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Abstract

A well-known result by Vega-Redondo implies that in symmetric
Cournot oligopoly, imitation leads to the Walrasian outcome where
price equals marginal cost. In this paper we show that this result
is not robust to the slightest asymmetry in �xed costs. Instead of
obtaining the Walrasian outcome as unique prediction, every outcome
where agents choose identical actions will be played some fraction of
the time in the long run. We then conduct experiments to check this
fragility. We obtain that, contrary to the theoretical prediction, the
Walrasian outcome is still a good predictor of behavior.
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1 Introduction

In a seminal paper Vega-Redondo (1997) shows how imitation of successful

behavior can push agents towards very competitive outcomes. Speci�cally,

he shows that in Cournot games imitation of the most successful strate-

gies leads in the long run to the Walrasian outcome where price is equal

to marginal cost. This result is important since Cournot games not only

serve as the main workhorse model for industrial organization but re�ect,

more generally, environments where there is a tension between cooperation

and competition, with the Cournot-Nash equilibrium outcome somewhere

in between perfect collusion and perfect competition.1

Two experimental papers (Huck, Normann, and Oechssler, 1999 and Of-

ferman, Potters, and Sonnemans, 2002) con�rm the behavioral relevance of

Vega-Redondo�s �ndings. When experimental subjects have access to infor-

mation that allows them to imitate their rivals, competition gets signi�cantly

more intense. This is true even when subjects have all the necessary infor-

mation to play the Nash equilibrium. In fact, both papers show that while

subjects converge to Cournot-Nash if they have just the necessary informa-

tion to play a best reply, additional information about rivals�choices and

performance� which orthodox game theory deems irrelevant� leads them

away from equilibrium play towards more competitive outcomes.2

In this paper we re-examine both, Vega-Redondo�s theory and the ex-

perimental �ndings on it. First, we show that Vega-Redondo�s theoretical

result is surprisingly fragile. Slightest di¤erences in costs are shown to have

a huge impact on the long-run behavior of agents. Speci�cally, we show

that for an arbitrarily small change in some agent�s �xed costs, we can �nd

an action set from which quantities are chosen3 such that every outcome

1See Alos-Ferrer and Ania (2005) for a generalization of the result to a broader class
of games.

2Since then this link between information, imitation and competition has been repli-
cated in a number of papers. See, for example, Abbink and Brandts (2007), Huck, Nor-
mann, and Oechssler (2000), or Selten and Apesteguia (2005). See also Apesteguia, Huck,
and Oechssler (2007) who analyse, both, theoretically and experimentally, the di¤erences
between Vega-Redondo�s (1997) model of imitation and Schlag�s (1998).

3More technically speaking, we can �nd a grid that is �ne enough. Almost all models
of imitation deal with �nite action spaces.
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where agents choose identical actions will be played some fraction of the

time in the long run. The intuition for this is simple. If a �rm with a slight

�xed cost advantage moves to a slightly di¤erent quantity, it will, due to its

cost advantage, still be the most successful �rm and will thus be copied by

others.

We also show that this theoretical result is not only a curiosity that

occurs in the limit. Rather we �nd in a series of simulations that small

di¤erences in agents�costs have large e¤ects on their pro�ts if they imitate

most of the time but experiment with a reasonable frequency. Speci�cally,

we report that when one �rm has a slight cost advantage, industry pro�ts

rise by more than 35% for experimentation rates of 10% or 20%.

Second, we conduct new experiments to analyze whether such cost di¤er-

entials also change behavior of subjects in the laboratory. Our �ndings are

very clear-cut. Despite implementing a non-trivial cost di¤erential, we �nd

no change in outcomes. When subjects can observe their rivals, outcomes

are far more competitive than predicted by the Cournot-Nash equilibrium

regardless of whether there are di¤erences in costs or not. This con�rms

the strong behavioral link between feedback about rivals (�market trans-

parency�) and competitive behavior.

2 Theoretical predictions

As in Vega�Redondo�s (1997) model we consider a market for a homogeneous

good where a set of �rms N = f1; :::; ng is competing á la Cournot. Each
�rm i produces some quantity qi. The vector of quantities by �rms other

than i is denoted by q�i: In line with the prior literature, we assume for

technical reasons that �rms choose their output from a common grid � =

f0; �; 2�; :::; v�g with � > 0 and � 2 N. The total quantity Q =
Pn
i=1 qi

produced by all �rms determines the price on the market via a linear inverse

demand function p(Q) = maxfa � bQ; 0g. We assume that all �rms face
constant marginal costs c with 0 � c < a. In addition, we assume that �rm
i may have to bear some �xed cost (or bonus) fi. So �rm i�s cost function

is given by ci(qi) = cqi+ fi. The �xed costs may di¤er among �rms. Pro�ts

2



of �rm i are given by

�i(qi; q�i) = (p(Q)� c) qi � fi:

The (symmetric) Walrasian quantity qw is de�ned as the quantity at which

price equals marginal cost c when all �rms produce the same quantity.

Within our setup we have

qw =
a� c
bn

:

We assume that qw 2 �, i.e. the Walrasian quantity is contained in the

quantity grid.

After each period t = 1; 2; ::: each �rm observes the quantities produced

and the pro�ts associated with these quantities of all �rms in the market.

It then chooses the quantity that yielded the highest pro�t in the previous

period. That is, we are considering an imitate the best max rule.4 More

formally in period t �rm i chooses

qti = q
t�1
j with j 2 arg max

m2N
�t�1m (qt�1m ; qt�1�m):

Ties are assumed to be broken randomly. In addition, with small proba-

bility " > 0 each �rm ignores the action prescribed by the imitation rule

and chooses an action at random from all actions in �. Let !q denote the

monomorphic state where all players set the same quantity q.

The adjustment process described above gives rise to a Markov process.

We use methods developed by Freidlin and Wentzel (1984) (�rst applied

in an economic context by Kandori, Mailath, and Rob, 1993; Nöldeke and

Samuelson, 1993; and Young, 1993) to identify the set of stochastically stable

states, i.e. states that are in the support of the limit invariant distribution

as the mutation probability " goes to zero.

Let us now assume that some �rm k has a cost advantage over all other

�rms in the market. We model this cost advantage via the �xed cost. In

particular and without loss of generality, we assume that fi = 0 for all i 6= k
and �fk = g � 0.

4See Apesteguia et al. (2007) for a discussion of various imitation rules.
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Note that if g = 0, i.e. all �rms have identical cost functions, a single

mutation towards the Walrasian quantity qw is always imitated by other

�rms. The simple reason for this is that if the price exceeds marginal cost,

the �rm with the highest quantity makes the largest pro�t and will be imi-

tated. If prices are below marginal costs, the �rm with the lowest quantity

makes the largest pro�t and hence will be imitated. Hence, as shown by

Vega�Redondo (1997), with identical cost functions only the state where all

�rms set the Walrasian quantity is stochastically stable.

If however �rm k has a cost advantage, it may be the case that after a

mutation of �rm k away from the Walrasian quantity it still earns the highest

pro�t and hence will be imitated. Other �rms, of course, do not realize that

this higher pro�t is due to the lower �xed cost. They simply observe that the

strategy choice of �rm k was more successful. This introduces another source

of bounded rationality which pushes the system away from the Walrasian

quantity.

Proposition 1 (1) If there are no di¤erences in �xed cost (g = 0), then

the Walrasian state !qw is the unique stochastically stable state.

(2) For any di¤erence in �xed costs g > 0; there exists a grid size ��

such that for all � < ��, the set of stochastically stable states is given by the

set of all monomorphic states on the grid, f!qjq 2 �g.

Proof. The �rst part follows without modi�cation from Vega�Redondo

(1997).

With respect to the second part, note that as in Vega�Redondo�s model,

under the imitate the best rule only monomorphic states are absorbing.

Consider any non-monomorphic state !. Assume that �rms make di¤erent

pro�ts and say �rm j makes the highest pro�ts. With positive probability

all �rms will imitate �rm j and we reach the state !qj . Note that there is

also the (non�generic) case that �rm k and �rms i 6= k make the same pro�ts
but o¤er di¤erent quantities. However, since ties are broken randomly, with

positive probability the dynamics will shift us to the state !qj .

We now identify the set of stochastically stable states for arbitrary g and

�. Consider some monomorphic state !q and assume that �rm k mutates

4



and decreases its quantity by the smallest possible unit, i.e. �rm k mutates

to qk� �. This (downward) mutation will be followed if �rm k�s pro�ts after
the mutation exceeds the pro�ts of the other �rms, i.e. if and only if

((a� b(nqk � �))� c)(qk � �) + g � ((a� b(nqk � �)� c)qk:

So, a single downward mutation is followed if

q � qw + �

n
� g

�bn
=: qlow: (1)

Note that this implies that the lowest quantity that can be reached by a

chain of single downward mutations is qlow � �. Obviously, from all q > qw,

a downward move is always possible, just like in Vega�Redondo (1997). But

for g > 0, downward moves become possible for some q < qw as well.

Likewise, note that a single upward mutation qk+ � of �rm k is followed

if

q � qw � �

n
+

g

�bn
=: qhigh: (2)

as long as p > 0. Again, we can move up to qhigh + � by a chain of single

mutations.

Consider now the case p = 0, i.e. q � a
bn . An upward mutation is followed

if �c(q + �) + g � �cq: That is if

� � g

c
: (3)

Note that if qhigh+� � a
bn , inequality (3) holds also. That is, if we can move

up to the point where the price is zero, we can move up all the way to the

upper bound of our grid.

Figure 1 summarizes the results so far. All one�step mutations toward

qw are always possible. Downward movements for q < qw are possible if and

only if (1) is satis�ed. Upwards movements for qw < q < a
bn are possible if

and only if (2) is satis�ed. Upwards movements for q > a
bn are possible if

qw + �(n�1)
n + g

�bn �
a
bn holds.

So all states in the following set can be reached from any other state by

a series of single mutations

B =

�
!qjq 2 �; qw �

�(n� 1)
n

� g

�bn
� q � �q

�
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0 qw a / (bn) vδ

always possible

always poss.
if (2) satisfied

if (1) satisfied

if δ < g/c

Figure 1: Transitions from one monomorphic state to a neighboring one that
can be reached with one mutation.

where

�q =

(
v� if qw + �(n�1)

n + g
�bn �

a
bn

qw + �(n�1)
n + g

�bn else

Hence, all states in B form one large �mutation connected component�,

which is stochastically stable (see Nöldeke and Samuelson, 1993). Note that

as � ! 0 the set B converges to the set f!qjq 2 �g.

3 Experimental design

In our experiment, subjects played repeated 3�player Cournot games in �xed

groups for 60 periods. The payo¤ function for each round was given by

�i(qi; q�i) = p(Q)qi � fi;

with p(Q) = maxf120�Q; 0g being the inverse demand function. Marginal
cost were set to 0.

The grid of quantities was given by � = f20; 21; 21:5; :::; 39:5; 40g:5 Note
that the symmetric joint pro�t maximizing output is at qc = 20, the Cournot

Nash equilibrium output is at qN = 30, and the symmetric Walrasian output

is at qw = 40.

5Quantity 20.5 was excluded to have exactly 40 strategies.
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In order to make imitation salient and give the theoretical results the

best shot, subjects were not told anything about the game�s payo¤ function

apart from the fact that their payo¤deterministically depended on their own

choice and the choices of the two other subjects in their group, and that the

payo¤ function was the same throughout all of the experiment. After each

period, subjects learned their own payo¤, and the actions and payo¤s of

the two other subjects in their group. The 40 actions in � were labeled as

1; 2; :::; 40 in ascending order.

We ran two treatments, one symmetric and one asymmetric, that di¤ered

only on the value of the fi�s. In Treatment SYM, there were no �xed costs,

fi = 0 for all i. In Treatment ASYM, however, there is a �xed bonus for

�rm 3, g = �f3 = 50; while fi = 0 for i = 1; 2: This amounts to the same as
having �xed cost of 50 for �rms 1 and 2 but has the advantage of avoiding

losses for subjects which are di¢ cult to enforce in an experiment. Subjects

are not informed about di¤erences in �xed cost in ASYM although they may

notice them when all subjects in a group choose the same or similar actions

but realize di¤erent payo¤s.

The computerized experiments6 were run in the ELSE laboratory at

UCL. We had 7 independent groups in SYM and 8 in ASYM. In total 45

subjects participated in the experiment, drawn from the student population

at UCL.7 Subjects were paid a show�up fee of £ 5 and in addition to this were

given £ 0.005 per point won during the experiment. The average payment

was around £ 11 per subject, including the show-up fee. All sessions lasted

less than 60 minutes.

Given this setup we can derive the following theoretical hypothesis from

Proposition 1.

Hypothesis Q In treatment SYM, the Walrasian quantity qw is the unique

stochastically stable state according to the imitate the best max rule.

However, in treatment ASYM, all monomorphic states f!qjq 2 �g
are in the support of the limit invariant distribution and should be

6The program was written with z�tree of Fischbacher (2007).
7We recruited 8 groups for both treatments but due to no�shows, only 7 groups were

complete in SYM.
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observed with strictly positive probability in the long run.

To obtain quantitative predictions about pro�ts in the short and medium

run, we have conducted computer simulations that allow for realistic noise

levels. The program followed with probability 1 � " the imitation rule and
chose actions with a uniform distribution from � with probability ". In

10,000 repetitions of 60 periods, pro�ts were 35.2% higher on average in

ASYM than in SYM for " = 0:2 and 37.8% higher for " = 0:1.8

Hypothesis P Pro�ts in treatment ASYM should be higher than in treat-

ment SYM.

4 Experimental results

Figure 2 shows relative frequencies of actions separately for our two treat-

ments. There is clearly no signi�cant di¤erence between the two distribu-

tions according to a Kolmogorov�Smirnov test at any conventional signi�-

cance level. The mode of both distributions is at 40, the Walrasian quantity,

which is predicted by theory for SYM but not necessarily for ASYM.

Table 1 shows average quantities and the percentage deviation of average

pro�ts from the Cournot equilibrium pro�ts for the two treatments over all

periods.9 Pro�ts for treatment ASYM are calculated excluding the bonus

of 50 for �rm 3.

Table 1: Summary statistics
% deviation from

Average quantities Cournot equilibrium pro�ts
Treatment
SYM 34:1 �39:8
ASYM 34:7 �42:2
Note: Pro�ts in ASYM do not include g:

8Pro�ts in ASYM are calculated excluding the bonus of 50 for �rm 3.
9There is no noticable time trend in the data.
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quantities

Figure 2: Histograms of individual quantities by treatment.

We �nd no signi�cant di¤erence between average quantities according

to MWU tests (see, e.g., Siegel and Castellan 1988) on the basis of average

quantities per group. Likewise, there is no signi�cant di¤erence with respect

to the deviation from Cournot pro�ts. However, for both treatments we

observe a sizable deviation from Cournot pro�ts towards the zero�pro�t

predictions of the competitive equilibrium. This seems remarkable given

the understandable resistance of subjects to remain near this zero�pro�t

area.

We summarize our results as follows.

Result (1) Contrary to the theoretical prediction, there is no signi�cant
di¤erence between our SYM and ASYM treatments in terms of quan-

tities. In fact, in both treatments the mode of quantities is at the

competitive quantity of 40.

(2) In both treatments there is a substantial deviation of pro�ts of

around �40% from the Cournot equilibrium pro�t. We �nd no sup-

port for Hypothesis P, which predicts higher pro�ts in ASYM.
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5 Conclusion

In this paper we study the fragility and robustness of the prediction in Vega-

Redondo�s imitation theory. If agents can observe their rivals and imitate the

action that in the previous round was most successful, Walrasian outcomes

emerge in the long run. However, as we show, this does no longer hold

if there are di¤erences in costs, even if these di¤erences are very small.

Intuitively, one would think that such a fragility would severely limit the

theory�s predictive power. But intuition is wrong. Despite its theoretical

fragility, the link between information about rivals and intense competition

is robust. Di¤erences in costs do not help subjects to overcome cut-throat

competition. This stresses the behavioral importance of information about

rivals that orthodox game theory deems irrelevant.
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Appendix: Instructions

Welcome to our experiment! Please read these instructions carefully. Do

not talk with others and remain quiet during the entire experiment. If you

have any questions, please ask us. We will come to you and answer your

question privately.

During this experiment, which lasts for 60 rounds, you will be able to

earn points in every round. You will form a group with two other partic-

ipants. The composition of your group remains constant throughout the

course of the experiment. The number of points you may earn depends on
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your action and the actions of the two other participants in your group.

At the end of the experiment your accumulated points will be converted to

pound sterling at a rate of 200 : 1.

Each round, you will have to choose one of 40 di¤erent actions, actions

1; 2; 3; : : : ; 40. Actions are ordered such that action 1 is the smallest and

action 40 is the largest action. We are not going to tell you how your payo¤

is calculated, but in every round your payo¤ depends uniquely on your own

decision and the decisions of the two other participants in your group. The

rule underlying the calculation of the payo¤ does not depend on chance and

remains the same in all 60 rounds.

After every round you get to know how many points you earned with

your action in the current round. In addition, you will receive information

about the actions of the other two participants in your group, and how many

points each of them earned.

After the last period you will be reminded of all your 60 payo¤s and the

computer will calculate the sum of these which will then be converted into

pound sterling.

These are all the rules. Should you have any questions, please ask now.

Otherwise have fun in the next 60 rounds.
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