outcomes. We will assume

that the decision maker associates a set of probability distributions over outcomes R,

H (D j x0; a0) � �jRj�1;

with the action a0 in the situation characterized by x0 given the database D 2 D:
Formally,H : D�X �A! �jRj�1 is a correspondence which maps D�X �A into compact
and convex subsets of �jRj�1: As usual, the convex combination of two sets of probability dis-

tributionsH andH 0 is de�ned by �H +(1� �)H 0 = f�h+ (1� �)h0 j h 2 H and h0 2 H 0g.
Elements of this set are denoted by h (D j x0; a0) and we write hr (D j x0; a0) for the probabil-
ity assigned to outcome r by the probability distribution h (D j x0; a0).
We interpret H (D j x0; a0) as the set of probability distributions over outcomes which the de-
cision maker takes into consideration given the database D. In contrast to BGSS (2005) we

do not assume that a decision maker can always make a point prediction for the probability

distribution over outcomes. LUCE AND O'HAGAN (2003) describe the dif�culty of making

point predictions about probabilities as follows:

"The �rst dif�culty we will face is that the expert will almost certainly not be an expert
in probability and statistics. That means it will not be easy for this person to express her
beliefs in the kind of probabilistic form demanded by Bayes' theorem. Our expert may

4 Lemma A2 in in the Appendix shows how this set can be obtained as a limit of �nite data-sets.
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be willing to give us an estimate of the parameter, but how do we interpret this? Should
we treat it as the mean (or expectation) of the prior distribution, or as the median of the
distribution, or its mode, or something else? [...] We could go on to elicit from the expert
some more features of her distribution, such as some measure of spread to indicate her
general level of uncertainty about the true value of the parameter." (pp. 64-65).

The dif�culties of eliciting and interpreting statements about probabilities suggest that, in gen-

eral, decision makers will not be able to make point predictions about a prior distribution over

outcomes. They may, however, identify a range of possible probabilities, either directly as upper

and lower bounds of probabilities, or indirectly by a degree of con�dence expressed regarding

a point prediction. In the former case, a convex set of probabilities is suggested directly, in

the latter case, one may view the set of probabilities as a neighborhood of an imprecise point

prediction5.

Like BGSS (2005) we do not explain in this paper how a decision maker chooses an action

given the predicted set of priors H (D j x0; a0) : A natural decision criterion would be the min-
imum expected utility approach introduced by GILBOA AND SCHMEIDLER (1989). We do

not suggest a fully behavioral model for a decision criterion and the beliefs in this paper6. A

characterization of the mapping H from data-sets to probabilities over outcomes is, however,

desirable in its own right. It opens up the possibility to study the optimal use of data for the

derivation of a set of prior distributions over outcomes for some, not necessarily behavioral,

decision criterion.

Notice that these probabilities over outcomes depend both on the action a0 and the charac-

teristics x0 of the situation under consideration. In this paper, we will focus on how a deci-

sion maker evaluates data in a given decision situation (x0; a0): Hence, the decision situation

(x0; a0)will mostly remain �xed. For notational convenience, we will therefore often drop these

variables and write simplyH(D), h(D) and hr(D) instead ofH (D j x0; a0), h (D j x0; a0), and
hr (D j x0; a0), respectively.

3 Motivating Examples
The following examples illustrate the broad �eld of applications for this framework. They will

5 In the Savage framework, GONZALES & JAFFRAY (1998) show how imprecise information may lead to multi-
ple priors. Their paper derives also a representation of the decision maker's preferences in this context.
6 As pointed out in the introduction, a behavioural foundation of both a decision criterion and a belief cor-
respondence similar to the one proposed in this paper is provided in Eichberger and Guerdjikova (2008).
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also highlight the important role of the decision situation (x0; a0):

The �rst example is borrowed from BGSS (2005).

Example 3.1 Medical treatment

A physician must choose a treatment a0 2 A for a patient. The patient is characterized by a set

of characteristics x0 2 X , e.g., blood pressure, temperature, age, medical history, etc. Observ-

ing the characteristics x0 the physician chooses a treatment a0 based on the assessment of the

probability distribution over outcomes r 2 R. A set of casesD observed 7 in the past may serve

the physician in this assessment of probabilities over outcomes.

A case is a combination of a patient t's characteristics xt, treatment assigned at and outcome

realization rt recorded in the database D: Given the database D, the physician considers a set

of probabilities over outcomes,H (D j x0; a0) � �jRj�1, as possible. These probability distrib-

utions represent beliefs about the likelihood of possible outcomes after choosing a treatment a0

for the patient with characteristics x0:

Note that we allow the physician to form his beliefs based on cases in which characteristics po-

tentially different from x0 and actions potentially different from a0 were observed. E.g., LUCE

AND O'HAGAN (2003, PP. 62-64) discuss how information from different studies about the

effectiveness of similar, but not identical, drugs can be combined into a prior distribution. Their

example illustrates also why one may want to consider sets of probability distributions, rather

than point predictions, as a decision maker's forecast.

A different �eld of applications are recommender systems which become increasingly popular

in internet trade. Internet shops often try to pro�le their customers in order to provide them with

individually tailored recommendations. Our second example shows how an internet provider of

a movie rental system can be modelled with this approach.

Example 3.2 Recommender system of an internet movie rental shop

Consider a customer who logs into the internet shop of a movie rental business. The customer is

associated with a set of characteristics x0 2 X which may be more or less detailed depending
7 The "observations" of cases are not restricted to personal experience. Published reports in scienti�c journals,
personal communications with colleagues and other sources of information may also provide information about
cases.
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on whether she is a new or a returning customer. The recommender system of the shop has

to choose which category of movies a0 to recommend to this customer. There may be many

different categories in an actual recommender system. In this example, we will distinguish,

however, only the genre of the movie and the most preferred language of the customer, i.e.,

A = fComedy, Documentary, Romanceg � fEnglish, Germang:

The outcome of the recommendation could be whether rental agreement will result or not, r 2

R = fsuccess, no successg.

The recommender system is built on a database D containing records of customers with a

pro�le of characteristics xt 2 X who had been offered a movie at 2 A. Given this database

D the system assesses the likelihood H (D j x0; a0) of the customer x0 renting a movie from

the suggested category a0: The set of probability distributions over R, H (D j x0; a0), which

are taken into consideration re�ects the degree of con�dence with respect to this customer.

For a new customer, con�dence may be low and the set of probabilities H (D j x0; a0) large.

Alternatively, if there are many observations for a returning customer in the database, the set

H (D j x0; a0) may be small, possibly even a singleton.

As a �nal case we will consider a classic statistical experiment where the decision maker bets

on the color of the ball drawn out of an urn.

Example 3.3 Lotteries

Consider three urns with black and white balls. There may be different information about the

composition of these urns. For example, it may be known that
� there are 50 black and 50 white balls in urn 1,
� there are 100 black or white balls in urn 2,
� there is an unknown number of black and white balls in urn 3.

We will encode all such information in the number of the urn, x 2 X = f1; 2; 3g.

In each period a ball is drawn from one of these urns. A decision maker can bet on the color

of the ball drawn, fB;Wg: Assume that a decision maker knows the urn x0 from which the ball

is drawn, when he places his bet a0. An action is, therefore, a choice of lottery a 2 A :=

f1B0; 1W0g, with the obvious notation 1E0 for a lottery which yields r = 1 if E occurs and

r = 0 otherwise.
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Suppose the decision maker learns after each round of the lottery the result and the urn from

which the ball was drawn. Since there are only two possible bets a = 1B0 or a0 = 1W0 we can

identify cases c = (x; a; r) by the urn x and the color drawn B orW: Hence, there are only six

cases

C = f(1;B); (1;W ); (2;B); (2;W ); (3;B); (3;W )g:

Note that for a given urn x, the observation of a case, allows the decision maker to observe

the outcome of the actually chosen action, but also to infer the (counterfactual) outcome of the

lottery he did not choose. This is a speci�c feature of this example, which distinguishes it from

Examples 3.1 and 3.2.

Suppose that, after T rounds, the decision-maker has a database

D = ((1;B); (3;W ); :::; (2;B)) 2 CT .

With each database D, one can associate a set of probability distributions over the color of the

ball drawn fB;Wg or, equivalently, over the payoffs f1; 0g given a bet a: Suppose a decision

maker with the information of database D has placed the bet a0 = 1B0 and learns that a ball

will be drawn from urn 2, then he will evaluate the outcome of this bet based on the set of

probability distributions H (D j 2; a0) : This set should re�ect both the decision maker's infor-

mation contained in D and the degree of con�dence held in this information. For example, as

in statistical experiments, the decision maker could use the relative frequencies of B and W

drawn from urn 2 in the database D and ignore all other observations in the database. De-

pending on the number of observations of draws from urn 2, say T (2), recorded in the database

D of length T , the decision maker may feel more or less con�dent about the accuracy of these

relative frequencies. Such ambiguity could be expressed by a neighborhood " of the frequencies

(fD(2;B); fD(2;W )) of black and white balls drawn from urn 2 according to the records in the

database D: The neighborhood will depend on the number of relevant observations T (2), e.g.,

H (D j 2; a0) =
�
(hW ;hB) 2 �1 j fD(2;W )�

"

T (2)
� hW � fD(2;W ) +

"

T (2)

�
.

The set of probabilities over outcomes H (D j 2; a0) may shrink with an increasing number of

relevant observations.

The last example illustrates how information in a database may be used and how one can model
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ambiguity about the probability distributions over outcomes. In this example, we assumed that

the decision maker ignores all observations which do not relate to urn 2 directly. If there is

little information about draws from urn 2, however, a decision maker may also want to consider

evidence from urn 1 and urn 3, possibly with weights re�ecting the fact that these cases are less

relevant for a draw from urn 28. The representation derived in the next section allows for this

possibility.

4 Axioms and Representation
In this section, we will take the decision situation (x0; a0) as given. We will relate the frequen-

cies of cases in a database D 2 DT ,

fD (c) :=
jfct 2 D j ct = cgj

T
;

to sets of probabilities over outcomes H(D j x0; a0). In particular, let HT (D j x0; a0) be the
restriction of H(D j x0; a0) to databases of length T . We will impose axioms on the set of
probability distributions over outcomes H (D j x0; a0) which will imply a representation of the
following type: for each T 2 f2:::1g and each database of length T ,

HT (D j x0; a0) =
�P

c2D s (c j x0; a0) fD (c) p̂T (c)P
c2D s (c j x0; a0) fD (c)

j p̂T (c) 2 P̂T (c j x0; a0)
�
.

The set of probability distributions over outcomes P̂T (c j x0; a0) denotes the beliefs of the

decision maker when the database D =

 
c:::c|{z}
T -times

!
is observed. As will be discussed in more

detail in Section 5, this set may depend on the number of observations. It may be large for

small numbers and may shrink as more con�rming data become available.

The weighting function s (c j x0; a0) represents the relevance of a case c for the current situation
(x0; a0) and can be interpreted as the perceived similarity between c and (x0; a0). We will

characterize a similarity function which depends only on the cases compared and not on the

number of observations.

Independence from the number of observations is justi�ed if one assumes that the similarity of

cases is determined by non-quanti�able knowledge about the cases9. Moreover, it is not clear

how more observations of a case should affect the similarity between this case and the other

cases. If the number of observations increases without affecting the relative frequencies of
8 Part III of KEYNES (1921) provides an extensive review of the literature on induction from cases to prob-
abilities.
9 Compare also the discussion of "structural priors" in LUCE & O'HAGAN (2003, PP. 67-68).

11



cases, then there is no reason to adjust the similarity relation between cases. Notice however that

the relative weight given to the outcome probabilities based on the observations of a particular

case increases with the relative frequency of this case.

The axioms suggested below will imply unique (up to a normalization) similarity weights

s (c j x0; a0), which do not depend on T and, for each T 2 f2:::1g, unique sets of proba-
bility distributions P̂T (c j x0; a0): This result generalizes the main theorem of BGSS (2005) to
the case of multiple priors.

In the following discussion, (x0; a0) is assumed constant and we suppress notational reference

to it. It is important to keep in mind, however, that all statements of axioms and conclusions do

depend on the relevant reference situation (x0; a0): In particular, the similarity weights, deduced

below, measure similarity of cases relative to this reference situation.

In order to characterize the mapping H(D) we will impose axioms which specify how beliefs

over outcomes change in response to additional information. In general, it is possible that the

order in which data become available conveys important information. We will abstract here

from this possibility and assume that only data matter for the probability distributions over

outcomes.

Axiom A1 (Invariance) Let � be a one-to-one mapping � : f1:::Tg ! f1:::Tg, then

H
�
(ct)

T
t=1

�
= H

��
c�(t)

�T
t=1

�
.

According to Axiom (A1), the set of probability distributions over outcomes is invariant with

respect to the sequence in which data arrive. Hence, each database D is uniquely characterized

by the tuple (fD; jDj), where fD 2 �jCj�1 denotes the vector of frequencies of the cases c 2 C
in the data-set D and jDj the length of the database.

Remark 4.1 By Axiom (A1), we can identify every data-set D = (ct)Tt=1 with the correspond-
ing multi-set

n
(ct)

T
t=1

o
, in which the number of appearances of every case c exactly corresponds

to the number of its appearances inD. We will denote the data-set and its corresponding multi-
set by the same letter. In particular, when we write D = D0, we mean equality of the multi-sets
corresponding to the data-sets D and D0.

In line with BGSS (2005), we call the combination of two databases a concatenation.

De�nition 4.1 (Concatenation) For any T , T 0 2 N [ f1g, and any two databases D =
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(ct)
T
t=1 and D0 = (c0t)

T 0

t=1, the database

D �D0 =
�
(ct)

T
t=1 ; (c

0
t)
T 0

t=1

�
is called the concatenation of D and D0.

By Axiom (A1), concatenation is a commutative operation on databases. The following nota-

tional conventions are useful.

Notation Dk = D � ::: �D| {z }
k-times

denotes k concatenations of the same database D: In particular,

a database consisting of k-times the same case c can be written as (c)k : We will use D1 to

denote the in�nite data-set with frequency of observations fD.

Imposing the following Concatenation Axiom, BGSS (2005) obtain a characterization of a

function h mapping D into a single probability distribution over outcomes.

Axiom (BGSS 2005) (Concatenation) For every D, D0 2 D,

h(D �D0) = �h(D) + (1� �)h(D0)

for some � 2 (0; 1):

This axiom can be easily adapted to our framework:

Axiom (BGSS � multiple priors) (Concatenation with multiple priors) For everyD,D0 2 D

H (D �D0) = �H (D) + (1� �)H (D0)

for some � 2 (0; 1).

Both versions of the axiom imply that, for any k, the databases D and Dk map into the same

set of probability distributions over outcomes, H(D) = H(Dk): Hence, two data-sets D = (c)

and D0 = (c)10000 will be regarded as equivalent. This seems counterintuitive. Ten thousand

observations of the same case c = (x; a; r) are likely to provide stronger evidence for the

outcome r in situation (x; a) than a single observation. Arguably, the database (c)10000 provides

strong evidence for a probability distribution concentrated on the outcome r; hr((c)10000) = 1.

Based on a single observation (x; a; r), however, it appears quite reasonable to consider a set

of probability distributions H((c)) which also contains probability distributions h((c)) with

hr0 ((c)) 2 (0,1) for all r0: In particular, based on the information contained in D = (c), a

decision maker may not be willing to exclude the case of all outcomes being equally probable,
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i.e., h(D) with hr0(D) = 1
jRj for all r

0 2 R: It appears perfectly reasonable to include h in

H ((c)) but not in H
�
(c)10000

�
.

Since we would like to capture the fact that con�dence might increase as the number of ob-

servations grows, we cannot simply apply the Concatenation Axiom of BGSS (2005) to all

probability distributions in the mappingH: Restricting the axiom to databases with equal length

will provide suf�cient �exibility for our purpose.

To illustrate the idea, consider two cases c1 and c2 and data-sets with two observations of these

cases, say D1 = (c1; c1); D2 = (c2; c2); and F = (c1; c2): Due to Axiom (A1), one can

write these data-sets in terms of frequencies and numbers of observations as F = (fF ; 2);

D1 = (fD1 ; 2); and D2 = (fD2 ; 2): Since D1 � D2 = (c1; c1; c2; c2) = F � F holds, the

frequency of cases in F must be a mixture of the frequencies of D1 and D2;

fF =
1

2
fD1 +

1

2
fD2 :

Whatever the predictions H(D1) and H(D2); which the decision maker makes based on the

databases D1 and D2; the prediction for the data-set F = (c1; c2) should in some sense lie

between H(D1) and H(D2): Formally, we will require the existence of a � 2 (0; 1) such that
�H (D1) + (1� �)H (D2) = H (F ).

Restricting the concatenation axiom of BGSS (2005) to data-sets with the same number of

cases suf�ces for predictions to depend both on frequencies and the number of observations. It

is not suf�cient, however, to guarantee that the similarity function is independent of the number

of observations. In order to obtain a similarity function independent of T we need, in addition,

that the convex combination be independent of the length T; i.e., �H
�
Dk
1

�
+(1��)H

�
Dk
2

�
=

H
�
F k
�
for all k � 1:

Axiom (A2) generalizes this idea: for any n data-sets of equal length T that can be concatenated

to an n-fold of a data-set F of length T , we postulate that any probability distribution over

outcomes predicted on the basis of data-set F can be expressed as a convex combination of

probability distributions over outcomes associated with the data setsDi. In addition, the weights

should remain invariant to scaling up the data-sets.

Axiom A2 (Concatenation) Consider data-sets F 2 DT andD1:::Dn 2 DT for some n 2 Z+,

such that D1 � ::: � Dn = F
n: Then, there exists a vector � 2 int (�n�1) such that, for every
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k 2 Z+,
nX
i=1

�iH
�
Dk
i

�
= H

�
F k
�
.

In spirit, Axiom (A2) is very similar to the Concatenation Axiom introduced by BGSS (2005).

It has the following intuitive interpretation10: if a decision maker cannot exclude a certain prob-

ability distribution h after observing the evidence in any of the data-setsD1:::Dn, then he should

not be able to exclude it after observing the evidence in F . The main difference to the Concate-

nation Axiom of BGSS (2005) is that we restrict the axiom to data-sets of equal length.

The restriction to sets of equal length is important for our approach since databases with identi-

cal frequencies, but different length may give rise to different sets of probabilities over out-

comes. In particular, depending on some learning rule11, it may be reasonable to assume

that the set of probabilities over outcomes shrinks as more observations of the same cases

become available. Intuitively, the decision maker is more con�dent that the observed fre-

quencies re�ect the actual data-generating process for the data-set DT+1 than for DT , hence,

H(DT+1) � H(DT ):In contrast, applying the Concatenation Axiom of BGSS (2005), we

would have to conclude that for some � 2 int
�
�T
�
,

H
�
DT+1

�
= H

�
DT �D

�
= �1H(D

T ) + (1� �1)H(D) =

= �1H(D
T�1) + �2H (D) + (1� �1 � �2)H(D)

=
TX
i=1

�iH (D) = H (D) .

for all T . Thus, imposing BGSS (2005)'s Concatenation Axiom, the set of probability distri-

butions over outcomes would necessarily be independent of the number of observations. Our

weaker Axiom (A2), however, implies in this case only
PT

i=1 �iH (D) = H (D), which is

trivially satis�ed for any set D:

Remark 4.2 Our Axiom (A2) suggests that sets of equal length have identical degrees of con-
�dence. This may be a natural assumption in some applications, but it needs not hold in general.
For example, the degree of con�dence of a given data-set may depend on its length and on its
10 Note that the Axiom does not have the following behavioral implication: if action a is preferred to a0 under all
data-sets D1:::Dn, then it is also preferred under F . To understand this, consider the case of n = 2. Let a %D1 a

0

and a %D2 a
0. Suppose also that the evidence contained in the data-setD1 is more relevant for a, while the evidence

contained in D2 is more relevant for a0. Suppose that, at the same time, the decision-maker values a0 higher
given the relevant evidence contained in D2 than he values a, given the relevant evidence for this alternative,
D1. In this case, combining the evidence contained in the two data-setsD1 andD2 intoF might lead to a reversal of
preferences, i.e., a0 %F a. The same argument applies also for the Concatenation Axiom of BGSS (2005).
11 Section 5 discusses learning in more detail.
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frequency. For such a situation, one can derive the sets of databases, for which the decision-
maker is equally con�dent in the following way.
Suppose that for a given T 2 Z+, all sets of the type (ci)T for i 2 f1::: jCjg provide the same
degree of con�dence. This seems intuitive, since these databases consist of a T -fold repetition
of the same case. While predictions based on this case may differ, the degree of con�dence
in these predictions should remain constant across the different cases. Consider the following
modi�ed concatenation axiom:

Axiom A20 Let D 2 DT . Then there exists a number S (D) 2 Z+ and a vector � 2
int
�
�jCj�1� such that

H (D) =

jCjX
i=1

�ifD (ci)H
�
c
S(D)
i

�
Furthermore, for each k 2 Z+,

H
�
Dk
�
=

jCjX
i=1

�ifD (ci)H
�
c
k�S(D)
i

�
.

One may call S (D) the degree of con�dence of the data-set D. We can de�ne the sets DS , i.e.,
the set of databases with con�dence S. Note that the case in which S (D) = T for allD 2 DT is
a special case in which Axiom A20 holds. However, A20 also allows for more general functions
S (�). E.g., for some positive numbers A and B, S (�) could be given by:

S (D) = A












0BBB@ 1

jCj :::
1

jCj| {z }
jCj-times

1CCCA� fD









+B jDj .

It is easy to check that this function satis�es the property of Axiom A20. The statement of
Theorem 4.1 remains unchanged if we replace Axiom (A2) with Axiom (A20) and the sets DT
with DS .

Similar to BGSS (2005), we have to impose a linear-independence condition on the sets of

probability distributions over outcomes H (D).

Axiom A3 (Linear Independence) For every T 2 f2; 3:::1g, the basis ofDT , (c1)T ,:::,
�
cjCj
�T

satis�es the following condition:

There are at least three distinct i, j, k 2 f1::: jCjg, such that H
�
(ci)

T
�
, H

�
(cj)

T
�
and

H
�
(ck)

T
�
are:

� either singletons

H
�
(cm)

T
�
=
n
h
�
(cm)

T
�o

form 2 fi; j; kg

and h
�
(ci)

T
�
, h
�
(cj)

T
�
and h

�
(ck)

T
�
are non-collinear,

� or polyhedra with a non-empty interior such that no three of their extreme points are collinear.
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As an example of sets H (D) satisfying Axiom (A3) consider the case of jCj = jRj = 3. In

particular, take c1 = (x; a; r1), c2 = (x; a; r2) and c3 = (x; a; r3). Suppose that each of the

H
�
(ci)

T
�
represents a con�dence interval around the actually realized frequency of outcomes,

e1 = (1; 0; 0), e2 = (0; 1; 0) and e3 = (0; 0; 1). Then, these sets will satisfy the requirement of

Axiom (A3), see Figure 1.
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r3

1. Non-collinear sets of priors

The following theorem guarantees a unique similarity function for data-sets of arbitrary length.

Theorem 4.1 LetH be a correspondenceH : D! �jRj�1 the images of which are non-empty

convex and compact sets and let HT (D) be the restriction of H to DT . Then the following two

statements are equivalent:

(i) H satis�es the Axioms Invariance (A1), Concatenation (A2), and Linear Independence

(A3).

(ii) There exists a function

s : C ! R++

and a correspondence

P̂ : f2; 3:::1g� C ! �jRj�1

satisfying Linear Independence and such that for any D 2 DT with T 2 f2; 3:::1g,

HT (D) =

�P
c2C s (c) p̂T (c) fD (c)P

c2C s (c) fD (c)
j p̂T (c) 2 P̂T (c)

�
.

Moreover, P̂ is unique and s is unique up to a multiplication by a positive number.

Note how the different axioms enter this representation. (A1) insures that the only relevant
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characteristics of a data-set D are the generated frequencies (fD (c))c2C and its length T . We

then use (A2) and (A3) to show that for a class of databases with in�nite length, we can rep-

resent H (D) as a union of functions h (D) which satisfy the axioms of BGSS (2005). This

class of data-sets can be characterized by its frequencies, which are dense in the simplex of di-

mension jCj � 1. Hence, we can apply Proposition 3 of BGSS (2005) to every selection h (D)
in order to demonstrate the existence of a unique (up to a multiplication by a positive constant)

similarity function s and unique probabilities p̂. Axiom (A2) then implies that the same values

of s can be used for every T <1.
Note that replacing (A2) by the Axiom (BGSS � multiple priors) in Theorem 4.1 would imply

that both, the predictions H (D) and the correspondence P̂ depends only on the case c, but not

on the length of the data-set, T . In other words, the predictions made by the decision maker

depend only on the frequency of cases in a data-set, but not on its length.

5 Learning and con�dence
The representation for the prediction correspondenceH(D) derived in Theorem 4.1 determines

neither the ambiguity captured by the basic prediction sets P̂T (c) nor the similarity function

s (c) : These degrees of freedom may be be �lled either by a behavioral approach which de-

rives a decision rule and a prediction correspondence from preferences or by more normative

considerations about how predictions should be made as statistics.

In this section we will make a �rst attempt to narrow down the indeterminateness of the basic

predictions P̂T (c) and the similarity function s (c) : These restrictions are derived from the

assumption that the prediction correspondence H(D) should satisfy some natural conditions

when D contains data obtained from controlled statistical experiments. Though these results

are not dif�cult to derive, they do point the way to a more tightly speci�ed learning rule.

Additional information in the form of more data may affect

� the ambiguity about a prediction as represented by the set of probabilities over outcomes,

� the prediction as represented by the type of probabilities considered, and

� the similarity between different cases.

A natural idea about learning is provided by controlled statistical experiments. Any sensi-

ble prediction correspondence H(D) should satisfy these conditions for the special case of
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data-sets obtained from such experiments. A decision maker who would like to learn the out-

come distribution for a given action a and for given characteristics x would like to run a series

of experiments creating cases with constant (x; a) in order to learn about the frequencies of

outcomes rt: In statistical experiments, e.g., in the urn experiments of Example 3.3, data-sets

D = ((x; a; rt))
T
t=1 are generated.

Learning a probability distribution is meaningful only if we assume stationarity and ergodicity

of the underlying random process according to which the outcome is generated. The learning

process of the decision maker begins with a set of probability distributions over outcomes. In

the case of a repeated experiment, where (x; a) is constant, the set of probability distributions

over outcomes is assumed to contain the actually observed frequencies. Given the assumption

of ergodicity, as the data-set becomes larger, the ambiguity of the decision maker decreases

until, as the number of observations increases, the set of probability distributions reduces to a

singleton. Moreover, if the assumption of ergodicity is satis�ed and D = ((x; a; rt))
1
t=1, then,

according to the Ergodic Theorem, DURETT (2005, P. 337), the frequencies of r a.s. converge

to a distribution f (r)which exactly corresponds to the actual probability distribution of r given

(x; a):

lim
T!1

jft � T j rt = rgj
T

= lim
T!1

fT (r) = f (r) .

These considerations motivate the following axiom which characterizes how decision makers

may learn a probability distribution over outcomes and gain con�dence about their predictions.

The axiom seems natural in the context of controlled experiments. It requires that ambiguity

decreases as "more and more cases with the same outcome" are observed. Moreover, if the same

outcome is observed over and over again, its perceived probability converges to 1.

Axiom A4 (Learnability) Consider databases with �xed (x; a),D =
n
(x; a; rt)

T
t=1

o
. As T !

1,

H (D j x; a)! fh(D j x; a)g

with

hr (D j x; a) = fD (r) .

Axiom (A4) implies that the decision maker can learn the unknown proportion of the colors in

a given urn, as in Example 3.3, if the draws from the urn are with replacement, and the number

of observations becomes large.
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According to Axiom (A4) ambiguity will disappear in the limit. In the context of controlled

experiments it appears also reasonable to postulate that ambiguity decreases with the number

of observations.

Axiom A5 (Accumulation of knowledge) For, T 0 > T , let D 2 DT and D0 2 DT be two �nite

data-sets with identical frequencies fD = fD0 . Then

H (D0 j x; a) � H(D j x; a):

Axiom (A5) captures the idea that the ambiguity of the decision maker about the true probability

distribution of r decreases as the number of observations increases. It does not tell us, however,

in which way the set of probabilities over outcomes shrinks.

Notice that Axiom (A5) applies only to data-sets with identical frequencies. If frequencies

differ, a smaller set might provide more reliable information than a larger one. For example,

D 2 D100 with fD (x; a; r1) = 99
100
and fD (x; a; r2) = 1

100
will in general constitute stronger

support for h (r1 j x; a) = 99
100
than D0 2 D200 with fD0 (x; a; r1) = fD0 (x; a; r2) =

1
2
:

Together with the Invariance Axiom ((A1)), Axioms (A4) and (A5) imply that the observed

frequency of outcomes in a controlled experiment is always contained in the set of probabilities

over outcomes which the decision maker considers.

Lemma 5.1 Assume Axioms (A1), (A4) and (A5) hold, then for any database D of length T

with �xed (x; a), i.e., D = ((x; a; rt)Tt=1), there is an h 2 H (D j x; a) such that, for all r 2 R;

hr (D j x; a) = fD (r) :

Finally, we prove that for the representation derived in Theorem 4.1, Axioms (A4) and (A5)

imply two intuitive properties of the representation ofH(D). Firstly, the sets P̂T (x; a; r) shrink

with time, always contain the r-th unit vector er and, as T converges to in�nity, converge to

er . Secondly, for a given tuple (x; a), the similarity function assigns a value of 1 (up to a

normalization) to all cases (x; a; r0) with r0 2 R. Hence, as long as the conditions under

which the experiment is conducted remain constant, all outcomes of the experiment are equally

relevant for the assessment of probabilities.
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Theorem 5.2 Suppose Axioms (A4) and (A5) hold. Then the representation H(D j x; a) in

Theorem 4.1 satis�es the additional properties:

1. For all r 2 R and all T ,

(i) P̂T ((x; a; r) j x; a) � P̂T�1 ((x; a; r) j x; a),

(ii)er 2 P̂T ((x; a; r) j x; a), and

(iii) lim
T!1

P̂T ((x; a; r) j x; a) = ferg,

where er denotes the r-th unit vector of dimension jRj.

2. For all r 2 R; . s ((x; a; r) ; (x; a)) = 1:

Statement 1 of Theorem 5.2 follows immediately from the Axioms (A4) and (A5). It is less

obvious that these assumptions about learning in a controlled environment do also constrain the

similarity function. As Statement 2 shows, the notion of a statistical experiment implies that the

similarity function must be independent of the outcomes.

There are however no other restrictions for the similarity function implied. These degrees of

freedom need to be speci�ed from knowledge unrelated to the generated data. Such constraints

may be imposed by a relation on data-sets which describes their intrinsic similarity according

to some criteria or by a behavioral approach which derives the similarity function implied by

the preferences of the decision maker12.

Our model captures different features of learning. First, it allows us to distinguish between

two types of ambiguity: (i) ambiguity resulting from the fact that the data-set is not suf�ciently

long, i.e., uncertainty about whether the realized frequency represents the outcome generating

process and, (ii) ambiguity resulting from the fact that not all cases are equally relevant for

the prediction to be made. The result of Theorem 5.2 concerns the �rst type of ambiguity. It

states that this ambiguity diminishes and eventually disappears as the number of observations

grows. This result, however applies only to controlled statistical experiments. In contrast, if

observations of action a0 induce predictions about a, then the set of probability distributions

12 In applications, the former approach is used, e.g., in GUERDJIKOVA (2007), who relates the curvature of
the similarity function to preferences for diversi�cation. GUERDJIKOVA (2008) identi�es properties of the similar-
ity function which ensure that a case-based decision maker learns to choose the optimal action in the limit.
In contrast, GAYER (2007) models a situation, in which similarity considerations are relevant only when the
number of observations is small. Hence, she uses a similarity function which converges to the identity func-
tion as the data-set becomes large. The behavioral approach is pursued by GILBOA, LIEBERMAN & SCHMEI-
DLER (2004) who estimate a similarity function from data about the Tel Aviv rental market for apartments.

21



P̂T ((x; a
0; r) j (x; a)) need not shrink to a singleton, even for large numbers of observations.

This second type of ambiguity may be persistent. If, for instance, the decision maker is uncertain

about correlations in the outcomes of actions a and a0, even long data-sets may not convey

additional information about the correlation structure.

Our model can thus be interpreted as one of learning under model uncertainty. In contrast to

the Bayesian model, which has to take all eventualities into account ex ante, our model allows

for "surprises". For example, after observing a certain case (x; a; �r) for 1000 times, a decision

maker may entertain the set of priors

H
�
(x; a; �r)1000

�
= (h (�r) 2 [1� �; 1] ;h (r0) 2 [0; �] ;h (r00) = 1� h (�r)� h (r0))

for some outcomes r0 and r00 distinct from �r, and assign probability 0 to all other outcomes.

Now assume that the next case observed is (x; a; r̂) ( r̂ =2 fr0; r00; �rg). From the point of view
of the decision maker the occurrence of r̂ is a surprise. Our Concatenation Axiom requires the

decision maker to put a positive weight on the evidence from this case and, since by Theorem

5.2, er̂ 2 H
�
(x; a; r̂)T

�
for all T , it follows that after this additional observation, the decision

maker will put a positive probability on r̂. Hence, the learning process in this model can have

properties which differ substantially from standard learning models. Furthermore, if we allow

the degree of con�dence of D to depend not only on the number but also on the frequency of

observations, as in Axiom 2A0 (Remark 4.2), then the degree of con�dence of the new data-set

(x; a; �r)1000 � (x; a; r̂) may be smaller that that of (x; a; �r)1000. Thus, not only the beliefs of the
decision maker may change with surprises, but also the perceived ambiguity as measured by the

size of the set H (D).

6 Concluding remarks
The amount of data available may in�uence a decision maker's con�dence in a probability

distribution. In this paper, we combine this intuition with the similarity-weighted frequency

approach of BGSS (2005). We relax the Concatenation Axiom of BGSS (2005) by restricting

it to databases of equal length. We show that the main result of BGSS (2005), namely that

the similarity function is unique, remains true if one imposes consistency on the weights across

data-sets of different size. This consistency is essential for the uniqueness of the similarity

weights.

As a special case of our approach we consider predictions associated with homogenous data-sets
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which contain the same characteristics and actions in all observations. Homogenous data-sets

can arise from controlled statistical experiments. In this context, it appears natural that ambi-

guity decreases as new data con�rm past evidence. Combined with the assumption that, in the

limit, the decision maker learns the probability distribution generating the process, one obtains

the conclusion that all observations are considered equally important. Statistical experiments

can serve as an illustration of our approach. Similarity becomes important however, when data-

sets contain only few cases.

In this paper, we derive a representation in which the similarity weights are independent of the

amount of data. If one views the perception of similarity, however, as an imperfect substitute for

knowledge about the relevance of underlying data, then a decision maker has to �nd out which

characteristics are payoff-relevant. Hence, the data-set may provide not only information about

the distribution of payoffs, but also about similarity of alternatives. The more observations a

data-set contains, the more precise the perception of similarity may become.

This observation raises several questions for further research. On the one hand, one may try to

model the adjustment of the similarity function in the light of new information. PESKI (2007)

suggests a possible approach. He describes a learning process, in which the decision-maker tries

to assign objects optimally to categories in order to make correct predictions. Two objects do

either belong to a category or do not belong to it. One can interpret this approach as a restriction

of the similarity values to zero or one. A less restrictive model would allow for a continuum of

similarity values.

A second research agenda concerns the derivation of a decision rule and a multiple-prior rep-

resentation of beliefs from preferences over actions and data-sets. Combining axioms from

case-based decision making and from the literature on decision making under ambiguity, it is

possible to �nd a representation of preferences over acts and a set of probabilities over outcomes

depending on the data-set. We pursue this issue in EICHBERGER AND GUERDJIKOVA (2008).

Appendix A. Proofs

Proof of Theorem 4.1 :

We �rst show necessity: it is obvious that for a given D 2 DT ,

HT (D) =

�P
c2C s (c) p̂T (c) fD (c)P

c2C s (c) fD (c)
j p̂T (c) 2 P̂T (c)

�
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does not depend on the order of cases observed inD, but only on their frequency and the length

of D, T , hence Axiom (A1) is satis�ed. To see that Axiom (A2) is satis�ed, �rst note that for

all c 2 C and all T 2 f2; 3:::1g,

HT
�
cT
�
=

�
s (c) p̂T (c)

s (c)
j p̂T (c) 2 P̂T (c)

�
= P̂T (c) .

Choose a data-set F = (c1:::cT ) 2 DT and decompose it as in Axiom (A2) into T sets: D1 =

cT1 :::DT = c
T
T 2 DT such that:

D1 � ::: �DT = F
T .

It is obvious that:

fF (ct) =
1

T

nX
i=1

fDi (c)

and we have: P
c2C s (c) p̂T (c) fF (c)P

c2C s (c) fF (c)
=

X
c2C

s (c) fF (c)P
c2C s (c) fF (c)

p̂T (c) =

TX
t=1

s (ct)PT
t=1 s (ct)

p̂T (c) =
TX
t=1

�t � p̂T (c)

with �t = s(ct)PT
t=1 s(ct)

. Note that since s (ct) > 0 for all ct 2 C, (�t)Tt=1 2 int
�
�T�1� as required

in the axiom. Hence,

HT (F ) =
TX
t=1

�t � P̂T (c) =
TX
t=1

�t �HT (Dt)

Furthermore, if F n = D1 � ::: �Dn for some n 2 Z+ and some sets D1:::Dn 2 DT , then

fF =
1

n

nX
i=1

fDi .

Hence, P
c2C s (c) p̂T (c) fF (c)P

c2C s (c) fF (c)

=
nX
i=1

P
c2C

1
n
s (c) p̂T (c) fDi (c)P

c2C
Pn

i=1
1
n
s (c) fDi (c)

=
nX
i=1

P
c2C s (c) p̂T (c) fDi (c)P
c2C
Pn

i=1 s (c) fDi (c)

=
nX
i=1

X
c2C

s (c) p̂T (c)P
c2C
Pn

i=1 s (c) fDi (c)
fDi (c)

=

nX
i=1

�i
X
c2C

s (c) p̂T (c) fDi (c)P
c2C s (c) fDi (c)

with

�i =

P
c2C s (c) fDi (c)Pn

i=1

P
c2C s (c) fDi (c)

.
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Again, it is obvious that
�
�i
�n
i=1
2 int (�n�1) and, therefore,

HT (F ) =
nX
i=1

�iHT (Di) .

Since we have de�ned HT
�
cT
�
= P̂T (c), and since P̂ satis�es Linear Independence for all

T 2 f2; 3:::1g, so does H . Hence, Axiom (A3) also holds.
We now prove the suf�ciency of the axioms for the representation.

Denote by QjCj+ \�jCj�1 the set of rational probability vectors of dimension jCj. We make use
of Proposition 3 from BGSS (2005, P. 1132), which we state in terms of our notation:

Proposition A.1 BGSS (2005) Assume that h : QjCj+ \�jCj�1 ! �jRj�1 satis�es the condi-
tions:

(i) for every f , f 0 2 QjCj+ \�jCj�1 and every rational � 2 (0; 1),
h (�f + (1� �) f 0) = �h (f) + (1� �)h (f 0) ,

for some � 2 (0; 1) and
(ii) not all fh (f)g

f2QjCj+ \�jCj�1 are collinear.

Then there are probability vectors (p̂ (c))c2C 2 �jRj�1 not all of which are collinear and posi-
tive numbers (s (c))c2C such that for every f 2 Q

jCj
+ \�jCj�1,

h (f) =

P
c2C s (c) f (c) p̂ (c)P

c2C s (c) f (c)
.

The idea of the proof is as follows. First, we construct a sequence of sets of �nite databases in

such a way that the limit of this sequence is the set of in�nite databases D1 with well-de�ned

frequencies, see Lemma A.2. Hence, we can think of H1 as a mapping from QjCj+ \�jCj�1 to

�jRj�1. In a second step (Lemmas A.3, A.4 and Corollary 6.1), using Axioms (A2) and (A3),

we show that H can be represented as a union of functions h, all of which satisfy properties

(i) and (ii) of Proposition A.1 when restricted to D1. Next, in Lemma A.5, we apply the

construction used in the proof of Proposition 3 in BGSS (2005) to determine the similarity

function s for the restriction of each h to D1. Moreover, the functions h can be chosen in such

a way that the similarity weights are constant across all h. The last step, Lemma A.6, consists

in using Axiom (A2) to show that the same similarity weights can be used for data-sets of any

length T � 2.

25



We denote the possible frequency vectors which can be generated by a data-set of length T by:

QT =

8<:f 2 �jCj�1 j f (c) = kc
T
for some (kc)jCjc=1 2 f0; 1:::Tg

jCj with
jCjX
c=1

kc = T

9=; .
Obviously, for each T 2 f2; 3:::1g, QT � QjCj+ \ �jCj�1. Our �rst Lemma shows that we

can approximate QjCj+ \ �jCj�1 by QT by choosing a speci�c sequence of T 's. We denote by

lim (lim), the inferior (superior) limit of a sequence of sets, (see BERGE (1963, P. 118) for

de�nitions and properties).

Lemma A.2 Consider the in�nite sequence T1;T2:::Tm::: with Tm = m!.
lim
m!1

QTm = Q
jCj
+ \�jCj�1.

Proof of Lemma A.2:

First, we show

limm!1QTm = Q
jCj
+ \�jCj�1

Hence, we check that for each q 2 QjCj+ \ �jCj�1, there exists an M 2 Z+ such that for all
m �M , q 2 QTm . To see this, write q as a vector of ratios

q =

�
ai
bi

�jCj
i=1

,

with ai and bi 2 Z+, and take the largest of the numbers bi, b (q) = maxi2f1:::jCjg bi. Now set
M = b (q) and observe that for allm �M , each ratio ai

bi
can be written as:

ai
bi
=

aiki
b (q)! (b (q) + 1) (b (q) + 2) :::m

=
aiki

bi (bi � 1)! (bi + 1) (bi + 2) :::m
=
aiki
Tm

with

ki = (bi � 1)! (bi + 1) (bi + 2) :::m.
Since ai � bi, it follows that

0 � aiki � Tm
and obviously aiki 2 Z+. which proves the claim.
Second, we show that:

limm!1QTm = Q
jCj
+ \�jCj�1.

This follows immediately from the fact that QTm � Q
jCj
+ \�jCj�1 for allm 2 Z+. Hence,

limm!1QTm = limm!1QTm = lim
m!1

QTm = Q
jCj
+ \�jCj�1. �

The next Lemma A.3 allows us to relate the Concatenation Axiom, (A2) (which is formulated
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in terms of data-sets) to property (i) in Proposition A.1 (stated in terms of frequencies).

Lemma A.3 Let 2 f2; 3:::1g, f 0, f 00, f 2 QT and suppose that there is an � 2 (0; 1) such
that:

�f 0 + (1� �) f 00 = f .
Denote byD = (f ;T ),D0 = (f 0;T ),D00 = (f 00;T ) the data-sets with length T and frequencies
f , f 0 and f 00. Then, there exists a � 2 (0; 1) such that:

�H (D0) + (1� �)H (D00) = H (D) .

Proof of Lemma A.3:

Construct the following set of databases D1 = ::: = Dm�1 = Dm = D
0;Dm+1 = ::: = Dn =

D00 with
m

n
= �.

Note that such integers m and n can be found as long as � is rational, which is satis�ed since

f , f 0 and f 00 2 QT . Now note that:

D1 � ::: �Dm = (D0)
m

Dm+1 � ::: �Dn = (D00)
n�m

D1 � ::: �Dn = (D)n ,

and, hence, by (A2), there exists a vector � 2 int (�n�1) such that:
nX
i=1

�iH (Di) = H (D) .

Hence,

H (D0)

mX
i=1

�i +H (D
00)

nX
i=m+1

�i = H (D) .

Setting � =
Pm

i=1 �i 2 (0; 1) concludes the proof.�
We now state a lemma which shows that for every such T , we can express

HT : DT ! �jRj�1

as a collection of probability functions

hT : DT ! �jRj�1,

hT (D) 2 HT (D)

which satisfy properties (i) and (ii) of Proposition A.1.

Lemma A.4 Suppose that HT , T 2 f2; 3:::1g, satis�es (A2) and (A3). Then, for each
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T 2 f2; 3:::1g, there is a set of probability functions
HT=

�
hT : DT ! �jRj�1	

such that for each T � 2,
[hT2HT

hT (D) = HT (D)
and the following properties are satis�ed:

(i
0
) whenever

�HT (D) + (1� �)HT (D0) = HT

�
~D
�
,

then for each hT 2 HT ,

�hT (D) + (1� �)hT (D0) = hT

�
~D
�

and

(ii0) not all vectors
fhT (D)gD2DT

are collinear.

Before stating the proof of Lemma A.4, we illustrate its implications by the following corollary:

Corollary 6.1 Each hT 2 HT as constructed in Lemma A.4 satis�es properties (i) and (ii)
stated in Proposition A.1, where the set QjCj+ \�jCj�1 is replaced by QT for T <1.

Proof of Corollary 6.1:

For a given T , each set D 2 DT is uniquely identi�ed by its frequency. Hence, property (ii0)
corresponds exactly to property (ii) from Proposition A.1. To see the relation between (i0) and

(i) recall that Lemma A.3 demonstrates that for every T � 2, every D, D0, ~D 2 DT with

frequencies f , f 0, ~f 2 QT (with Q1 = QjCj+ \�jCj�1) and every rational � 2 (0; 1), such that

�f + (1� �) f 0 = ~f ,

we have

HT

�
~D
�
= �HT (D) + (1� �)HT (D0) ,

for some � 2 (0; 1), whereas condition (i0) assures that for each hT 2 HT ,

hT

�
~D
�
= �hT (D) + (1� �)hT (D0) .

We can now write hT in terms of frequencies, thus obtaining the expression stated in (i):

hT

�
~f
�
= hT (�f + (1� �) f) = �hT (f) + (1� �)hT (f 0) .

Especially, for D1, this expression is valid for any two f and f 0 2 QjCj+ \ �jCj�1 and every

rational � 2 (0; 1).
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Proof of Lemma A.4:

First, we show that hT satisfying property (i0) exist. By the Caratheodory Theorem, see GREEN

AND HELLER (1981, P. 40), we know that for a convex set HT (D) in a �nite dimensional

space (such as �jRj�1), each point of the set can be represented as a convex combination of at

most jRj points in�jRj�1. Since we have assumed thatHT
�
(ci)

T
�
are convex sets (polyhedra),

we can represent each such set as:

HT

�
(ci)

T
�
=

8<:
jRjX
j=1

�ij�ij j
jRjX
j=1

�ij = 1 and �ij � 0

9=; ,
where

�
�ij
�jRj
j=1
is the above mentioned collection of points inRjRj�1. Note that since

�
(ci)

T
�jCj
i=1

is a basis of DT , it follows that any linear combination of data-sets (written as (fD; jDj = T ))
can be expressed as a linear combination of (c1)T :::

�
cjCj
�T . By Lemma A.3, for everyD 2 DT ,

HT (D) =

jCjX
i=1

�iHT

�
(ci)

T
�

with
PjCj

i=1 �i = 1, �i 2 (0; 1), whenever ci occurs in D at least once and �i = 0, otherwise.

The Caratheodory Theorem now allows us to write any such convex combination as:

HT (D) =

jCjX
i=1

�i

8<:
jRjX
j=1

�ij�ij j
jRjX
j=1

�ij = 1 and �ij � 0

9=; =

=

8<:
jCjX
i=1

�i

jRjX
j=1

�ij�ij j
jRjX
j=1

�ij = 1 and �ij � 0

9=;
Hence, for a �xed collection of points

�
�ij
�jCj jRj
i=1j=1

, we can identify each selection hT with a

vector of coef�cients (�ij)jCj jRji=1j=1. Property (i
0) will be satis�ed if we take the maximal set of

such selections, i.e.

�jCj�(jRj�1).

We will now consider only functions hT satisfying property (i0) and show that it is possible

to construct the set HT without violating property (ii0). In terms of the representation above,

property (ii0) can be reformulated as follows. Suppose that for some hT 2 HT (as characterized

by (�ij)jCj jRji=1j=1), the vectors:

(hT (D))D2DT =

0@ jRjX
j=1

�ij�ij

1AjCj

i=1

are collinear. The claim is that in the set of selections as given by �jCj�(jRj�1), we can �nd a
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set of different selections,
�
hDT
�
D2DT

, such that for each D̂ 2 DT , hD̂T assumes the same values
as hT for D̂, but is obtained by a set of vectors

�
hD̂T (D)

�
D2DT

at least three of which are

non-collinear.

Suppose �rst that HT satis�es the condition of (A3) for some (ci)T , (cj)T and (ck)T , all of

which are single points:

H (Dm) =
n
h
�
(cm)

T
�o

form 2 fi; j; kg. Then, for each ĥT (�x; �a) 2 HT (�x; �a),

ĥT

�
(ci)

T
�
= h

�
(ci)

T
�

ĥT

�
(cj)

T
�
= h

�
(cj)

T
�

ĥT

�
(ck)

T
�
= h

�
(ck)

T
�

must hold. Since these three vectors are not collinear by assumption, the result of the lemma

obtains for this case.

Suppose, therefore that HT satis�es the condition of (A3) for some i, j and k, such that all of

HT

�
(cm)

T
�
form 2 fi; j; kg have a non-empty interior. Take some set

D̂ 2 DTn
n
(c1)

T :::
�
cjCj
�To .

For each hT
�
D̂
�
2 HT

�
D̂
�
, we have:

hT

�
D̂
�
=

jCjX
m=1

�mhT

�
(cm)

T
�

for some hT
�
(cm)

T
�
2 HT

�
(cm)

T
�
. Whenever hT

�
(cm)

T
�
, m = fi; j; kg entering this

representation are non-collinear for any such hT
�
D̂
�
, the result of the Lemma obtains. Sup-

pose, however that hT
�
(ci)

T
�
, hT

�
(cj)

T
�
and hT

�
(ck)

T
�
entering the representation are all

collinear. Then, the claim of the Lemma would be violated if there is a D̂ 2 DT such that

hT

�
D̂
�
can only be expressed as a linear combination of collinear vectors hT

�
(cm)

T
�
. We

now show that whenever it is true that hT
�
D̂
�
can be expressed as a linear combination of

collinear vectors, hT
�
(cm)

T
�
, it can only be expressed as a linear combination of vectors

h0T

�
(cm)

T
�
, where:

h0T

�
(cm)

T
�
= hT

�
(cm)

T
�

for all m 6= i; j; k, while h0T
�
(cm)

T
�
2 HT

�
(cm)

T
�
for m 2 fi; j; kg. This demonstrates that

each hT
�
D̂
�
, can be expressed as a linear combination of non-collinear hT

�
(cm)

T
�
. Taking
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all admissible linear combinations of such vectors results in hT 2 HT . It is obvious then that
the collection of all such hT , HT has the required properties.

We have to consider several cases:

Case 1: For eachm 2 fi; j; kg,

hT

�
(cm)

T
�
2 int

�
HT

�
(cm)

T
��

Then, it is always possible to �nd �i and �j 2 �jRj which are not-collinear to hT
�
(cm)

T
�
for

m 2 fi; j; kg such that

hT

�
D̂
�
= �i

�
hT

�
(ci)

T
�
+ �i

�
+ �j

�
hT

�
(cj)

T
�
+ �j

�
+

jCjX
m=1
m6=i;j

�mhT

�
(cm)

T
�
, (A-1)

and

�i�i + �j�j = 0.

De�ning h0T
�
(cm)

T
�
= hT

�
(cm)

T
�
+ �m with �m = 0 form =2 fi; jg gives the desired result.

Case 2: Let hT
�
(cm)

T
�
be extreme points of

�
HT

�
(cm)

T
��
for every m 2 fi; j; kg. Then,

Axiom (A3) insures that not all of these points are collinear and, hence, the result of the lemma

obtains.

Case 3: Let hT
�
(cm)

T
�
2 bd

�
HT

�
(cm)

T
��
, but not extreme points for allm 2 fi; j; kg.

Case 3a: Suppose �rst that the hyperplanes containing the sides of the polyhedra on which

hT

�
(ci)

T
�
and hT

�
(cj)

T
�
lie are not parallel. In that case, it is obvious that there exist �i such

that

hT

�
(ci)

T
�
+ �i 2 int

�
HT

�
(ci)

T
��

and �j such that

hT

�
(cj)

T
�
+ �j 2 bd

�
HT

�
(cj)

T
��

so that:

�i�i + �j�j = 0

and, hence, the equality in A-1 obtains. (This can be done, e.g. by choosing �j to lie in the

same hyperplane as hT
�
(cj)

T
�
and choosing

�
�i;hT

�
(ci)

T
��
to be parallel to the hyperplane

on which hT
�
(cj)

T
�
lies. An �i in the interior of HT

�
(cj)

T
�
exists by the assumption that the

two hyperplanes are not parallel).

Case 3b: Suppose now that all three of the hyperplanes containing the sides of the polyhedra on

which hT
�
(cm)

T
�
lie are parallel, but at least two of them are distinct. Then choose vectors �i
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and �j such that

�i�i + �j�j = 0

and both �i and �j are parallel to the hyperplanes containing the sides of the polyhedra on which

hT

�
(cm)

T
�
lie. It is obvious that �i and �j can always be chosen in such a way that

hT

�
(ci)

T
�
+ �i, hT

�
(cj)

T
�
+ �j and hT

�
(ck)

T
�

are not collinear.

Case 3c: If the three hyperplanes containing the sides of the polyhedra on which hT
�
(cm)

T
�

lie, coincide, there are two possibilities: either at least one of the points belongs to the interior

of a face on this hyperplane or all of the points lie on edges of the polyhedra. Let hT
�
(ci)

T
�

belong to the interior of a face. If the edge containing, say hT
�
(cj)

T
�
is not collinear to the edge

containing hT
�
(ck)

T
�
, then, it is obviously possible to �nd �i and �j satisfying the necessary

condition A-1. The idea is to move hT
�
(cj)

T
�
by �j along the edge to which it belongs, while

moving the interior point hT
�
(ci)

T
�
in the opposite direction by the use of �i. If both edges

are collinear, then �j can be chosen in such a way so as to move hT
�
(cj)

T
�
into the interior of

HT

�
(cj)

T
�
, whereas again it is always possible to move the interior point hT

�
(ci)

T
�
into the

exactly opposite direction by means of �j .

If at least two of the edges are not parallel, then the existence of �i and �j is obvious, as in the

case of non-parallel hyperplanes. If the edges are parallel but distinct lines in this hyperplane,

proceed as in the case of three parallel but distinct hyperplanes. If all of the lines containing the

edges coincide, then all vertices contained in these edges must be collinear, which is excluded

by (A3).�

Lemma A.5 Let D 2 D1. Then,

H1 (D) =

�P
c2C s (c) p̂1 (c) fD (c)P

c2C s (c) fD (c)
j p̂1 (c) 2 P̂1 (c)

�
,

where
P̂1 (c) = H ((c)

1) ,
(and hence, satisfy Linear Independence) and s (c) are given by the unique (up to a multipli-
cation by a positive number) solution of the equation:PjCj

i=1
1
jCjs (ci) p̂1 (ci)PjCj
i=1

1
jCjs (ci)

=

jCjX
i=1

�ih ((ci)
1) :
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Proof of Lemma A.5:

Apply the construction in Lemma A.4, to the sequence Tm (as de�ned in Lemma A.2). Letting

m!1, we can representH1 as a selection of functions h1 which satisfy all of the conditions
of Proposition A.1. We can, therefore, apply directly the result of the proposition and state, for

each h1, the existence of unique vectors

p̂1 (c1) :::p̂1
�
cjCj
�

such that

h1 ((ci)
1) =

P
c2C s (c) p̂1 (c) f(ci)1 (c)P

c2C s (c) f(ci)1 (c)
= p̂1 (ci) ,

or

p̂1 (c1) = h ((c1)
1) :::p̂1

�
cjCj
�
= h

�
cjCj
�1 .

Taking the union of all such vectors p̂, we thus obtain the sets

P̂1 (ci) = [h12H1h1 (ci)
1 = H1 ((ci)

1) for i 2 f1::: jCjg .

These sets trivially satisfy the conditions of Axiom (A3). We can now determine the similarity

function for each of the vectors

p̂11 (c1) :::p̂1
�
cjCj
�

separately by solving: PjCj
i=1

1
jCjs (ci) p̂1 (ci)PjCj
i=1

1
jCjs (ci)

=

jCjX
i=1

�ih1 ((ci)
1) : (A-2)

For the case jCj = 3, the condition that h ((c1)1), h ((c2)1) and h ((c3)1) are non-collinear

implies that this system has a unique solution, fs1 ((ci))g3i=1. For the case of jCj > 3, we

can apply Step 2 of the proof of BGSS (2005), which implies that no matter which three

non-collinear vectors are chosen, the resulting similarity functions differ only with respect to a

multiplication by a positive number. Lemma A.4 insures that (�i)jCji=1 remain the same for all

functions h. Since p̂1 (ci) = h1 ((ci)
1) it follows that the unique (up to a multiplication by

a positive number) solution to this equation does not depend on the chosen vector and is given

by:

s (ci) = �i: �

Lemma A.6 For every T 2 f2; 3:::1g,

HT (D) =

�P
c2C s (c) p̂T (c) fD (c)P

c2C s (c) fD (c)
j p̂T (c) 2 P̂T (c)

�
,
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where
P̂T (c) = H

�
(c)T

�
,

and s (c) are the unique (up to a multiplication by a positive number) solution of equation A-2.

Proof of Lemma A.6:

First note that using the argument in the proof of Proposition 3 in BGSS (2005, P. 1134) we

can show that the solution of the system:

T�1
T
s (c1) p̂1 (c1) +

1
T
s (c2) p̂1 (c2)

T�1
T
s (c1) +

1
T
s (c2)

(A-3)

= �1h1 ((c1)
1) +

�
1� �1

�
h1 ((c2)

1)

:::
T�1
T
s
�
cjCj�1

�
p̂1
�
cjCj�1

�
+ 1

T
s
�
cjCj
�
p̂1
�
cjCj
�

T�1
T
s
�
cjCj�1

�
+ 1

T
s
�
cjCj
�

= �jCj�1h1
��
cjCj�1

�1�
+
�
1� �jCj�11

�
h1
��
cjCj
�1�

is identical (up to a multiplication by a positive number) to the solution of equation A-2. Note

that this argument uses only properties (i) and (ii), but does not make use of the fact that h1 is

de�ned on the set QjCj+ \�jCj�1.

Let T < 1. Corollary 6.1 shows that properties (i) and (ii) stated in Proposition A.1 are
satis�ed for all �nite data-sets with equal length T as long as the set of possible values of f and

f 0 is restricted to QT .

Observe that for each selection hT , we have:

hT

�
(ci)

T
�
=

P
c2C s (c) p̂T (c) f(ci)T (c)P

c2C s (c) f(ci)T (c)
= p̂T (ci)

and de�ne

P̂T (ci) = HT

�
(ci)

T
�

Note that, for i and j 2 f1::: jCjgwe can write:0@ ci:::ci| {z }
T�1-times

; cj

1AT

=
�
(ci)

T
�T�1

� (cj)T

and conclude, by Axiom (A2) and Lemma A.3 that

HT

0@ ci:::ci| {z }
(T�1)-times

; cj

1A = �HT

�
(ci)

T
�
+ (1� �)HT

�
(cj)

T
�
.

for some � 2 (0; 1). Lemma A.4 shows that the same values of � can be used for each selection

34



hT of HT . Axiom (A2) guarantees that for any k 2 Z+,0@ ci:::ci| {z }
T�1-times

; cj

1AkT

=
�
(ci)

T
�k(T�1)

� (cj)kT

implies

HkT

0@ ci:::ci| {z }
k(T�1)-times

; cj:::cj| {z }
k-times

1A = �HT

�
(ci)

T
�
+ (1� �)HT

�
(cj)

T
�
.

Letting k = Tm = m! andm!1, we get:

lim
Tm!1

H

0@ ci:::ci| {z }
Tm(T�1)-times

; cj:::cj| {z }
Tm-times

1A = �H1 ((ci)
1) + (1� �)H1 ((cj)1)

and from Lemma A.5, we know that:

�h1 ((ci)
1) + (1� �)h1 ((cj)1) =

T�1
T
s (ci) p̂1 (ci) +

1
T
s (cj) p̂1 (cj)

T�1
T
s (ci) +

1
T
s (cj)

for each selection h1 2 H1.
Hence, we can determine the similarity function for data-sets of length T by solving the system

of equations:
T�1
T
s (c1) p̂T (c1) +

1
T
s (c2) p̂T (c2)

T�1
T
s (c1) +

1
T
s (c2)

= �1h
�
(c1)

T
�
+
�
1� �1

�
h
�
(c2)

T
�

:::
T�1
T
s
�
cjCj�1

�
p̂T
�
cjCj�1

�
+ 1

T
s
�
cjCj
�
p̂T
�
cjCj
�

T�1
T
s
�
cjCj�1

�
+ 1

T
s
�
cjCj
�

= �jCj�1h
��
cjCj�1

�T�
+
�
1� �jCj�1

��
h (cjCj)

T
�

in which the �-values are identical to those in equation A-3 above. Since the selections hT
satisfy properties (i) and (ii) of Proposition A.1 restricted to QT and since the argument from

the proof of Proposition 3 in BGSS (2005) used above does not depend on the set QT , we can

use it again to claim that the unique solution to this system coincides with the solution of A-3

and is also independent of the values of p̂T (c) as long as

p̂T (ci) = h
�
(ci)

T
�

holds. Hence, we can use the similarity function determined for D1, for any DT with T <1.�
Proof of Lemma 5.1:

Suppose that the frequency of r in a data-set D =
n
(x; a; rt)

T
t=1

o
is given by fD (r). Consider
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the sequence of data-sets Dk as k !1 and note that by (A4), as k !1,

H (D1)! fh (D1)g = ffDk (r)g = ffD1 (r)g .

By (A5), for each k,

H
�
Dk
�
� H

�
Dk�1� .

Hence, for each k, there is an h 2 H
�
Dk
�
such that

hr (D) = fDk (r) .

Especially, for k = 1, there is an h 2 H (D) such that

hr (D) = fD (r) . �

Proof of Theorem 5.2:

To simplify notation, for this proof, we let cx;ai denote a case (x; a; ri), where only the outcome

r varies while x and a remain �xed. To see that the proposition holds note that we construct the

elements of P̂T (cx;ai j x; a) by using only the data-set (cx;ai )
T and setting for each selection h,

p̂T (c
x;a
i j x; a) =: h

�
(cx;ai )

T j x; a
�
.

Hence,

P̂T (c
x;a
i j x; a) = H

�
(cx;ai )

T j x; a
�
.

(A5), Accumulation of knowledge ascertains that

HT+1

�
(cx;ai )

T+1 j x; a
�
� HT

�
(cx;ai )

T j x; a
�
.

Now note that, if Axiom (A4), Learnability, holds, we know that for cx;ai = (x; a; ri)

lim
T!1

H
�
(cx;ai )

T j x; a
�
= fDi

1 =

0@0; 0:::0; 1|{z}
ith-position

; 0:::0

1A = lim
T!1

P̂ iT ((c
x;a
i ) j x; a) .

The inclusion property shown above ascertains that0@0; 0:::0; 1|{z}
ith-position

; 0:::0

1A 2 P̂T (cx;ai j x; a)

for every T . Now consider all cases (x; a; r)r2R and the data-sets (x; a; r)
T . For any two such
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sets with outcomes ri and rj , we know that

lim
T!1

H
�
(x; a; ri)

T � (x; a; rj)T j x; a
�
= lim

T!1
f(x;a;ri)T �(x;a;rj)T =

= lim
T!1

1

2
H
�
(x; a; ri)

T j x; a
�
+

+
1

2
H
�
(x; a; rj)

T j x; a
�
=

=
1

2
f(x;a;ri)T +

1

2
f(x;a;rj)T =

=

0BB@0; 0::: 1

2|{z}
ith position

; 0:::
1

2|{z}
jth position

; 0:::0

1CCA
Now, expressing

H
�
(x; a; ri)

T � (x; a; rj)T j x; a
�

in terms of similarity gives:0BB@0; 0::: 1

2|{z}
ith position

; 0:::
1

2|{z}
jth position

; 0:::0

1CCA
=

1
2
s ((x; a) ; (x; a; ri)) ei +

1
2
s ((x; a) ; (x; a; rj)) ej

1
2
s ((x; a) ; (x; a; ri)) +

1
2
s ((x; a) ; (x; a; ri))

,

which implies

s ((x; a) ; (x; a; ri)) = s ((x; a) ; (x; a; rj)) ,

for all ri, rj 2 R, which after normalization can be written as:

s ((x; a) ; (x; a; r)) = 1

for all r 2 R. �
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