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Abstract 

We show by Monte Carlo simulations that the jackknife estimation of QUENOUILLE (1956) provides substantial 
bias reduction for the estimation of short-term interest rate models applied in CHAN ET AL. (1992) – hereafter 
CKLS (1992). We find that an alternative estimation based on NOWMAN (1997) does not sufficiently solve the 
problem of time aggregation. We provide empirical distributions for parameter tests depending on the elasticity 
of conditional variance. Using three-month U.S. Treasury bill yields and the Federal fund rates, we demonstrate 
that the estimation results can depend on both the sampling frequency and the proxy that is used for interest 
rates. 
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1 Introduction 

Many asset pricing models use one-factor stochastic differential equations – hereafter SDE – 

to capture the dynamics of the short-term interest rate. The properties of such a SDE are 

determined by its drift and diffusion functions. Since different functions generate significantly 

different prices for interest rate sensitive assets, the choice of the corresponding specification 

is of great importance. Models that permit closed-form solutions for contingent claims 

provide greater analytical insights, whereas the lack of empirical evidence may result in 

model risk. 

In this work, we focus our attention on problems involved with the estimation procedure 

applied by CKLS (1992). In CKLS (1992) the empirical validity of several continuous-time 

models is analyzed by means of the generalized method of moments – hereafter GMM – 

estimation of HANSEN (1982). We show by Monte Carlo simulations that the estimation 

procedure suffers from significant estimation bias that arises from the estimation of 

autoregressive models. This bias is likely to have considerable effects on pricing derivatives. 

We prove by Monte Carlo simulations that the so-called jackknife estimation of QUENOUILLE 

(1956) achieves substantial bias reduction under the assumption that the dynamics of the 

short-term interest rate can be approximated by means of the discrete-time process used in 

CKLS (1992). 

Moreover, the estimates cannot be assumed to follow the normal distribution in general. For 

some empirical investigations, this deviation from the normal distribution can question the 

importance of mean-reversion for the underlying short-term interest rate process. Using 

Bartlett weights suggested by NEWEY AND WEST (1987a) for variance-covariance matrix 

estimation, we determine empirical distributions of the associated t-statistics under the null 

hypothesis that the drift function is zero. Our findings indicate that the distributions depend on 

the elasticity of the conditional variance of changes in the short-term interest rate. In addition, 

we consider the empirical distribution of the corresponding likelihood ratio – hereafter LR – 

statistics under the null models that are examined in this work. We find that the distributions 

do not strictly and exclusively depend on the number of restrictions imposed by the 

underlying null models but also on the given model that is considered. 

An additional problem involved with the estimation of CKLS (1992) is that discrete-time 

approximations introduce discretization bias, since – as a result of time aggregation – they 

neglect internal dynamics between sampling points. As shown in MELINO (1994), this feature 

can result in inconsistent estimators. To deal with the problem caused by discretization bias, 
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we consider an alternative GMM technique based on the discrete-time version of the general 

SDE proposed by NOWMAN (1997). However, our Monte Carlo simulations demonstrate that 

the alternative estimation procedure does not sufficiently solve the problem of time 

aggregation. 

We apply the estimation of CKLS (1992) – using our the empirical distributions of the 

associated test-statistics – for daily, weekly and monthly observations of the three-month U.S. 

Treasury bill yield and the Federal fund rate respectively, both from 04.01.1954 through 

02.03.2006. Furthermore, we apply the unit root tests of SAID AND DICKEY (1984). We 

demonstrate that the estimation results can depend on both the sampling frequency and the 

proxy that is used for the short-term interest rate.  

As indicated by the results, the three-month U.S. Treasury bill yields seem to be non-

stationary, such that the role of mean-reversion appears to be negligible from the empirical 

point of view. As in CKLS (1992), we find that the conditional variance of changes in the 

three-month U.S. Treasury bill yield is highly sensitive to the yield level, whereas an exact 

specification of the elasticity is more important for daily observations, since the null models 

are rejected more often. Therefore, the sensitivity of the conditional variance on the yield 

level can be lower then assumed by CKLS (1992). On the other hand, the corresponding 

jackknife estimation applied for the three-month U.S. Treasury bill yield results in higher 

values for the elasticity. 

In contrary to that result, daily observations of the Federal fund rate exhibit significant mean-

reversion, whereas weekly and monthly observations seem to appear non-stationary. Another 

empirical result for the Federal fund rate is that the elasticity seems to be lower for daily 

observations then for the three-month U.S. Treasury bill yield. Although weekly and monthly 

observations of the Federal Funds rate exhibit higher elasticities, the corresponding null 

model that is not rejected for daily observations at the 5% level, cannot be rejected for weekly 

and monthly observations either. 

The remainder of this work is organized as follows. Section 2 discusses the stochastic 

properties of several continuous-time models with regard to the short-term interest rate. 

Section 3 presents a theoretical analysis of the estimation procedure applied by CKLS (1992) 

and an alternative estimation. In Section 4 the results of the Monte Carlo experiments are 

presented. Section 5 reports the corresponding empirical results. Section 6 concludes. 
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2 Continuous-Time Models of the Short-Term Interest Rate 

In CKLS (1992) the short-term interest rate follows a continuous-time stochastic process 

}0|{ ≥tRt  which solves a time-homogenous, one-factor, diffusion-type SDE, namely 

( ) tttt dWRdtRdR   γσβα ⋅+⋅+= , (1) 

where }0|{ ≥tWt  is a standard Brownian motion on the filtered probability space 

)},0|{,,( PtFF t ≥Ω  and the parameter vector is ' ),,,( γσβαθ = . The initial value 0R  is 

assumed to be fixed and positive. This specification allows both the conditional mean and 

variance of changes in the short-term interest rate to depend on the short-term interest rate 

level, whereas the drift function is linear in tR . It follows from (1) that the conditional 

variance of changes in the short-term interest rate increases with the level of the interest rate if 

0>γ . Using the properties of stochastic integrals, it can be shown that 

( ) βα /lim −=
∞→ t

t
RE  for 0<β , 

where ( )..E  denotes the associated expectation operator to P , such that βα /−  is regarded as 

the long-run mean of tR . This illustrates that in case of 0<β  the process is mean-reverting 

which means that there is an adjustment to the unconditional long-run mean measured by the 

level of β . We can obtain various well-known models of the short-term interest rate using 

corresponding parameter restrictions. The specifications that are examined in this work are 

summarized in Table 1. 

 

Table 1 Summary of Alternative Models of the Short-Term Interest Rate 

Model SDE α β γ 

Unrestricted ( ) tttt dWRdtRdR   γσβα ⋅+⋅+=  - - - 

MERTON (1973) tt dWdtdR   σα +=  - 0 0 

VASICEK (1977) ( ) ttt dWdtRdR   σβα +⋅+=  - - 0 

DOTHAN (1978) ttt dWRdR  ⋅= σ  0 0 1 

CIR (1980) ttt dWRdR  5.1⋅= σ  0 0 1.5 

BS (1980) ( ) tttt dWRdtRdR   ⋅+⋅+= σβα  - - 1 

CIR (1985) ( ) tttt dWRdtRdR   0.5⋅+⋅+= σβα  - - 0.5 

GBM tttt dWRdtRdR   ⋅+⋅= σβ  0 - 1 

 
Explanation: Table 1 summarizes the specifications of alternative continuous-time models of the short-
term interest rate with their corresponding parameter restrictions that are imposed on the parameter vector 
of the unrestricted model. 
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The short-term interest rate in MERTON (1973) evolves a so-called arithmetic Brownian 

motion. This specification implies that both the variance and the absolute value of the 

unconditional mean of the short-term interest rate increase by time, such that the resulting 

process is non-stationary. The model of VASICEK (1977) supposes that the short-term interest 

rate follows a so-called Ornstein-Uhlenbeck process. This process is asymptotic stationary if 

and only if 0<β . In both models, the conditional variance of changes in the short-term 

interest rate is constant. Since tR  is Gaussian for both models, it holds 0)0( ><tRP  which is 

not a desirable feature from the practical point of view. 

The solution of the process suggested by DOTHAN (1978) follows a log-normal distribution. 

Since the variance increases as ∞→t , the process is non-stationary. Assuming βα /0 −=R  

for simplification, it can be shown that asymptotic stationary of the short-term interest rate 

process suggested by BRENNAN AND SCHWARTZ (1980) – hereafter BS (1980) – requires 

0<β  and 02 2 <+⋅ σβ . Due to 1=γ , the models of DOTHAN (1978) and BS (1980) assume 

that the conditional volatility of changes in the short-term interest rate at time t  is 

proportional to the rate level.  

Assuming βα /0 −=R , it can be shown that 0<β  is necessary for asymptotic stationarity of 

the process proposed by CIR (1985), where the conditional distribution of the interest rate is 

non-central chi-square. However, a closed-form solution of the process is not known. Due to 

5.0=γ , the model of CIR (1985) assumes that the conditional variance of changes in the 

short-term interest rate at time t  is proportional to the rate level. If tR  follows a GBM, then 

asymptotic stationarity requires 0<β  and 02 2 <+⋅ σβ . The specification implies that in 

case of 0<β  and 02 2 <+⋅ σβ  both the mean and the variance of tR  converge to zero as 

∞→t . 

 

3 Representation of the Estimation Techniques 

Let ,..}1,0 |{ =iti  symbolize an equidistant discretization of time, where it  denotes a point of 

time with 0: 1 >−=∆ + ii ttt  for all i  and 0:0 =t .1 For estimation, it is assumed in CKLS 

                                                 
1 There is no loss of generality in assuming equidistant points of time, since there is no conclusive weekend 
effect in money market instruments; see e.g. AÏT-SAHALIA  (1996). 
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(1992) that the solution of (1) can be approximated by a discrete-time stochastic process 

,...}1 ,0 |)({ =itr i  that satisfies 

)())(()()( 10001 ++ +∆⋅⋅+=− iiii tttrtrtr εβα , (2) 

where ' ),,,( 00000 γσβαθ =  denotes the parameter vector that is to be estimated.2 The 

unobservable error term (..)0ε  is allowed to be conditionally heteroskedastic, such that 

( ) 0)(|)( 10 =+ ii trtE ε  and ( ) ttrtrtE iii ∆⋅⋅= ⋅
+ )()( |)( 022

01
2
0

γσε  for all i . (3) 

It should be noted that the approximation (2), which is referred to as the Euler discretization 

of (1), neglects errors that are introduced as a result of time aggregation. To apply the GMM 

procedure of HANSEN (1982), the following vector function is suggested 

( ) 















⊗








∆⋅⋅−
= ⋅

+

+

)(

1

)()(

)(
),( 22

1
2

1

iii

i
i trttrt

t
trf γσε

ε
θ , 

where ⊗  denotes the Kronecker product and ttrtrtrt iiii ∆⋅⋅+−−= ++ ))(()()()( 11 βαε . Using 

the law of iterated expectations, it can be shown that 0))),((( =θitrfE  for all i , such that 

00))),((( θθθ =⇔=itrfE  is assumed for all i . Given a finite observed sample of the short-

term interest rate with 1+n  observations, the sample moments of )),(( θitrf  satisfy 

( ) ( )θθ ),(
1 1

0
i

n

i

trf
n

g ∑
−

=
⋅= . 

The GMM procedure consists of choosing an estimator θ̂  for 0θ , such that the criterion 

function )(θQ  given below is minimized with respect to θ , that is 

{ })(minargˆ θθ
θ

Q= , where )(  ' )(:)( θθθ gVgQ ⋅⋅= , 

and V  is a positive definite random weighting matrix, i.e. 0>V , such that 0)( ≥θQ  for all θ  

and 0)(0)( =⇔= θθ gQ . It can be shown that minimizing )(θQ  is equivalent to solving 

0)(  ' )( =⋅⋅ θθ gVG , where )(θG  denotes the Jacobian of )(θg  with respect to θ . 

Since 0θ  is exactly identified by the moment conditions in the unrestricted case, the estimator 

of the unrestricted parameter vector – denoted as )0(θ̂  – can be obtained by solving the non-

                                                 
2 The statistical properties of the discrete-time approximation given in (2) are summarized by BROZE ET AL 
(1995). Note that the properties of the discrete-time approximation do not correspond with the continuous-time 
stochastic process as 0→∆t ; see e.g. BROZE ET AL (1995) and RODRIGUES AND RUBIA (2004) for details. 
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linear system 0)( =θg , such that )0(θ̂  does not depend on the choice of the weighting matrix. 

Since a closed-form solution is not attainable in general, 0)( =θg  is solved numerically by 

the Newton-Raphson – hereafter NR – method. If restrictions on the parameter vector are 

imposed by an underlying short-term interest rate model, then the parameters are 

overidentified by the moment conditions. In this case, we cannot find a parameter vector θ  

that satisfies 0)( =θg  and therefore, the corresponding estimator of the given restricted 

model – these estimators are denoted by )(ˆ sθ  hereafter, where s  is the number of restrictions 

– depends on the choice of the weighting matrix. The sample moments of the vector function 

are assumed to satisfy the central limit theorem, that is 

),0()( 0
5.0 INgn d→⋅⋅Σ− θ  as ∞→n , 

where →d  denotes the convergence in distribution, ),0( IN  denotes a multivariate standard 

normal distribution with identity I , and Σ  is a positive definite matrix that satisfies 

( ) ( )∑∑
∞

=

−

=∞→
Γ+Γ+Γ=







 Γ+Γ⋅







 −+Γ=Σ
1

0

1

1
0 ' '1lim

j
jjjj

n

jn n

j
, 

where )' )),(()),(((: 00 θθ jiji trftrfE ⋅=Γ − .3 Using the Taylor expansion, it follows that 

),0()ˆ( 0
5.0 INn d→−⋅⋅Λ− θθ , where 

( ) ( ) 5.0
00

1
00

5.0 )(')'()()'( θθθθ GVVGGVG ⋅⋅Σ⋅⋅⋅⋅⋅=Λ − , (4) 

such that 1
0

1
0 ))()'(( −− ⋅Σ⋅=Λ θθ GG  if 1−Σ=V . Since 0))()'(( 1

0
1

0 ≥⋅Σ⋅−Λ −− θθ GG  for all V , 

the optimal choice for the weighting matrix would be 1ˆ −Σ=V , where Σ̂  represents an 

estimator of Σ . Unfortunately, we cannot construct Σ̂  by replacing the autocovariances jΓ  

with their sample analogues jΓ̂  since the number of estimated autocovariances grows at the 

same rate as the sample size and Σ̂  may be indefinite in finite samples. The solution is to 

construct an estimator in which the contribution of the sample autocovariances are weighted 

to reduce their role sufficiently for positive definiteness and have weights tend to one as 

∞→n  to ensure consistency, that is 

( ) ( )'ˆˆ))(,(ˆˆ
1

0 jj

nb

j

nbj Γ+Γ⋅+Γ=Σ ∑
=

κ , 

                                                 
3 See e.g. HALL  (2005). 
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where (..)κ  is known as the kernel and )(nb  as the bandwidth which depends on the sample 

size and must be positive. The bandwidth ensures that autocovariances corresponding to lags 

greater than )(nb  are given zero weight. The so-called Bartlett kernel introduced by NEWEY 

AND WEST (1987a) is given by 

( )1)(/1))(,( +−= nbjnbjκ . 

ANDREWS (1991) shows that the asymptotic mean square error of Σ̂  is minimized by setting 

)(nb  to )( 3/1nO  for the Bartlett kernel. This suggests that a form 3/1)( nnb ⋅= ρ  may be 

appropriate. However, this provides little practical guidance since ρ  is not known. 

Unfortunately, statistical inference is often very sensitive to the choice of the bandwidth. 

Some methods of selecting the bandwidth require some prior knowledge or additional 

restrictions on the underlying process.4 For estimation, we use }int{)( 3/1nnb = , where int{..}  

is the integer part of the corresponding argument. The estimation of the restricted models 

requires a two-step GMM estimation; estimating the optimal weighting matrix in the first step 

using the unrestricted estimator, followed by estimating the parameters of the given restricted 

model. 

To test the validity of the restrictions on the parameter vector given by the short-term interest 

rate models, we apply the methodology proposed by NEWEY AND WEST (1987b) which can be 

viewed as an extension to the GMM framework of the classical parameter tests from 

Maximum Likelihood – hereafter ML – theory. CKLS (1992) assume that the LR-statistic 

))ˆ()ˆ(( )0()( θθ QQn s −⋅  is asymptotically distributed chi-square under the given short-rate 

model with s  degrees of freedom. As in CKLS (1992), the weighting matrix from the 

unrestricted model is used to calculate both )ˆ( )(sQ θ  and )ˆ( )0(θQ . 

Now we consider an alternative GMM estimation using the assumption of NOWMAN (1997) 

that the conditional variance of the short-term interest rate change remains unaffected over 

each unit observation period [ )1, +ii tt , such that (1) is simplified to 

( ) ( ) τ
γσττβατ dWtrdrdr i   )()( ⋅+⋅+=  for all ∈τ [ )1, +ii tt . (5) 

                                                 
4 ANDREWS (1991) and NEWEY AND WEST (1994) provide methods for bandwidth selection. The corresponding 
methods remove some of the judgmental aspects of selecting the bandwidth but do not completely solve the 
problem since the exact choice of several parameters is not specified; see e.g. HALL (2005) or HARRIS AND 

MÁTYÁS (1999). However, we are not interested in consistent estimation of the variance-covariance matrix but 
in the asymptotic behaviour of the test statistics. 
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This assumption facilitates the construction of a discrete time version of the model. It follows 

that the exact discrete-time model corresponding to (5) is given by 

{ } { }( ) )(1exp)(exp)( 100
0

0
01 ++ +−⋅∆+⋅⋅∆= iii tttrttr εβ

β
αβ , (6) 

where the error term (..)0ε  satisfies 

( ) 0)( |)( 10 =+ ii trtE ε  and ( ) { }( ) )(12exp
2

)( |)( 02
0

0

2
0

1
2
0 iii trttrtE γβ

β
σε ⋅

+ ⋅−⋅⋅∆⋅
⋅

= . (7) 

Using (6) and (7), the subsequent GMM estimation – to which we refer as the alternative 

estimation – is then constructed analogously to the procedure applied by CKLS (1992). Since 

only the diffusion function is approximated in (6), this alternative estimation method is 

supposed to reduce aggregation bias relative to full discretization. 

It is commonly known that standard procedures ML can lead to biased coefficient estimators 

while estimating autoregressive models. Since both discrete-time approximations given in (2) 

and (6) can be regarded as autoregressive models of order one with conditional 

heteroskedastic errors, the question of a bias reduction method arises. The so-called jackknife 

technique of QUENOUILLE (1956) to bias reduction is suggested by YU AND PHILLIPS (2005) 

within the framework of the ML procedure for estimating continuous-time models. Under the 

assumption that the bias of the estimates can be expanded asymptotically in a series of 

increasing powers of 1−n , it can be easily shown that the bias of the jackknife estimation is of 

order )( 2−nO . 

We apply the jackknife estimation within the GMM estimation framework of CKLS (1992) as 

follows. An observed sample with n  observations is decomposed into 2≥λ  consecutive sub-

samples, each with τ  observations, such that τλ ⋅=n . Then the jackknife estimator jackθ̂  of 

the parameter vector θ  is given by 

( ) j
j

jack θ
λλ

θ
λ

λθ
λ

ˆ
1

1ˆ
1

ˆ
1
∑

=
⋅

−⋅
−⋅

−
=  for 2≥λ , 

where jθ̂  symbolizes a corresponding GMM estimate of 0θ  obtained from the j -th sub-

sample with λ,...,1=j . For estimation, the simple choice of two sub-samples is often 

suitable. 
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4 Monte Carlo Results 

Within all Monte Carlo experiments, the realisations of standard normal pseudo-random 

variables are generated by the so-called ziggurat algorithm of MARSAGLIA AND TSANG (1984). 

Furthermore, the bias of the corresponding estimation is tested respectively using 

)1,0(
ˆ ˆ

0 Nm d→−⋅
ασ
αα

 as ∞→m , under ( ) 00
ˆ: θθ =EH , 

where m  denotes the number of replications, α  symbolizes the sample mean of the estimates 

of α , 2
ˆˆασ  represents an estimate for the variance, i.e. ∑ =− −= m

j jm 1
2

1
12

ˆ )ˆ(ˆ αασα , and jα̂  

denotes an estimate of α  computed at replication j  with mj ,...,1= . For the remaining 

parameters, the bias is tested analogously. Note that the normality of the estimators is not 

necessary for the normality of the estimation bias.  

We construct simulated sample paths of (2) using 04.00 =α , 10 −=β , 2.00 =σ , 5.10 =γ , 

01.0=∆t , and 035.0)( 0 =tr  from which the parameters are estimated by the method applied 

in CKLS (1992) respectively. We also compute the corresponding jackknife estimates using 

2=λ . The simulated sample paths consist of ,500 12 ,000 25 ,000 50  and 000 100  

observations and the Monte Carlo experiment is based on 000 5=m  replications. The results 

are presented in Table 2. 

 

Table 2 The Bias of the CKLS (1992) Estimation – Monte Carlo Results 

n  λ  α  β  σ  γ  

12 500 1 
0.04118** 
[17.1341] 

-1.0297** 
[-17.1222] 

0.2480** 
[18.1850] 

1.4933* 
[-2.1878] 

 2 
0.039960 
[-0.5565] 

-0.9990 
[0.5429] 

0.2188** 
[6.7649] 

1.4940 
[-1.9358] 

25 000 1 
0.04060** 
[11.8145] 

-1.0149** 
[-11.8146] 

0.2237** 
[14.2299] 

1.4964 
[-1.6474] 

 2 
0.039981 
[-0.3676] 

-0.9995 
[-0.3525] 

0.2041** 
[2.7486] 

1.4966 
[-1.5425] 

50 000 1 
0.04031** 
[8.6630] 

-1.0077** 
[-8.6517] 

0.2134** 
[11.9744] 

1.4998 
[-0.1332] 

 2 
0.039997 
[-0.0815] 

-0.9999 
[0.0887] 

0.2026** 
[2.5105] 

1.5002 
[0.1124] 

100 000 1 
0.04017** 
[6.9928] 

-1.0044** 
[-6.9835] 

0.2070** 
[9.1840] 

1.5005 
[-0.4050] 

 2 
0.040009 
[0.3722] 

-1.0002 
[-0.3659] 

0.2006 
[0.7846] 

1.5007 
[0.6355] 

 
Explanation: Table 2 summarizes the Monte Carlo results for the estimation applied in CKLS (1992) 
obtained from simulated samples, where n denotes the sample size. The number of the sub-samples that is 
used for the jackknife estimation is denoted by λ , where 1=λ  represents the non-jackknife estimates. 
The table reports the mean of the estimates of all parameters, where the test-statistics of the estimation bias 
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are in brackets. The marking * (**) means that the null hypothesis that the bias is zero can be rejected at 
the 5% (1%) significance level respectively. 

 

The null hypothesis is rejected at the 1% level for the estimates of ,α  β , and σ  in all 

simulated paths. Only the bias of the estimates of γ  does not significantly differ from zero at 

the 5% level – except for the estimates obtained from samples with 500 12  observations. The 

bias seems to be larger for less observations but it does not disappear even when very large 

samples – i.e. samples with 000 100  observations – are used. All in all, the estimator seems to 

converge in probability as ∞→n  but not towards the true parameter vector.5 

The biases of the jackknife estimators do not differ significantly from zero for α  and β  at 

the 5% level within all simulated sample paths. The same result holds for the estimates of γ . 

On the other hand, the null hypothesis is rejected at the 1% level for the jackknife estimates of 

σ  that are obtained from simulated samples with ,500 12  ,000 25  and 000 50  observations. 

However, the null is not rejected at the 5% level for estimates of σ  obtained from samples 

with 000 100  observations. Consequently, we find that the jackknife estimation provides a 

substantial improvement referring to the biasness of the estimation applied in CKLS (1992). 

We now examine the properties of the CKLS (1992) estimation in case that the assumption 

that the dynamics of the short-term interest rate cannot be approximated by the discrete-time 

process given in (2). If the restriction 1=γ  on (1) is imposed, then the corresponding solution 

is given by 

tR











+⋅= ∫

t

s
t ds

Z
RZ

0
0

α
, where tZ ( ){ }tWt  exp: 2

2
1 ⋅+⋅⋅−= σσβ . (8) 

We confirm that 1)0( =>tRP  for all β  and σ , if 0>α  and 00 >R . Using the discretization 

of (8), namely 

)( itr 







∆+⋅= ∑

=

i

k k
i t

tz
trtz

1
0 )(
)()(

α
, where 

:)( itz ( )








⋅∆⋅+∆⋅⋅⋅−= ∑
=

i

k
kttti

1

2
2
1  )(exp ξσσβ , (9) 

                                                 
5 Note that sampling frequency has no consequential effects on the variance of the estimates of the drift function; 
see e.g. GOURIEROUX AND JASIAK  (2001). 
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and where (..)ξ  is a standard normal white noise, we can generate simulated paths of (1) for 

1=γ  without approximations. Hence, we refer to (9) as the exact discretization of (1) for 

1=γ . 

We generate simulated sample paths of (9) using 04.00 =α , 10 −=β , 2.00 =σ , 000 20=n , 

01.0=∆t , and 035.0)( 0 =tr  from which the unrestricted model is estimated by the method 

applied in CKLS (1992) respectively. We also compute the corresponding jackknife estimates 

using 2=λ . The Monte Carlo experiment is based on 000 5=m  replications. If we the bias 

of the estimates is found significant at the 5% level, then we refer to this feature as the 

aggregation bias of the corresponding estimation. For comparison, this experiment is repeated 

using the Euler approximation of (1) for 1=γ  to generate simulated sample paths. The results 

are reported in Table 3. 

 

Table 3 Aggregation Bias of the CKLS (1992) Estimation – Monte Carlo Results 

Discretization λ  α  β  σ  γ  

Exact 1 
0.0410** 
[16.3680] 

-1.0207** 
[-13.1079] 

0.1991* 
[-2.3052] 

0.9990 
[-1.6815] 

 2 
0.0401* 
[2.1088] 

-0.9986 
[0.8700] 

0.1980** 
[-5.0871] 

1.0001 
[0.4301] 

Euler 1 
0.04092** 
[14.9446] 

-1.0232** 
[-14.7451] 

0.2010** 
[2.6359] 

0.9989 
[-1.8672] 

 2 
0.04003 
[0.3966] 

-1.0005 
[-0.3060] 

0.1996 
[-0.9960] 

0.9995 
[-0.7958] 

 
Explanation: Table 3 summarizes the Monte Carlo results for the estimation applied in CKLS (1992) 
obtained from simulated samples generated by means of the exact and the Euler discretization of (1). The 
number of the sub-samples that is used for the jackknife estimation is denoted by λ , where 1=λ  
represents the non-jackknife estimates. The table reports the mean of the estimates of all parameters, where 
the test-statistics of the estimation bias are in brackets. The marking * (**) means that the null hypothesis 
that the bias is zero can be rejected at the 5% (1%) significance level respectively. 

 

If the CKLS (1992) estimation is applied for samples generated by the exact discretization, 

then only the bias of the estimates of γ  and the jackknife estimates of β  are not significant at 

the 5% level. If samples are generated by means of the Euler discretization, then the null 

hypothesis that the bias is zero cannot be rejected at the 5% level for the estimates of γ  and 

for the jackknife estimates. These results demonstrate that, due to discretization bias, the 

parameter vector cannot be consistently estimated by CKLS (1992), if the assumption that 

short-term interest rate follows a discrete-time approximation is not satisfied. Note that the 

results probably depend on sampling frequency, since the discretization bias of the Euler 

discretization converges to zero as 0→∆t , such that the aggregation bias of the estimation 

can be eliminated if high frequented data is used for estimation.  
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We now examine whether the alternative GMM estimation technique is able to reduce 

aggregation bias relative to full discretization. For this purpose, we repeat the Monte Carlo 

experiment reported in Table 3 using the alternative estimation. The results are presented in 

Table 4. 

 

Table 4 Aggregation Bias of the Alternative Estimation – Monte Carlo Results 

Discretization λ  α  β  σ  γ  

Exact 1 
0.0411** 
[18.0074] 

-1.0281** 
[-17.7332] 

0.2024** 
[6.3688] 

0.9995 
[-0.9553] 

 2 
0.0402** 
[3.0986] 

-1.0049** 
[-2.9608] 

0.2010** 
[2.6278] 

1.0001 
[0.1941] 

Euler 1 
0.0412** 
[19.7794] 

-1.0260** 
[-16.4416] 

0.2002 
[0.4127] 

0.9990 
[-1.6446] 

 2 
0.0403** 
[4.8381] 

-1.0029 
[-1.7852] 

0.1991** 
[-2.3499] 

1.0001 
[0.1355] 

 
Explanation: Table 4 summarizes the Monte Carlo results for the alternative estimation obtained from 
simulated samples generated by means of the exact and the Euler discretization of (1). For further 
explanations, see Table 3. 

 

These results illustrate that the alternative estimation does not result in consistent estimates of 

the parameter vector, if it is applied for sample paths of continuous-time stochastic processes 

satisfying (2). Although the drift function is not approximated by (6), its parameters cannot be 

consistently estimated with the alternative method even if the corresponding jackknife 

estimation is applied. If the short-term interest rate process satisfies the discrete-time 

approximation given in (2) then we cannot consistently estimate the parameter vector by 

means of the alternative estimation either. Due to these results, the alternative estimation is no 

longer considered in this work.  

We examine the asymptotic normality result given in (4) by applying the test of JARQUE AND 

BERA (1987) for the estimates that are obtained from the Monte Carlo study reported in  

Table 2. Under the null hypothesis that the estimated parameters are normally distributed, it 

follows that the test-statistic JB  given below converges to the chi-square distribution with 2  

degrees of freedom, i.e. 

( )( )24/3ˆ6/ˆ 2
4

2
3 −+⋅= ηηmJB →d ( )22 =Χ df  as ∞→m , 

where 3η̂  and 4η̂  denote the sample analogues of the skewness and kurtosis of the estimated 

parameters. The corresponding results are reported in Table 5. Since the null-hypothesis 

0: 00 =σH  would imply that the short-term interest rate is deterministic, the distribution of 

the estimates of σ  is not considered. 
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Table 5 Asymptotic Normality – Monte Carlo Results 

n  λ  α  β  γ  

12 500 1 
88.4176** 
(0.0000) 

89.8376** 
(0.0000) 

5.7272 
(0.0571) 

 2 
57.4285** 
(0.0000) 

59.0414** 
(0.0000) 

9.3410** 
(0.0094) 

25 000 1 
32.9353** 
(0.0000) 

32.9154** 
(0.0000) 

1.3970 
(0.4973) 

 2 
21.4347** 
(0.0000) 

21.4307** 
(0.0000) 

1.0067 
(0.6045) 

50 000 1 
9.4927** 
(0.0000) 

9.5641** 
(0.0000) 

3.7509 
(0.1533) 

 2 
8.3839* 
(0.0151) 

8.4952* 
(0.0143) 

2.9738 
(0.2261) 

100 000 1 
17.6187** 
(0.0000) 

18.6999** 
(0.0000) 

0.8835 
(0.6429) 

 2 
16.1780** 
(0.0003) 

17.0215** 
(0.0002) 

1.0524 
(0.5908) 

 
Explanation: Table 5 shows the results of the normality tests that are applied for the estimates 
corresponding to Table 2. The table reports the resulting Jarque-Bera test-statistics respectively, where the 
p-values are in parenthesis. The number of the sub-samples that is used for the jackknife estimation is 
denoted byλ , where 1=λ  represents the non-jackknife estimates. The marking * (**) means that the null 
hypothesis that the parameter is normally distributed can be rejected at the 5% (1%) significance level 
respectively. 

 

The results show that only the estimates of γ  can be assumed to satisfy the normal 

distribution. This suggests that the application of significance tests on basis of the normal 

distribution does no seem to be appropriate for the estimates of the drift function. Due to this 

result, we analyze the distribution of the t-statistics for the estimates of β  under the null 

hypothesis 0: 000 == βαH .6 The alternative is 00: 001 <∧> βαH .7 The t-statistics of the 

estimates for β  are calculated by 

)2,2(
ˆ

ˆ

ˆ

Λ
⋅= β

β nt , 

where β̂  is an estimate of β  and )2,2(Λ̂  denotes the second component of the main diagonal 

of 11 ))ˆ(ˆ)'ˆ((:ˆ −− ⋅Σ⋅=Λ θθ GG . We generate simulated samples by means of the Euler 

discretization of (1), each with 000 1=n , under 0H  using 5.00 =σ , 01.0=∆t , and four 

                                                 
6 In case of 000 == βα  the short-term interest rate process has a unit root. It is well known that the tabulated 

distributions for the unit root tests of DICKEY AND FULLER (1979) assume that the errors are white noise. 
However, as shown in RODRIGUES AND RUBIA (2004), the resulting t-statistics do not seem to depend on the 
level of γ  if the errors are of the form given in (3). 
7 Note that 00 00 <∧≤ βα  would imply that the short-term interest rate follows a stationary process with non-

positive mean. For practical reasons, this case is not considered in this work. 
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different values for γ  respectively. The Monte Carlo experiment is based on 000 30=m  

replications. This experiment is repeated for the jackknife estimates with 2=λ , whereas the 

variance-covariance matrices are recalculated using the jackknife estimates. The results are 

presented in Table 6. 

 

Table 6 Empirical Percentiles of the t-Statistics Depending on γ – Monte Carlo Results 

γ  λ  0.5% 1% 5% 10% 50% 90% 95% 99% 

0.0 1 -5.4445 -5.0488 -4.0131 -3.5361 -2.1717 -0.8655 -0.4257 0.4201 

 2 -7.0040 -6.8055 -6.2242 -5.9051 -4.7792 -3.4583 -2.8316 -1.1035 

0.5 1 -5.0691 -4.6604 -3.5231 -3.0179 -1.5972 -0.6037 -0.0765 1.0833 

 2 -6.3508 -6.1211 -5.4167 -5.0250 -3.5730 -2.2367 -1.6158 0.9939 

1.0 1 -4.0611 -3.7818 -3.0130 -2.6424 -1.4912 -0.6857 -0.4740 0.4626 

 2 -6.3984 -6.1136 -5.1873 -4.6648 -3.1080 -2.0637 -1.8379 -1.4249 

1.5 1 -3.8603 -3.5938 -2.8894 -2.5481 -1.4568 -0.3016 0.0003 0.6735 

 2 -6.7506  -6.4567  -5.6701  -5.1942  -3.4947  -2.1947  -1.9035  -1.3826 

 
Explanation: Table 6 contains the empirical percentiles of the distributions of the t-statistics of β that 
result from the corresponding estimation applied in CKLS (1992) under 0:0 == βαH  obtained from 

simulated samples. The number of the sub-samples that is used for the jackknife estimation is denoted by 
λ , where 1=λ  represents the non-jackknife estimates. 

 

As the results show, the empirical distribution of the t-statistics, unlike the t-statistics that are 

obtained from unit root tests, seems to depend on the value of γ  that is used to generate 

simulated sample paths. Using our results, however, we cannot identify any kinds of patterns 

for the percentiles concerning the dependence of the distribution on γ .  

Using a Monte Carlo experiment based on 000 30=m  replications, we also examine the 

distribution of the LR-statistics for all models. We generate simulated samples, each with 

1000=n , by means of the Euler discretization of (1) using 5.00 =σ , 01.0=∆t , and the 

corresponding restrictions on the parameter vector imposed by the given null models 

respectively. The results are presented in Table 7.  

 

Table 7 Empirical Percentiles of the LR-Statistics – Monte Carlo Results 

Model s  1% 5% 10% 50% 90% 95% 99% 

MERTON (1973) 2 0.0224 0.1132 0.2264 1.4550 4.8592  6.3411  9.8118 

VASICEK (1977) 1 0.0003 0.0072  0.0295  0.8293  4.8179  6.8982  12.2344 

DOTHAN (1978) 3 0.6319 1.1431  1.5804 4.5747  10.6623 13.2419  19.6428 
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CIR (1980) 3 0.6684  1.1995  1.6488  4.6841  10.6841  13.4771  20.3675 

BS (1980) 1 0.0004 0.0076 0.0302 0.8567 5.6433 8.4467 17.2100 

CIR (1985) 1 0.0004 0.0103 0.0412 1.0029 4.9780  7.0076 12.5912 

GBM 2 0.0243  0.1268  0.2671 1.8278  6.3591  8.3170 13.1324 

 
Explanation: Table 7 contains the empirical percentiles of the distributions of the LR-statistics obtained 
from simulated samples under the given null models, where s denotes the number of restrictions.  

 

As the results show, the distribution of the LR-statistics seems to depend on both the number 

of restrictions and the underlying null models. Only the empirical percentiles that result from 

the DOTHAN (1978) and from the CIR (1980) models – both use 3=s  restrictions – do not 

considerably differ from each other respectively. The resulting distributions of the LR-

statistics do not tend to be well approximated by the chi-square distribution in general. Only 

the LR-statistics that are obtained from the MERTON (1973) model are assumed to follow the 

chi-square distribution under the corresponding null hypothesis. 

 

5 Empirical Results 

The concept of the short-term interest rate is not unambiguous from the practical point of 

view, such that the choice for an appropriate proxy has to be made. Since one-month Treasury 

bill yields are assumed to be affected by idiosyncratic variation – as shown in DUFFEE (1996) 

–, we use samples of daily, weekly and monthly observations of the three-month U.S. 

Treasury bill yield from 04.01.1954 through 02.03.2006 which are provided by the Board of 

Governors of the Federal Reserve System. We also use daily, weekly, and monthly 

observations of the Federal fund rate from 04.01.1954 through 02.03.2006. 

We report the descriptive statistics for daily, weekly, and monthly observations of U.S. 

Treasury bill yields and Federal funds rates respectively. We test the normality of the 

observations using JARQUE AND BERA (1987). We also report the results from the application 

of the unit root test of SAID AND DICKEY (1984) using the corresponding critical values. For 

the test a constant is included. We use AKAIKE  (1973) to determine the number of lagged 

differences. The results are presented in Table 8. 

 

Table 8 Summary Statistics 

Data Frequency n Mean 
Standard 
Deviation 

JB ADF Lags 

Treasury  
bill yield 

Daily 13 028 5.1755% 2.8327% 4048** -2.7421 221 
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 Weekly 12 721 5.1815% 2.8336% 831** -2.5218 42 

 Monthly 625 5.1816% 2.8326% 183** -2.3816 12 

Federal  
fund rate 

Daily 18 873 5.7133% 3.4039% 7496** -2.2553 211 

 Weekly 12 695 5.7135% 3.3899% 1026** -2.4260 52 

 Monthly 619 5.7149% 3.3827% 222** -2.4230 11 

 
Explanation: contains descriptive statistics of daily, weekly, and monthly observations of three-month 
U.S. Treasury bill yields and Federal fund rates from 04.01.1954 through 02.03.2006. The number of 
observations is denoted by n, JB denotes the Jarque-Berra test-statistic, ADF denotes the t-statistic obtained 
from the test of SAID AND DICKEY (1984) with the corresponding number of lagged differences that are 
chosen using AKAIKE  (1973). The maximum of the lagged differences that is considered is 250 for daily, 
52 for weekly, and 12 for monthly observations. The critical values that we use are -2.8865 and -3.4752 for 
the 5% and the 1% level. The marking * (**) means that the corresponding null hypothesis is rejected at 
the 5% (1%) level respectively. 

 

The null hypothesis of the Jarque-Bera test is rejected at the 1% level for both instruments and 

for all types of sampling frequencies respectively. The results of the unit root tests suggest 

that, from the empirical point of view, neither the Treasury bill yield nor the Federal fund rate 

can be assumed to follow a stationary process at the 5% level. 

Since the parameters of the drift function are linear and exactly identified by the first two 

equations of the moment conditions that do not include the remaining parameters, only the 

estimation of σ  and γ  requires a numerical optimization for which the NR method is 

applied. The main problem with the NR method is that global optimization is not guaranteed 

since many local minima can be found in general depending on the initial value that is chosen. 

However, the solution of the optimization is only sensitive to the choice of the initial value of 

γ , while the solution seems to be very robust to the choice of σ . Since only one solution can 

be obtained from initial values of 30 ≤≤ γ  respectively – this result holds for all types of 

observations of both three-month U.S. Treasury bill yields and Federal fund rate –, we assume 

that the local minima that are found are the solutions of the corresponding global 

optimizations. 

Now, we estimate the unrestricted model by CKLS (1992) for daily, weekly and monthly 

observations of three-month Treasury bill yields and Federal fund rates, both from 04.01.1954 

through 02.03.2006, by means of the NR method using the initial values 1.0=σ  and 0=γ  

respectively. For estimation, we use 250/1=∆t  for daily, 52/1=∆t  for weekly, and 

12/1=∆t  for monthly observations. We also compute the corresponding jackknife estimates 

using 2=λ . We test the null hypothesis 0: 000 == βαH  using the percentiles of the 

empirical distributions as critical values given in Table 6 depending on the estimation result 
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of γ . Due to our Monte Carlo results, we assume that the estimates of γ  are asymptotically 

normal under the null hypothesis 0: 00 =γH . The results are presented in Table 9. 

 

Table 9 Estimation Results of the Unrestricted Model 

Data Frequency λ  α  β  Critical 
Values 

σ  γ  βα /−  

Treasury  
bill yield 

Daily 1 
 
2 
 

0.0087 
 

0.0111 
 

-0.1571 
[-0.8098] 
-0.2174 

[-1.1202] 

-2.89 (5%) 
-3.59 (1%) 
-5.67 (5%) 
-6.46 (1%) 

0.8782 
 

0.8882 
 

1.4978 
[19.1493] 
1.5696** 
[13.0189] 

0.0556 
 

0.0510 
 

 Weekly 1 
 
2 
 

0.0083 
 

0.0110 
 

-0.1492 
[-0.8378] 
-0.2177 

[-1.2212] 

-2.89 (5%) 
-3.59 (1%) 
-5.67 (5%) 
-6.46 (1%) 

0.9441 
 

0.9158 
 

1.5410** 
[13.1749] 
1.6474** 
[6.8538] 

0.0559 
 

0.0506 
 

 Monthly 1 
 
2 
 

0.0095 
 

0.0126 
 

-0.1728 
[-1.3017] 
-0.2538 

[-1.9092] 

-2.89 (5%) 
-3.59 (1%) 
-5.67 (5%) 
-6.46 (1%) 

1.3499 
 

1.5718 
 

1.6595** 
[7.5542] 
2.0026** 
[2.9000] 

0.0552 
 

0.0498 
 

Federal  
fund rate 

Daily 1 
 
2 
 

0.0828 
 
0.0780 
 

-1.4407** 
[-6.5962] 
-1.2880* 
[-5.9912] 

-3.52 (5%) 
-4.66 (1%) 
-5.42 (5%) 
-6.12 (1%) 

0.2909 
 
0.0685 
 

0.5713** 
[7.9348] 
0.4128 
[0.5109] 

0.0574 
 
0.0606 
 

 Weekly 1 
 
2 
 

0.0155 
 
0.0200 
 

-0.2602 
[-1.2099] 
-0.3646 
[-1.6857] 

-3.01 (5%) 
-3.78 (1%) 
-5.19 (5%) 
-6.11 (1%) 

0.2321 
 
0.1878 
 

0.8283** 
[5.7759] 
0.8758** 
[2.7258] 

0.0597 
 
0.0548 
 

 Monthly 1 
 
2 
 

0.0110 
 
0.0143 
 

-0.1808 
[-1.3229] 
-0.2699 
[-1.9778] 

-2.89 (5%) 
-3.59 (1%) 
-5.67 (5%) 
-6.46 (1%) 

1.6553 
 
1.7200 
 

1.7666** 
[5.4369] 
1.9869** 
[3.1031] 

0.0609 
 
0.0530 
 

 
Explanation: Table 9 contains the estimation results of the unrestricted model for daily, weekly, and 
monthly observations of three-month U.S. Treasury bill yields and Federal fund rates from 04.01.1954 
through 02.03.2006 with the corresponding estimates. The number of the sub-samples that is used for the 
jackknife estimation is denoted by λ , where 1=λ  represents the non-jackknife estimates. The term 

βα /−  represents the estimated long-run mean. The corresponding t-statistics are in brackets. The critical 
values are taken from Table 6. The marking * (**) means that the null hypothesis that the estimated 
parameter is zero is rejected at the 5% (1%) level.  

 

As the results illustrate, the null hypothesis 0: 000 == βαH  cannot be rejected at the 5% 

level for all types of sampling frequencies of the three-month U.S. Treasury bill yields. From 

that it follows that there appears to be no empirical evidence for mean-reversion in the three-

month U.S. Treasury bill yield. In contrast to that result, the null hypothesis is rejected at the 

1% level for daily observations of the Federal fund rates, while, for the corresponding 

jackknife estimates, the null is rejected at the 5% level. Therefore we find that mean-reversion 

plays an important role for the specification of the Federal fund rate dynamics but only for 

daily observations. 



 19 

Our results also indicate that the conditional variance of changes in the three-month U.S. 

Treasury bill yield is highly sensitive to the yield level. However, for the Federal fund rates, 

the estimated value of γ  increases from daily to monthly observations. From the empirical 

point of view, the conditional variance of changes in daily observations of the Federal fund 

rate is approximately proportional to the rate level, while, for weekly and for monthly 

observations, the conditional variance seems to be more sensitive. 

Now, we estimate the restricted models by means of the NR method using the estimates of the 

unrestricted case as initial values.8 We calculate the corresponding LR-statistics. For critical 

values, we use the percentiles given in Table 7 – except for MERTON (1973) for which the chi-

square distribution with 2 degrees of freedom is used. Since the empirical distribution of the 

LR-statistics under the given null model is known, we do not apply the jackknife estimation 

for the restricted models. The results are presented in Table 10. 

 

Table 10 Estimation Results of the Restricted Models 

Model Data Daily Weekly Monthly 

MERTON (1973) Treasury bill yield 
Federal fund rate 

109.8111** 
59.8113** 

42.9676** 
22.0294** 

10.33** 
7.5315* 

VASICEK (1977) Treasury bill yield 
Federal fund rate 

108.0119** 
34.9138** 

42.3872** 
20.3528** 

9.8946* 
5.9502 

DOTHAN (1978) Treasury bill yield 
Federal fund rate 

32.9966** 
83.7127** 

17.2741* 
7.1675 

5.8133 
5.1990 

CIR (1980) Treasury bill yield 
Federal fund rate 

2.6802 
117.4089** 

2.7342 
26.1764** 

3.2011 
3.6026 

BS (1980) Treasury bill yield 
Federal fund rate 

29.6006** 
72.0333** 

14.0948* 
1.4664 

4.1562 
2.5947 

CIR (1985) Treasury bill yield 
Federal fund rate 

74.5311** 
0.9317 

30.9254** 
4.5476 

7.5155* 
4.5119 

GBM Treasury bill yield 
Federal fund rate 

32.2474** 
77.3434** 

16.4096** 
3.8977 

5.5239 
4.9823 

 
Explanation: Table 10 contains the LR-statistics of the restricted models for daily, weekly, and monthly 
observations of three-month U.S. Treasury bill yields and Federal fund rates from 04.01.1954 through 
02.03.2006. Except for MERTON (1973), the critical values for the LR-statistics from Table 7 are used. The 
marking * (**) means that the corresponding null model is rejected at the 5% (1%) level.  

 

To sum up, for daily and weekly observations of the three-month U.S. Treasury bill yield, all 

models except the model of CIR (1985) are rejected at the 5% level. This result indicates that 

the conditional variance of changes in daily and weekly observations of the three-month U.S. 

                                                 
8 Note that the stopping rule of ANDREWS (1997), which is suggested for estimation of over-identified systems 
within the GMM framework, is not applicable, since the weighting matrix is calculated using of the estimates of 
the unrestricted case. 
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Treasury bill yield is highly sensitive to the yield level, while the mean reversion is negligible 

from the empirical point of view. Only the specifications of MERTON (1973), VASICEK (1977), 

and CIR (1985) can be rejected at the 5% level for monthly observations of the three-month 

U.S. Treasury bill yield, such that monthly observations allow a lower elasticity of the 

conditional variance of yield changes. The reason for this result is that the variance of the 

estimates of γ  is lower for higher sampling frequencies. Since only the model of CIR (1980) 

is not rejected at the 5% level for all types of sampling frequencies, we find that the model of 

CIR (1980) best describes the dynamics of the three-month U.S. Treasury bill yield. 

The results obtained from the Federal fund rates depend on the chosen sampling frequency. 

While, for daily observations, the mean- reversion appears to be more important, this feature 

is negligible for weekly and monthly observations. For weekly and monthly observations, the 

elasticity seems to be higher than for daily observations. As for the three-month U.S. Treasury 

bill yield, an exact specification of the elasticity of conditional variance is more important for 

daily observations. Only the specification of MERTON (1973) can be rejected at the 5% level 

for monthly observations of the Federal fund rate. Since only the model of CIR (1985) is not 

rejected at the 5% level for all types of sampling frequencies, we find that the model of CIR 

(1985) best describes the dynamics of the Federal fund rate. 

Since several models are sub-nested within other models, the performance of a given model 

can also be measured relative to the model in which it is nested. The corresponding weighting 

matrix, which is used for both criterion functions, is obtained using the estimates of the 

alternative unrestricted model in each case. Following CKLS (1992), we assume that the 

resulting LR-statistics converge under the associated null hypothesis to the chi-square 

distribution with s  degrees of freedom, where s  denotes the number of restrictions imposed 

by the restricted nested model on the corresponding alternative unrestricted model. The results 

of the tests are summarized in Table 11. 

 

Table 11 Pairwise Comparisons of Alternative Nested Models 

Alternative 
 Model 

Restricted  
Nested Model 

s  Data Daily Weekly Monthly 

VASICEK  
(1977) 

MERTON  
(1973) 

1 Treasury bill yield 
 

Federal fund rate 
 

1.1500 
(0.2835) 

33.7398** 
(<0.0001) 

0.3947 
(0.5298) 
1.6875 

(0.1939) 

0.4440 
(0.5052) 
1.3915 

(0.2382) 
GBM DOTHAN  

(1978) 
1 Treasury bill yield 

 
Federal fund rate 

 

0.9346 
(0.3337) 

10.3885** 
(0.0013) 

0.9575 
(0.3278) 
2.8434 

(0.0917) 

0.3982 
(0.5280) 
0.2871 

(0.5921) 
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BS  
(1982) 

DOTHAN  
(1978) 

2 Treasury bill yield 
 

Federal fund rate 
 

2.8015 
(0.2464) 

11.4605** 
(0.0032) 

2.4806 
(2.4806) 
5.6384 

(0.0597) 

1.4136 
(0.4932) 
2.2511 

(0.3245) 
BS 

(1982) 
GBM 1 Treasury bill yield 

 
Federal fund rate 

 

1.9217 
(0.1657) 
2.9909 

(0.0837) 

1.6608 
(0.1975) 
2.4354 

(0.1186) 

1.1549 
(0.2825) 
2.0894 

(0.1483) 
 
Explanation: Table 11 contains the values of the LR-statistics that are obtained from pairwise comparisons 
of the alternative models for daily, weekly, and monthly observations of three-month U.S. Treasury bill 
yields and Federal fund rates from 04.01.1954 through 02.03.2006. The number of restrictions imposed by 
the restricted nested model relative to the alternative model is denoted by s. The corresponding p-values 
are in parenthesis. The marking * (**) means that the corresponding null hypothesis is rejected at the 5% 
(1%) level. 

 

For the three-month U.S. Treasury bill yield, as shown, none of the underlying nested models 

can be rejected against the corresponding alternatives at the 5% level. This result confirms 

that, for the three-month U.S. Treasury bill yield, none of the models with mean-reverting 

processes outperform the nested models with different specifications of the drift function 

respectively.  

For weekly and monthly observations of the Federal fund rate, the corresponding null 

hypotheses cannot be rejected at the 5% either. On the other hand, for daily observations, the 

MERTON (1973) model is rejected at the 1% level against the VASICEK (1977) model, and the 

DOTHAN (1978) model is rejected at the 1% level against its both of its alternatives, namely 

the specification of BS (1980) and the GBM. That result also indicates that, for daily 

observations of the Federal Funds rate, there is strong evidence for mean-reversion from the 

empirical point of view. In contrast to that result, the GBM cannot be rejected at the 5% level 

against the alternative model of BS (1980). 

 

6 Conclusion 

This work illustrates that the GMM estimation applied in CKLS (1992) for estimating 

continuous-time models of the short-term interest rate suffers from significant estimation bias 

which is reduced by means of the jackknife estimation under the assumption that the 

dynamics of the short-term interest rate can be approximated by means of a discrete-time 

process.  

We provide critical values for parameter tests, obtained from empirical distributions of the 

associated test-statistics. We show that the associated t-statistics of the drift parameters 

depend on the elasticity of the conditional variance of changes in the short-term interest rate 
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under the null hypothesis that the drift function is zero, whereas the t-statistics obtained from 

unit root tests are robust to conditional heteroskedastic errors. We find that the distributions of 

the LR-statistics of the corresponding null models do not strictly and exclusively depend on 

the number of restrictions imposed by the underlying null models but also on the given model 

that is considered. Our Monte Carlo results also illustrate, that an alternative GMM estimation 

based on the discretization of NOWMAN (1997) does not sufficiently reduces the estimation 

bias for the drift parameters caused by neglecting internal dynamics between sampling points. 

Using our estimation results obtained from daily, weekly, and monthly observations of the 

three-month U.S. Treasury bill yield and the Federal fund rate, we demonstrate that the 

models that are chosen can depend on both the sampling frequency and the proxy that is used 

for the short-term interest rate. While daily observations of the Federal fund rate seem to 

exhibit significant mean-reversion, the specification of the drift function seems to be of 

secondary importance for the dynamics of the three-month U.S. Treasury bill yield.  

We also demonstrate that the jackknife estimation can result in higher values for the elasticity 

of conditional variance of changes in the yield level for the three-month U.S. Treasury bill 

yield. We find the conditional variance of changes in the yield to be highly sensitive to the 

yield level. This sensitivity appears to be lower for daily observations of the Federal fund rate. 

The results illustrate that an exact specification of the elasticity of conditional variance is 

more important for daily observations, since the null models are rejected more often. We find 

that – considering the alternative models that are examined – the model of CIR (1980) best 

describes the dynamics of the three-month U.S. Treasury bill yield, whereas, for the Federal 

funds rate, the corresponding model is CIR (1985). 
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