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1 I ntroduction

Many asset pricing models use one-factor stochdgferential equations — hereafter SDE —
to capture the dynamics of the short-term interatt. The properties of such a SDE are
determined by its drift and diffusion functionsn&e different functions generate significantly
different prices for interest rate sensitive asséis choice of the corresponding specification
is of great importance. Models that permit closea solutions for contingent claims
provide greater analytical insights, whereas thek laf empirical evidence may result in

model risk.

In this work, we focus our attention on problemsoined with the estimation procedure
applied by CKLS (1992). In CKLS (1992) the empitigalidity of several continuous-time
models is analyzed by means of the generalized odethh moments — hereafter GMM —
estimation of KNSEN (1982). We show by Monte Carlo simulations that #stimation
procedure suffers from significant estimation bidmt arises from the estimation of
autoregressive models. This bias is likely to hemesiderable effects on pricing derivatives.
We prove by Monte Carlo simulations that the sdechjackknife estimation of QENOUILLE
(1956) achieves substantial bias reduction underagsumption that the dynamics of the
short-term interest rate can be approximated bynsi@ the discrete-time process used in
CKLS (1992).

Moreover, the estimates cannot be assumed to fahewnormal distribution in general. For
some empirical investigations, this deviation fréime normal distribution can question the
importance of mean-reversion for the underlyingrsherm interest rate process. Using
Bartlett weights suggested byeNEy AND WEST (1987a) for variance-covariance matrix
estimation, we determine empirical distributionstloé associatettstatistics under the null
hypothesis that the drift function is zero. Oudiimgs indicate that the distributions depend on
the elasticity of the conditional variance of chasgn the short-term interest rate. In addition,
we consider the empirical distribution of the cepending likelihood ratio — hereafter LR —
statistics under the null models that are examindtiis work. We find that the distributions
do not strictly and exclusively depend on the numbe restrictions imposed by the

underlying null models but also on the given mdtat is considered.

An additional problem involved with the estimatioh CKLS (1992) is that discrete-time
approximations introduce discretization bias, sircas a result of time aggregation — they
neglect internal dynamics between sampling possshown in MeLINO (1994), this feature

can result in inconsistent estimators. To deal whin problem caused by discretization bias,
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we consider an alternative GMM technique basedcherdiscrete-time version of the general
SDE proposed by dwMAN (1997). However, our Monte Carlo simulations destrate that
the alternative estimation procedure does not @afftly solve the problem of time

aggregation.

We apply the estimation of CKLS (1992) — using ¢le empirical distributions of the
associated test-statistics — for daily, weekly amahthly observations of the three-month U.S.
Treasury bill yield and the Federal fund rate resipely, both from 04.01.1954 through
02.03.2006. Furthermore, we apply the unit rootsted¥ S\ID AND DICKEY (1984). We
demonstrate that the estimation results can depandoth the sampling frequency and the

proxy that is used for the short-term interest.rate

As indicated by the results, the three-month U.8a3ury bill yields seem to be non-
stationary, such that the role of mean-reversigmeags to be negligible from the empirical
point of view. As in CKLS (1992), we find that tlwenditional variance of changes in the
three-month U.S. Treasury bill yield is highly sgine to the yield level, whereas an exact
specification of the elasticity is more importaat tlaily observations, since the null models
are rejected more often. Therefore, the sensitigftyhe conditional variance on the yield

level can be lower then assumed by CKLS (1992).tla@@nother hand, the corresponding
jackknife estimation applied for the three-montiSUTreasury bill yield results in higher

values for the elasticity.

In contrary to that result, daily observationstod Federal fund rate exhibit significant mean-
reversion, whereas weekly and monthly observatsg®sn to appear non-stationary. Another
empirical result for the Federal fund rate is ttied elasticity seems to be lower for daily
observations then for the three-month U.S. Treabilryield. Although weekly and monthly
observations of the Federal Funds rate exhibit drigilasticities, the corresponding null
model that is not rejected for daily observationtha 5% level, cannot be rejected for weekly

and monthly observations either.

The remainder of this work is organized as follo&ction 2 discusses the stochastic
properties of several continuous-time models witgard to the short-term interest rate.
Section 3 presents a theoretical analysis of ttimason procedure applied by CKLS (1992)
and an alternative estimation. In Section 4 thelltesof the Monte Carlo experiments are

presented. Section 5 reports the correspondingreralpiesults. Section 6 concludes.



2 Continuous-Time M odels of the Short-Term Interest Rate

In CKLS (1992) the short-term interest rate folloascontinuous-time stochastic process

{R [t=0} which solves a time-homogenous, one-factor, diffusype SDE, namely

dR =(a+BR)dt+0 R dW;, (1)

where {W, |t= 0} is a standard Brownian motion on the filtered jatuhbty space
(Q,F,{F [t=0}, P) and the parameter vector &= (a,f,0,y)'. The initial valueR, is

assumed to be fixed and positive. This specificaatiows both the conditional mean and
variance of changes in the short-term interest t@tdepend on the short-term interest rate

level, whereas the drift function is linear iR . It follows from (1) that the conditional

variance of changes in the short-term interestirateeases with the level of the interest rate if

y > 0. Using the properties of stochastic integralsait be shown that

fim E(R)=-alp for f<0,

where E() denotes the associated expectation operatbr,teuch that-a / £ is regarded as
the long-run mean oR,. This illustrates that in case ¢gf < the process is mean-reverting

which means that there is an adjustment to thenditonal long-run mean measured by the

level of . We can obtain various well-known models of thersterm interest rate using

corresponding parameter restrictions. The spetifica that are examined in this work are

summarized in Table 1.

Tablel  Summary of Alternative Models of the Shdrérm Interest Rate

Model SDE a By
Unrestricted dR =(a+BR)dt +o R’ dw, - - -
MERTON(1973) dR, = a dt + o dW, - 0O 0
VASICEK (1977) drR, = (a +0 D?t)dt + o dwW, - -0
DOTHAN (1978) dR, = o [R, dW, 0O 0 1
CIR (1980) drR = o [R* dw, 0 0 15
BS (1980) dR, =(a+ B8R )dt + o [R dw, .-
CIR (1985) dR, =(a + B[R dt + o [(R*° dw, - - 05
GBM dR, = f[R dt + o [R dW, o - 1

Explanation: Table 1 summarizes the specifications of altéveatontinuous-time models of the short-
term interest rate with their corresponding paramegstrictions that are imposed on the parametetoy
of the unrestricted model.



The short-term interest rate inBMTON (1973) evolves a so-called arithmetic Brownian
motion. This specification implies that both theriaace and the absolute value of the
unconditional mean of the short-term interest ratgease by time, such that the resulting
process is non-stationary. The model @S\EK (1977) supposes that the short-term interest
rate follows a so-called Ornstein-Uhlenbeck procésss process is asymptotic stationary if

and only if < 0. In both models, the conditional variance of chemg the short-term
interest rate is constant. Sin&e is Gaussian for both models, it holB$R <0) > wich is
not a desirable feature from the practical pointiefv.

The solution of the process suggested myrinN (1978) follows a log-normal distribution.
Since the variance increasestas o, the process is non-stationary. AssumiRg=-a /S

for simplification, it can be shown that asymptastationary of the short-term interest rate
process suggested byRBANAN AND SCHWARTZ (1980) — hereafter BS (1980) — requires

[ <0 and2[B+0° < 0 Duetoy = 1 the models of DTHAN (1978) and B$1980) assume
that the conditional volatility of changes in thbod-term interest rate at timeé is
proportional to the rate level.

AssumingR, =-a/ 3, it can be shown thgf < & necessary for asymptotic stationarity of

the process proposed by CIR (1985), where the tiondl distribution of the interest rate is
non-central chi-square. However, a closed-formtswiuof the process is not known. Due to

y =05, the model of CIR (1985) assumes that the conitivariance of changes in the

short-term interest rate at timeis proportional to the rate level. R, follows a GBM, then
asymptotic stationarity require§ < @nd 2[B+0? < 0. The specification implies that in
case of < Oand 2[B+0? < 0both the mean and the varianceRf converge to zero as

T - o0,

3 Representation of the Estimation Techniques

Let {t; |i = 01,..} symbolize an equidistant discretization of tim&ienet, denotes a point of

time with At:=t, —t > 0 for all i andt,:= 0" For estimation, it is assumed in CKLS

! There is no loss of generality in assuming eqtadispoints of time, since there is no conclusiveekend
effect in money market instruments; see e.ig-BaHALIA (1996).
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(1992) that the solution of (1) can be approximabgda discrete-time stochastic process
{r(t;)]i =041,...} that satisfies

(i) —r(t) =(ao + 5o () (At + &4 (t,1) (2)
where 8, = (ay,3,.0,., )' denotes the parameter vector that is to be estfiaThe
unobservable error term, (i3 allowed to be conditionally heteroskedastichsthat

E(g,(t,) | (t)) =0 and E(g3(t,,) |r(t))= o2 B2 (t,) At for all i. 3)

It should be noted that the approximation (2), \whi referred to as the Euler discretization
of (1), neglects errors that are introduced assalr®f time aggregation. To apply the GMM

procedure of WNSEN (1982), the following vector function is suggested

B £(ti.1) 1
f(rt).0)= ng(tiﬂ) —o2 P () mt] - (r(ti )H |

where O denotes the Kronecker product aad, ;) =r(t,,) —r(t) - (a+ S (t)) LAt . Using
the law of iterated expectations, it can be shomat E(f (r(t;),8)) = 0 for all i, such that
E(f(r(t;),0))=0 < 8=6, is assumed for all. Given a finite observed sample of the short-
term interest rate witim+1 observations, the sample momentsf¢f (t,),6 sajisfy

1 nt

9(6)="1> f(r(t).8).

N iz
The GMM procedure consists of choosing an estimékofor @,, such that the criterion
function Q(&) given below is minimized with respect & that is

6= argmé!n{Q(H)} , WhereQ(6) :=g(8)'lVIg(8)

andV is a positive definite random weighting matrixe.V > 0, such thaiQ(¢) > 0Ofor all
and Q(d)=0 < g(d)= Q It can be shown that minimizin@(6 iy equivalent to solving
G(0)'lV [g(f) =0, whereG(8 )denotes the Jacobian g{é wjth respect tdf.

Since g, is exactly identified by the moment conditionghe unrestricted case, the estimator

of the unrestricted parameter vector — denoted®s— can be obtained by solving the non-

2 The statistical properties of the discrete-tim@ragimation given in (2) are summarized brdE ET AL
(1995). Note that the properties of the discratetapproximation do not correspond with the comtirsdtime
stochastic process d¢ — 0; see e.g. Boze ET AL (1995) and RDRIGUES ANDRUBIA (2004) for details.
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linear systemg(6) = Qsuch that?® does not depend on the choice of the weightingixat
Since a closed-form solution is not attainable eémeyal, g(¢) = Ois solved numerically by

the Newton-Raphson — hereafter NR — method. Ifrict®ns on the parameter vector are
imposed by an underlying short-term interest ratedeh then the parameters are
overidentified by the moment conditions. In thiseawe cannot find a parameter vector

that satisfiesg(¢) = Oand therefore, the corresponding estimator of given restricted
model — these estimators are denoted?ﬁ‘i/ hereafter, where is the number of restrictions

— depends on the choice of the weighting matri>e $ample moments of the vector function
are assumed to satisfy the central limit theoréat, is

5% @/nmg,) I~ N@©1) asn - =,

where [Tf - denotes the convergence in distributioh(0,| denotes a multivariate standard

normal distribution with identityl , andZ is a positive definite matrix that satisfies

=T, +Iim{nz_1 (1—%][&,. +rj')}=rO +3 (),

no| 2
wherel_; == E(f(r(t;),6) LF (rt;).6, )").2 Using the Taylor expansion, it follows that
AN B/nO6-6,) ¥ - N(©,1), where
A% =(G(6,)N [B(8,)) ™ HG(8,)N X V'TB(6,))>°, ()

such thatA = (G(6,)Z " [G(,)) ™" if V=2 . Since A -(G(8,)X " [G(,))™* =0 for all V,
the optimal choice for the weighting matrix woul@é & =57, where = represents an

estimator ofZ. Unfortunately, we cannot construt by replacing the autocovariancés
with their sample analoguel%j since the number of estimated autocovariances geivthe

same rate as the sample size 5ndnay be indefinite in finite samples. The solutisnto
construct an estimator in which the contributiontlod sample autocovariances are weighted
to reduce their role sufficiently for positive dd@feness and have weights tend to one as

n — oo to ensure consistency, that is

_ bn) ‘ A
$=Fy+ Y x(j.b)f, +F,),
i=1

¥ See e.g. HWLL (2005).



where x (..)is known as the kernel ara(n ap the bandwidth which depends on the sample

size and must be positive. The bandwidth ensuiesatitocovariances corresponding to lags

greater tharb(n )are given zero weight. The so-called Bartlett kéintroduced by EweyY

AND WEST (1987a) is given by
k(j,b(n)) =1-j/(b(n) +1).

ANDREWS (1991) shows that the asymptotic mean square efrar is minimized by setting
b(n) to O(nY®) for the Bartlett kernel. This suggests that a fdotn) = pM® may be
appropriate. However, this provides little pradtiggquidance sincep is not known.
Unfortunately, statistical inference is often vesgnsitive to the choice of the bandwidth.
Some methods of selecting the bandwidth requirees@mor knowledge or additional
restrictions on the underlying procésSor estimation, we usk(n) =int{n*’® , where int{..}

is the integer part of the corresponding argum&he estimation of the restricted models
requires a two-step GMM estimation; estimatingdapémal weighting matrix in the first step

using the unrestricted estimator, followed by eating the parameters of the given restricted

model.

To test the validity of the restrictions on thegraeter vector given by the short-term interest
rate models, we apply the methodology proposed byeN AND WEST (1987b) which can be
viewed as an extension to the GMM framework of thassical parameter tests from
Maximum Likelihood — hereafter ML — theory. CKLS992) assume that the LR-statistic
n{Q(6®)-Q(6?)) is asymptotically distributed chi-square under tjeen short-rate
model with s degrees of freedom. As in CKLS (1992), the weigtmatrix from the

unrestricted model is used to calculate bo(#® an) Q8 ).

Now we consider an alternative GMM estimation udiing assumption of divmMAN (1997)
that the conditional variance of the short-terneiiest rate change remains unaffected over

each unit observation peric[t;l,ti+1), such that (1) is simplified to

dr(r) =(a+B0(r))dr+o @ (t;) W, forall 7Ot t,.,). (5)

* ANDREWS (1991) and BWEY AND WEST (1994) provide methods for bandwidth selectione Tbrresponding
methods remove some of the judgmental aspectsledteey the bandwidth but do not completely solkie t
problem since the exact choice of several paramesenot specified; see e.gaH (2005) or HARRIS AND
MATYAsS (1999). However, we are not interested in constséstimation of the variance-covariance matrix but
in the asymptotic behaviour of the test statistics.
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This assumption facilitates the construction ofstiéte time version of the model. It follows

that the exact discrete-time model correspondin@Xas given by
a
r(t,,) = exdAt OB} (L) +F°(exr{At Bot -1+ & (), (6)
0

where the error termg, (.9atisfies

By (1) 1)) =0 and E{ef ) Ir (1) = - dexdat 20} -1 37 ). (@)

Using (6) and (7), the subsequent GMM estimatioto -which we refer as the alternative
estimation — is then constructed analogously tgtieeedure applied by CKLS (1992). Since
only the diffusion function is approximated in (@his alternative estimation method is

supposed to reduce aggregation bias relative kaligdretization.

It is commonly known that standard procedures Mh lesd to biased coefficient estimators
while estimating autoregressive models. Since bigbrete-time approximations given in (2)
and (6) can be regarded as autoregressive modeloradr one with conditional
heteroskedastic errors, the question of a biasctemumethod arises. The so-called jackknife
technique of QENOUILLE (1956) to bias reduction is suggested hy AND PHILLIPS (2005)
within the framework of the ML procedure for estimg continuous-time models. Under the
assumption that the bias of the estimates can panebed asymptotically in a series of

increasing powers of ™", it can be easily shown that the bias of the jaifkkestimation is of
orderO(n?).

We apply the jackknife estimation within the GMMiggation framework of CKLS (1992) as
follows. An observed sample withh observations is decomposed i@ c@nsecutive sub-
samples, each witln observations, such that=A[7. Then the jackknife estimat<1§?jack of
the parameter vectd is given by

A A

=57 )IEQA 1DZ

6

cfor A= 2,

where éj symbolizes a corresponding GMM estimate &f obtained from thej -th sub-

sample with j =1,...,A. For estimation, the simple choice of two sub-dasigs often

suitable.



4 Monte Carlo Results

Within all Monte Carlo experiments, the realisafoof standard normal pseudo-random
variables are generated by the so-called zigglgatithm of MARSAGLIA AND TSANG (1984).

Furthermore, the bias of the corresponding estonas tested respectively using

ﬁa‘%mﬁﬁ N(@©OL) asm - o, underHO:E(é):H ,
a

wherem denotes the number of replicatio@s, symbolizes the sample mean of the estimates

of a, &% represents an estimate for the variance, &LéFm%lZT:l(CA’j -7)%, and 4,
denotes an estimate @f computed at replicationf with j=1,...,m. For the remaining
parameters, the bias is tested analogously. Natetltle normality of the estimators is not
necessary for the normality of the estimation bias.

We construct simulated sample paths of (2) usgg=0. , 84=-1, g, =02, y, =15,

At = 001, andr(t,) = 0. 035from which the parameters are estimated by théodeapplied

in CKLS (1992) respectively. We also compute theesponding jackknife estimates using
A=2. The simulated sample paths consist B2500 25000,50000, and 100 000

observations and the Monte Carlo experiment isdbasem =5 000replications. The results

are presented in Table 2.

Table 2  The Bias of the CKLS (1992) Estimation — Me Carlo Results

n A a B o y

12500 ) 0.04118" 1.0297% 0.2480 1.4933%
[17.1341] [17.1222] [18.1850] [-2.1878]

, 0.039960 20,9990 0.2188* 1.4940

[-0.5565] [0.5429] [6.7649] [-1.9358]

2£000 . 0.04060* -1.0149* 0.2237% 1.4964
[11.8145] [-11.8146] [14.2299] [1.6474]

, 0.039981 20.9995 0.2041% 1.4966

[-0.3676] [ 0.3525] [2.7486] [-1.5425]

£0 000 ) 0.04031% -1.0077%* 0.2134% 1.4998
[8.6630] [-8.6517] [11.9744] [0.1332]

, 0.039997 -0.9999 0.2026% 1.5002

[-0.0815] [0.0887] [2.5105] [0.1124]

0.04017* -1.0044%* 0.2070% 1.5005
100 000 1 [6.9928] [-6.9835] [9.1840] [ 0.4050]
, 0.040009 -1.0002 0.2006 1.5007

0.3722] [-0.3659] [0.7846] [0.6355]

Explanation: Table 2 summarizes the Monte Carlo results forebmation applied in CKLS (1992)
obtained from simulated samples, wherdenotes the sample size. The number of the suplsarthat is
used for the jackknife estimation is denoted by where A = 1represents the non-jackknife estimates.
The table reports the mean of the estimates qgfamimeters, where the test-statistics of the eBtmaias
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are in brackets. The marking * (**) means that theél hypothesis that the bias is zero can be rejeat
the 5% (1%) significance level respectively.

The null hypothesis is rejected at the 1% level tfer estimates otr, £, and ¢ in all
simulated paths. Only the bias of the estimateg abes not significantly differ from zero at

the 5% level — except for the estimates obtainechfsamples witli2500 observations. The
bias seems to be larger for less observationsthides not disappear even when very large
samples —i.e. samples witll0  O@bservations — are used. All in all, the estimaeems to

converge in probability am — o but not towards the true parameter vettor.

The biases of the jackknife estimators do not disignificantly from zero fora and S at
the 5% level within all simulated sample paths. $hme result holds for the estimatesyof

On the other hand, the null hypothesis is rejeatatie 1% level for the jackknife estimates of

o that are obtained from simulated samples W@&%00 25000, and50 000Oobservations.

However, the null is not rejected at the 5% lewel dstimates olv obtained from samples
with 100000 observations. Consequently, we find that tlékjaife estimation provides a

substantial improvement referring to the biasnéskeoestimation applied in CKLS (1992).

We now examine the properties of the CKLS (1992ivegtion in case that the assumption
that the dynamics of the short-term interest rai@enot be approximated by the discrete-time

process given in (2). If the restrictigh= coh (1) is imposed, then the corresponding solution

is given by
L R e ®
0“s

We confirm thatP(R >0) = Ifor all § ando, if a >0 and R, > Q Using the discretization

of (8), namely

() = z(ti)[Er(to) +k'zl Z(‘t’k)m}, where
2(t) :exp{(,[a’—%wz)[ﬂmHiaBl/EDf(tk) } ©)
k=1

® Note that sampling frequency has no consequeefiatts on the variance of the estimates of thie fdmction;
see e.g. GURIEROUX ANDJASIAK (2001).
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and where¢ (..)is a standard normal white noise, we can gensratelated paths of (1) for
y =1 without approximations. Hence, we refer to (9)tlaes exact discretization of (1) for

y=1.

We generate simulated sample paths of (9) using 0 , A4 -1, g, = 02, n=20000,
At = 001, andr(t,) = 0. 035from which the unrestricted model is estimatedtts method

applied in CKLS (1992) respectively. We also coneptlie corresponding jackknife estimates
using A = 2 The Monte Carlo experiment is based a5 @8plications. If we the bias

of the estimates is found significant at the 5%elevhen we refer to this feature as the
aggregation bias of the corresponding estimation.cbmparison, this experiment is repeated

using the Euler approximation of (1) fpr= td generate simulated sample paths. The results

are reported in Table 3.

Table 3  Aggregation Bias of the CKLS (1992) Estinoet — Monte Carlo Results

Discretization A a B o y

Exact 1 0.0410** -1.0207** 0.1991* 0.9990
[16.3680] [-13.1079] [-2.3052] [-1.6815]

> 0.0401* -0.9986 0.1980** 1.0001

[2.1088] [0.8700] [-5.0871] [0.4301]

Euler 1 0.04092** -1.0232** 0.2010** 0.9989
[14.9446] [-14.7451] [2.6359] [-1.8672]

> 0.04003 -1.0005 0.1996 0.9995

[0.3966] [-0.3060] [-0.9960] [-0.7958]

Explanation: Table 3 summarizes the Monte Carlo results forebmation applied in CKLS (1992)
obtained from simulated samples generated by meftie exact and the Euler discretization of ()eT
number of the sub-samples that is used for thekyafek estimation is denoted byl, where A =1
represents the non-jackknife estimates. The tagerts the mean of the estimates of all paramaidrsie
the test-statistics of the estimation bias areratkets. The marking * (**) means that the null byigesis
that the bias is zero can be rejected at the 5% §ignhificance level respectively.

If the CKLS (1992) estimation is applied for sangpgenerated by the exact discretization,
then only the bias of the estimatesjofind the jackknife estimates @f are not significant at
the 5% level. If samples are generated by meartbeofEuler discretization, then the null

hypothesis that the bias is zero cannot be rejeattelde 5% level for the estimates pfand

for the jackknife estimates. These results dematestthat, due to discretization bias, the
parameter vector cannot be consistently estimaye@HKLS (1992), if the assumption that
short-term interest rate follows a discrete-tim@ragimation is not satisfied. Note that the
results probably depend on sampling frequency,esthe discretization bias of the Euler
discretization converges to zero As —» , duch that the aggregation bias of the estimation

can be eliminated if high frequented data is usee$timation.
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We now examine whether the alternative GMM estiorattechnique is able to reduce
aggregation bias relative to full discretizatiorr Fhis purpose, we repeat the Monte Carlo
experiment reported in Table 3 using the alterag@stimation. The results are presented in
Table 4.

Table 4  Aggregation Bias of the Alternative Estiniat — Monte Carlo Results

Discretization A a B o y

Exact 1 0.0411** -1.0281** 0.2024** 0.9995
[18.0074] [-17.7332] [6.3688] [-0.9553]

> 0.0402** -1.0049** 0.2010** 1.0001

[3.0986] [-2.9608] [2.6278] [0.1941]

Euler 1 0.0412** -1.0260** 0.2002 0.9990
[19.7794] [-16.4416] [0.4127] [-1.6446]

> 0.0403** -1.0029 0.1991** 1.0001

[4.8381] [-1.7852] [-2.3499] [0.1355]

Explanation: Table 4 summarizes the Monte Carlo results foraternative estimation obtained from
simulated samples generated by means of the exatttree Euler discretization of (1). For further
explanations, see Table 3.

These results illustrate that the alternative esiion does not result in consistent estimates of
the parameter vector, if it is applied for sampd¢hg of continuous-time stochastic processes
satisfying (2). Although the drift function is napproximated by (6), its parameters cannot be
consistently estimated with the alternative methleaén if the corresponding jackknife

estimation is applied. If the short-term interester process satisfies the discrete-time
approximation given in (2) then we cannot considyeastimate the parameter vector by

means of the alternative estimation either. Duthése results, the alternative estimation is no

longer considered in this work.

We examine the asymptotic normality result giveridpby applying the test oR2QUE AND
BERA (1987) for the estimates that are obtained from Monte Carlo study reported in
Table 2. Under the null hypothesis that the estahgtarameters are normally distributed, it
follows that the test-statistidB given below converges to the chi-square distrdsutvith 2

degrees of freedom, i.e.
3B =mlf? 16+ (5, ~3)° /24) (TP . X?(df =2) asm - o,

where 77, and 7, denote the sample analogues of the skewness atasikuf the estimated

parameters. The corresponding results are repantébable 5. Since the null-hypothesis

H,:0, =0 would imply that the short-term interest rate éeiministic, the distribution of

the estimates ofr is not considered.
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Table 5 Asymptotic Normality — Monte Carlo Results

n A a B y
88.4176% 89.8376" 5.7272
12:500 ! (0.0000) (0.0000) (0.0571)
, 57.4285%* 59.0414% 9.3410%
(0.0000) (0.0000) (0.0094)
32.9353%* 32.9154% 1.3970
25000 1 (0.0000) (0.0000) (0.4973)
, 21.4347%* 21.4307** 1.0067
(0.0000) (0.0000) (0.6045)
9.4927+ 9.5641% 3.7509
50000 1 (0.0000) (0.0000) (0.1533)
, 8.3839* 8.4952 2.9738
(0.0151) (0.0143) (0.2261)
17.6187%* 18.6999** 0.8835
100000 1 (0.0000) (0.0000) (0.6429)
, 16.1780%* 17.0215* 1.0524
(0.0003) (0.0002) (0.5908)

Explanation: Table 5 shows the results of the normality tettat are applied for the estimates
corresponding to Table 2. The table reports thelting Jarque-Bera test-statistics respectivelyemgtthe
p-values are in parenthesis. The number of the anipkes that is used for the jackknife estimation is
denoted byl , where A = 1represents the non-jackknife estimates. The markifi*) means that the null
hypothesis that the parameter is normally distadutan be rejected at the 5% (1%) significancel leve
respectively.

The results show that only the estimates jofcan be assumed to satisfy the normal

distribution. This suggests that the applicationsighificance tests on basis of the normal
distribution does no seem to be appropriate foretenates of the drift function. Due to this

result, we analyze the distribution of thstatistics for the estimates g8 under the null
hypothesisH, : a, = 8, = @ The alternative iH, :a, >008, < 0 Thet-statistics of the
estimates for are calculated by

t/}:\/ﬁgi

JA@D

Where,/;" is an estimate of3 and A®? denotes the second component of the main diagonal

of f\::(G(é)'[f[‘lﬂB(é))‘l. We generate simulated samples by means of ther Eul

discretization of (1), each witm=1 O0QQnder H, using g, = 05 At = 001, and four

®In case ofa, = B, =0 the short-term interest rate process has a uoit tbis well known that the tabulated

distributions for the unit root tests ofildkey AND FULLER (1979) assume that the errors are white noise.
However, as shown in ®RIGUES AND RUBIA (2004), the resulting-statistics do not seem to depend on the
level of y if the errors are of the form given in (3).

" Note thata, <00/, <0 would imply that the short-term interest rate éalk a stationary process with non-
positive mean. For practical reasons, this casetisonsidered in this work.
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different values fory respectively. The Monte Carlo experiment is basedm =30 000

replications. This experiment is repeated for tiekknife estimates witll = ,2whereas the
variance-covariance matrices are recalculated usiagackknife estimates. The results are

presented in Table 6.

Table 6 Empirical Percentiles of the t-Statisticeepending ony — Monte Carlo Results

y A 0.5% 1% 5% 10% 50% 90% 95% 99%

0.0 1 -5.4445 -5.0488 -4.0131 -3.5361 -2.1717 -®686-0.4257 0.4201
2 -7.0040 -6.8055 -6.2242 -5.9051 -4.7792 -3.4583.8316 -1.1035

0.5 1 -5.0691 -4.6604 -3.5231 -3.0179 -1.5972 -B760-0.0765 1.0833
2 -6.3508 -6.1211 -5.4167 -5.0250 -3.5730 -2.2367.6158 0.9939

1.0 1 -4.0611 -3.7818 -3.0130 -2.6424 -1.4912 ®68-0.4740 0.4626
2 -6.3984 -6.1136 -5.1873 -4.6648 -3.1080 -2.063T7.8379 -1.4249

15 1 -3.8603 -3.5938 -2.8894 -2.5481 -1.4568 -D6300.0003 0.6735
2 -6.7506 -6.4567 -5.6701 -5.1942 -3.4947 -2.1947 -1.9035 -1.3826

Explanation: Table 6 contains the empirical percentiles of digributions of the-statistics ofg that
result from the corresponding estimation appliedCKLS (1992) underH,:a = =0 obtained from

simulated samples. The number of the sub-sampétsgtused for the jackknife estimation is dendigd
A, where A = 1represents the non-jackknife estimates.

As the results show, the empirical distributiorttod t-statistics, unlike théstatistics that are
obtained from unit root tests, seems to dependhenvalue ofy that is used to generate
simulated sample paths. Using our results, howevercannot identify any kinds of patterns

for the percentiles concerning the dependenceeodligtribution ony .

Using a Monte Carlo experiment based or= 30 O@plications, we also examine the
distribution of the LR-statistics for all models.e\jenerate simulated samples, each with
n=1000, by means of the Euler discretization of (1) usimg= 05, At = 001, and the
corresponding restrictions on the parameter veatgrosed by the given null models

respectively. The results are presented in Table 7.

Table 7 Empirical Percentiles of the LR-StatistiesMonte Carlo Results

Model S 1% 5% 10% 50% 90% 95% 99%

MERTON(1973) 2  0.0224 0.1132 0.2264 1.4550 4.8592 6.3419.8118
VASICEK (1977) 1  0.0003 0.0072 0.0295 0.8293 4.8179 9828 12.2344
DOTHAN (1978) 3  0.6319 1.1431 1.5804 4.5747 10.6623 4132 19.6428
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CIR (1980) 3 0.6684 1.1995 1.6488 4.6841 10.6843.4771 20.3675
BS(1980) 1 0.0004 0.0076 0.0302 0.8567 5.6433 8.4487.2100
1 0.0004 0.0103 0.0412 1.0029 4.9780 7.007@.5912
2 0.0243 0.1268 0.2671 1.8278 6.3598B.3170 13.1324

CIR (1985)
GBM

Explanation: Table 7 contains the empirical percentiles of distributions of the LR-statistics obtained
from simulated samples under the given null modelteres denotes the number of restrictions.

As the results show, the distribution of the LRtistecs seems to depend on both the number
of restrictions and the underlying null models. Yiile empirical percentiles that result from
the DOTHAN (1978)and from the CIR1980)models — both uses= 8estrictions — do not
considerably differ from each other respectivelyneTresulting distributions of the LR-
statistics do not tend to be well approximated H®y ¢hi-square distribution in general. Only
the LR-statistics that are obtained from therRVION (1973) model are assumed to follow the

chi-square distribution under the corresponding Imgpothesis.

5 Empirical Results

The concept of the short-term interest rate is ur@mbiguous from the practical point of
view, such that the choice for an appropriate proxy to be made. Since one-month Treasury
bill yields are assumed to be affected by idiosgticrvariation — as shown inUBFEe (1996)

—, we use samples of daily, weekly and monthly ola®ns of the three-month U.S.
Treasury bill yield from 04.01.1954 through 02.@®8& which are provided by the Board of
Governors of the Federal Reserve System. We also dasly, weekly, and monthly
observations of the Federal fund rate from 04.(841t&rough 02.03.2006.

We report the descriptive statistics for daily, Wge and monthly observations of U.S.
Treasury bill yields and Federal funds rates rethpalg. We test the normality of the
observations usingARQUE AND BERA (1987). We also report the results from the ajpgilbn

of the unit root test of 8> AND DICKEY (1984) using the corresponding critical values. Fo
the test a constant is included. We usenlRE (1973) to determine the number of lagged

differences. The results are presented in Table 8.

Table 8 Summary Statistics

Standard

Data Frequency n Mean Deviation JB ADF Lags
E{lmrg Daily 13028 5.1755%  2.8327% 4048~ 27421 221
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Weekly 2721 5.1815% 2.8336% 831** -2.5218 42
Monthly 625 5.1816% 2.8326% 183** -2.3816 12

Federal Daily 18 873 5.7133% 3.4039% 7496** -2.2553 211
fund rate
Weekly 2 695 5.7135% 3.3899% 1026**  -2.4260 52
Monthly 619 5.7149% 3.3827% 222%* -2.4230 11

Explanation: contains descriptive statistics of daily, weekdynd monthly observations of three-month
U.S. Treasury bill yields and Federal fund ratesmfr04.01.1954 through 02.03.2006. The number of
observations is denoted hyJB denotes the Jarque-Berra test-statigtief denotes thé statistic obtained
from the test of &b AND DICKEY (1984)with the corresponding number of lagged differenited are
chosen using Raike (1973). The maximum of the lagged differences thatonsidered is 250 for daily,
52 for weekly, and 12 for monthly observations. Thiical values that we use are -2.8865 and -324@5

the 5% and the 1% level. The marking * (**) meahattthe corresponding null hypothesis is rejected a
the 5% (1%) level respectively.

The null hypothesis of the Jarque-Bera test itegeat the 1% level for both instruments and
for all types of sampling frequencies respectivalge results of the unit root tests suggest
that, from the empirical point of view, neither theeasury bill yield nor the Federal fund rate

can be assumed to follow a stationary processedb%h level.

Since the parameters of the drift function aredmand exactly identified by the first two
equations of the moment conditions that do notuitkelthe remaining parameters, only the
estimation of g and y requires a numerical optimization for which the Mfethod is
applied. The main problem with the NR method ig tflabal optimization is not guaranteed
since many local minima can be found in generatddmg on the initial value that is chosen.
However, the solution of the optimization is ongnsitive to the choice of the initial value of

¥, while the solution seems to be very robust toctih@ce ofo . Since only one solution can
be obtained from initial values A<y < Respectively — this result holds for all types of

observations of both three-month U.S. Treasuryelds and Federal fund rate —, we assume
that the local minima that are found are the sohdi of the corresponding global

optimizations.

Now, we estimate the unrestricted model by CKLS9@)9for daily, weekly and monthly
observations of three-month Treasury bill yieldd &ederal fund rates, both from 04.01.1954
through 02.03.2006, by means of the NR method usiagnitial valueso = 0.and y = 0
respectively. For estimation, we us&t =1/  2%6r daily, At= 1/52 for weekly, and
At = 1/12 for monthly observations. We also compute theesponding jackknife estimates

using A= 2 We test the null hypothesi$l,:a,=/4,= 0sing the percentiles of the

empirical distributions as critical values givenTiable 6 depending on the estimation result
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of y. Due to our Monte Carlo results, we assume thaestimates oy are asymptotically

normal under the null hypothesks$, : j, = . Dhe results are presented in Table 9.

Table 9 Estimation Results of the Unrestricted Mdde

Critical
Data Frequency A a B Values o y al B
Treasury Daily 1 0.0087 -0.1571 -2.89 (5%) 0.8782 1.4978 0.0556
bill yield [-0.8098] -3.59 (1%) [19.1493]
2 0.0111 -0.2174 -5.67 (5%) 0.8882 1.5696** 0.0510
[-1.1202] -6.46 (1%) [13.0189]
Weekly 1 0.0083 -0.1492 -2.89 (5%) 0.9441 1.5410** 0.0559
[-0.8378] -3.59 (1%) [13.1749]
2 0.0110 -0.2177 -5.67 (5%) 0.9158 1.6474* 0.0506
[-1.2212] -6.46 (1%) [6.8538]
Monthly 1 0.0095 -0.1728 -2.89 (5%) 1.3499 1.6595% 0.0552
[-1.3017] -3.59 (1%) [7.5542]
2 0.0126 -0.2538 -5.67 (5%) 1.5718 2.0026** 0.0498
[-1.9092] -6.46 (1%) [2.9000]
Federal Daily 1 0.0828 -1.4407** -3.52(5%) 0.2909 0.5713** 0.0574
fund rate [-6.5062] -4.66 (1%) [7.9348]
2 0.0780 -1.2880* -5.42(5%) 0.0685 0.4128 0.0606
[-5.9912] -6.12 (1%) [0.5109]
Weekly 1 0.0155 -0.2602 -3.01 (5%) 0.2321 0.8283** 0.0597
[-1.2099] -3.78 (1%) [5.7759]
2 0.0200 -0.3646 -5.19 (5%) 0.1878 0.8758** 0.0548
[-1.6857] -6.11 (1%) [2.7258]
Monthly 1 0.0110 -0.1808 -2.89 (5%) 1.6553 1.7666** 0.0609
[-1.3229] -3.59 (1%) [5.4369]
2 0.0143 -0.2699 -5.67 (5%) 1.7200 1.9869** 0.0530
[-1.9778] -6.46 (1%) [3.1031]

Explanation: Table 9 contains the estimation results of theesinicted model for daily, weekly, and
monthly observations of three-month U.S. TreasuHyyields and Federal fund rates from 04.01.1954
through 02.03.2006 with the corresponding estimafae number of the sub-samples that is used fr th
jackknife estimation is denoted by, where A = lrepresents the non-jackknife estimates. The term
—-al 3 represents the estimated long-run mean. The gamekngt-statistics are in brackets. The critical

values are taken from Table 6. The marking * (**pans that the null hypothesis that the estimated
parameter is zero is rejected at the 5% (1%) level.

As the results illustrate, the null hypothests :a,=3,= cé@nnot be rejected at the 5%

level for all types of sampling frequencies of theee-month U.S. Treasury bill yields. From
that it follows that there appears to be no emglrevidence for mean-reversion in the three-
month U.S. Treasury bill yield. In contrast to tihesult, the null hypothesis is rejected at the
1% level for daily observations of the Federal furades, while, for the corresponding
jackknife estimates, the null is rejected at thel&9%&l. Therefore we find that mean-reversion
plays an important role for the specification oé thederal fund rate dynamics but only for

daily observations.
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Our results also indicate that the conditional atace of changes in the three-month U.S.

Treasury bill yield is highly sensitive to the ylelevel. However, for the Federal fund rates,

the estimated value of increases from daily to monthly observations. Fiibve empirical

point of view, the conditional variance of changeslaily observations of the Federal fund

rate is approximately proportional to the rate lewehile, for weekly and for monthly

observations, the conditional variance seems todre sensitive.

Now, we estimate the restricted models by meartiseoNR method using the estimates of the

unrestricted case as initial vallfe®ve calculate the corresponding LR-statistics. ddical

values, we use the percentiles given in Table Xcem forMERTON (1973) for which the chi-

square distribution with 2 degrees of freedom BsdusSince the empirical distribution of the

LR-statistics under the given null model is knowrg do not apply the jackknife estimation

for the restricted models. The results are presientdable 10.

Table 10 Estimation Results of the Restricted Maxlel

Model Data Daily Weekly Monthly
MERTON(1973)  Treasury bill yield 109.8111** 42.9676* 10.33**
Federal fund rate 59.8113** 22.0294** 7.5315*
VASICEK(1977)  Treasury bill yield 108.0119** 42.3872%* 9.8946*
Federal fund rate 34.9138** 20.3528** 5.9502
DOTHAN (1978) Treasury bill yield 32.9966** 17.2741* 5.8133
Federal fund rate 83.7127* 7.1675 5.1990
CIR (1980) Treasury bill yield 2.6802 2.7342 3.2011
Federal fund rate 117.4089** 26.1764** 3.6026
BS(1980) Treasury bill yield 29.6006** 14.0948* 4.1562
Federal fund rate 72.0333** 1.4664 2.5947
CIR (1985) Treasury bill yield 74.5311** 30.9254** 7.5155*
Federal fund rate 0.9317 4.5476 4.5119
GBM Treasury bill yield 32.2474% 16.4096** 5.5239
Federal fund rate 77.3434* 3.8977 4.9823

Explanation: Table 10 contains the LR-statistics of the restd models for daily, weekly, and monthly
observations of three-month U.S. Treasury bill déebind Federal fund rates from 04.01.1954 through
02.03.2006. Except for BRTON (1973), the critical values for the LR-statistfosm Table 7 are used. The

marking * (**) means that the corresponding nulldebis rejected at the 5% (1%) level.

To sum up, for daily and weekly observations of tttiree-month U.S. Treasury bill yield, all
models except the model of CIR (1985) are rejeatetie 5% level. This result indicates that

the conditional variance of changes in daily aneékiye observations of the three-month U.S.

8 Note that the stopping rule ofN&REWS (1997), which is suggested for estimation of adentified systems
within the GMM framework, is not applicable, sintte weighting matrix is calculated using of tharaates of
the unrestricted case.
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Treasury bill yield is highly sensitive to the yddevel, while the mean reversion is negligible
from the empirical point of view. Only the spec#tmons of MERTON (1973), VASICEK (1977),
and CIR (1985) can be rejected at the 5% levehfonthly observations of the three-month
U.S. Treasury bill yield, such that monthly obse¢iwas allow a lower elasticity of the
conditional variance of yield changes. The reasomttiis result is that the variance of the

estimates ofy is lower for higher sampling frequencies. Sincé/dhe model of CIR (1980)

is not rejected at the 5% level for all types ahpling frequencies, we find that the model of
CIR (1980) best describes the dynamics of the thresth U.S. Treasury bill yield.

The results obtained from the Federal fund ratggenl@ on the chosen sampling frequency.
While, for daily observations, the mean- reversigpears to be more important, this feature
is negligible for weekly and monthly observatioRsr weekly and monthly observations, the

elasticity seems to be higher than for daily obatowns. As for the three-month U.S. Treasury
bill yield, an exact specification of the elastycitf conditional variance is more important for

daily observations. Only the specification oERON (1973) can be rejected at the 5% level
for monthly observations of the Federal fund r&ece only the model of CIR (1985) is not

rejected at the 5% level for all types of sampliregjuencies, we find that the model of CIR

(1985) best describes the dynamics of the Fedenal fate.

Since several models are sub-nested within othefetapthe performance of a given model
can also be measured relative to the model in wihishnested. The corresponding weighting
matrix, which is used for both criterion functioris, obtained using the estimates of the
alternative unrestricted model in each case. FOHgWCKLS (1992), we assume that the
resulting LR-statistics converge under the assediatull hypothesis to the chi-square
distribution with s degrees of freedom, whesedenotes the number of restrictions imposed
by the restricted nested model on the corresporaltegnative unrestricted model. The results
of the tests are summarized in Table 11.

Table 11 Pairwise Comparisons of Alternative Nestdddels

Altlt\eﬂrggglv € NeRsetzglcl\;I?)((jjel S Data Daily Weekly  Monthly
VASICEK MERTON 1  Treasury bill yield 1.1500 0.3947 0.4440
(2977) (1973) (0.2835) (0.5298) (0.5052)
Federal fundrate  33.7398**  1.6875 1.3915
(<0.0001) (0.1939) (0.2382)
GBM DOTHAN 1  Treasury hill yield 0.9346 0.9575 0.3982
(1978) (0.3337) (0.3278) (0.5280)

Federal fund rate 10.3885** 2.8434 0.2871
(0.0013) (0.0917) (0.5921)
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BS DOTHAN 2  Treasury hill yield 2.8015 2.4806 1.4136
(1982) (1978) (0.2464) (2.4806) (0.4932)
Federal fundrate  11.4605**  5.6384 2.2511

(0.0032) (0.0597) (0.3245)

BS GBM 1  Treasury bill yield 1.9217 1.6608 1.1549
(1982) (0.1657)  (0.1975) (0.2825)
Federal fund rate 2.9909 2.4354 2.0894

(0.0837) (0.1186) (0.1483)

Explanation: Table 11 contains the values of the LR-statisties are obtained from pairwise comparisons
of the alternative models for daily, weekly, andmidy observations of three-month U.S. Treasury bil
yields and Federal fund rates from 04.01.1954 tjind@2.03.2006. The number of restrictions imposed b
the restricted nested model relative to the alter@anodel is denoted by The corresponding-values
are in parenthesi§he marking * (**) means that the correspondingl tnypothesis is rejected at the 5%
(1%) level.

For the three-month U.S. Treasury bill yield, asvgh, none of the underlying nested models
can be rejected against the corresponding alteesatit the 5% level. This result confirms
that, for the three-month U.S. Treasury bill yietthne of the models with mean-reverting
processe®dutperform the nested models with different speatfons of the drift function

respectively.

For weekly and monthly observations of the Fedduald rate, the corresponding null
hypotheses cannot be rejected at the 5% eitheth©nother hand, for daily observations, the
MERTON (1973) model is rejected at the 1% level agaimst\MasICEK (1977) model, and the
DoTHAN (1978) model is rejected at the 1% level agaitssboth of its alternatives, namely
the specification of B§1980) and the GBM. That result also indicates,ttiat daily
observations of the Federal Funds rate, thereasgtevidence for mean-reversion from the
empirical point of view. In contrast to that restiite GBM cannot be rejected at the 5% level

against the alternative model of B®80).

6 Conclusion

This work illustrates that the GMM estimation appliin CKLS (1992) for estimating

continuous-time models of the short-term interagt suffers from significant estimation bias
which is reduced by means of the jackknife estiomatunder the assumption that the
dynamics of the short-term interest rate can becqmated by means of a discrete-time

process.

We provide critical values for parameter testsaotgd from empirical distributions of the
associated test-statistics. We show that the emstgod-statistics of the drift parameters

depend on the elasticity of the conditional vare@an€ changes in the short-term interest rate

21



under the null hypothesis that the drift functisrzero, whereas thestatistics obtained from

unit root tests are robust to conditional heterdskéc errors. We find that the distributions of
the LR-statistics of the corresponding null modi#dsnot strictly and exclusively depend on
the number of restrictions imposed by the undegyiall models but also on the given model
that is considered. Our Monte Carlo results alsstitate, that an alternative GMM estimation
based on the discretization obWMAN (1997) does not sufficiently reduces the estinmatio
bias for the drift parameters caused by neglectitegnal dynamics between sampling points.

Using our estimation results obtained from dailgekly, and monthly observations of the
three-month U.S. Treasury bill yield and the Fedéwad rate, we demonstrate that the
models that are chosen can depend on both the isgnfiidquency and the proxy that is used
for the short-term interest rate. While daily obvsg¢ions of the Federal fund rate seem to
exhibit significant mean-reversion, the specifioatiof the drift function seems to be of

secondary importance for the dynamics of the timeath U.S. Treasury bill yield.

We also demonstrate that the jackknife estimatemresult in higher values for the elasticity
of conditional variance of changes in the yieldelefor the three-month U.S. Treasury bill
yield. We find the conditional variance of changeghe yield to be highly sensitive to the
yield level. This sensitivity appears to be lower daily observations of the Federal fund rate.
The results illustrate that an exact specificatidrthe elasticity of conditional variance is
more important for daily observations, since th# models are rejected more often. We find
that — considering the alternative models thatext@mined — the model of CIR (1980) best
describes the dynamics of the three-month U.S.shrgabill yield, whereas, for the Federal

funds rate, the corresponding model is CIR (1985).
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