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Abstract

The static, open input output-model reads (I — A)x = d, where
A > 0is an n x n input matrix with > . a;; < 1, d and z are
1 x n final demand and output vectors, respectively. In contrast
to the familiar model the coefficients of A, d and x are regarded
as random variables in this paper, since there are many influences
on production and demand, and hence on the resulting output
X = (I — A)~'d = Ld, where . > 0 denotes the Leontief inverse
of A. Correlations within A or d can be allowed for, but may often
be neglected. However, even for independent coefficients within
A and d those within I and 2 are correlated.

Empirical input matrices are derived from a database from
year 0 such that (I — A%)2? = 4 is fulfilled for this reference
system. It is assumed that these values of A? and d° represent
either a) expected values or b) modes of the underlying random
variables A and D. If there is no other information, variances
are assumed to be derivable by a 3o-rule or in case b) by some
additional information on unimodal distributions.

For a random matrix A the density of the Leontief inverse
is derived. Approximations of E(LL) and Cov(L), and E(X) and
Cov(X) are deduced from the Jacobian of the mapping g: A — L
and the corresponding Hessian. The results simplify considerably

*The author thanks Johannes Becker, Christian Conrad, and Berthold Haag for
helpful comments, Asmus Lowenhaupt and Arne Négel for the simulations.



if correlations within A and D are negligible, which seems realis-
tic.

Crude probability regions for I and the solution X can be
given, which may be improved, if knowledge of the distribution
types of A and d is available. Assumption of normality may cause
difficulty with respect to the requirement that (I — A) has a non-
negative inverse.

In a simulation it is assumed that the column vectors of A
and normed final demand D have independent Dirichlet distri-
butions, or its components Beta distributions Be(r, s) on [0, 1],
which seems reasonable for fractions. With these distributions
no problem occurs with invertibility, since it can be ensured that
the dominant eigenvalue of A is less than one. The parameters
r and s in the simulation, based on German data, are derived
from assumed E(Y) (or mode(Y)) and Var(Y). A simple sec-
ond approximation of IL suggests that the coeflicients of I and
X may have Beta distributions of the second kind. This is con-
firmed by the simulations. Also, the two types of approximations
of E(X) and Var(X) show a good and satisfactory performance,
resp. The theoretically expected approximate, relatively narrow,
20-regions contain 90-95 % of the simulation results for most co-
efficients; the theoretically derived approximate densities mainly
accord with the histograms of the simulation.

Keywords: random input output-model, distribution of Leontief
inverse, solution
JEL Codes: C13, C15, C30, R15
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1 Introduction

Input output-models are usually based on a deterministic input matrix
A. However, the observed values of inputs should be seen as realisations
of random variables since inputs are affected by random effects, e.g.
data errors, compilation, aggregation, prices, factor substitution, tech-
nical progress, product and process mix. In the literature, only a small
number of contributions start with a stochastic input matrix and draw
some conclusions concerning the stochastic Leontief inverse L(A) — for
instance, on bounds of its expected values based on Jensen’s inequality.
However, it is difficult to derive the distributions of the elements of L(A),
even if the input coefficients are supposed to be normally distributed as
is commonly assumed.

In this paper, the input coefficients are mainly assumed to be beta
distributed. The standard beta distribution has the domain of the input
coefficients, the interval [0, 1]. It depends on two parameters which allow
for a high degree of flexibility. In particular, great skewness is admitted.
These properties seem to be adequate for modelling the distribution of
the large number of very small input coefficients. A is assumed to have a
dominant eigenvalue less than one, which is equivalent to existence and
non-negativity of L(A).

The derivation of the distributions of L(A) seems out of reach. How-
ever, for good lower bounds of L(A) the densities will be given for its
diagonal elements, as well as the first two moments for the other ele-
ments. The latter result is achieved by applying an approximation of the
density of a product of beta random variables proposed by Fan (1991).

A first proxy of the parameters of the beta distributions may even be
computed from a single input-output table.

2 Properties of the Beta Distribution

Density of the standard beta distribution Be(r, s):

1
fx(z) = Bl S)xr_l(l —2)* Mo (z) forr s> 0,
where B(r, s) denotes the beta function (B(r,s) = %)

X ~ Be(r,s) = 1— X ~ Be(s,r)
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Moments:

o o r(r+1) _ px
N [ i R S RV
R rs _px (1 —px)
VaI‘(X)_O'X_MQ_(T+S)2(T+S+1>_ r+s+1 .
o 2(s—1)) o 2(1—2p)
E((X_M)>—N3—”2(T+S)(r+3+2)_u2m’

s >0 & s>

If r, s > 1, which will be an underlying parameter restriction in the paper,
then Var(X) < 1/12 and fx is unimodal with mode

_ r—1
Cr+s—2
myxy < Ux & s>T1.

mx < px,

Distribution of Y = (1 — X)~! and moments

The theorem on the density of a function ¢ of a random variable X yields

frly) = B(i ) <1 - $>H G)SH Li1,00) (¥);

orwithX=1—%:

Jr(y) = (1 —2)*fx(2) Lo (2).

Thus, the beta density of X is dampened by the factor (1 — x)? and
transferred to the domain [1, 00). The factor is decreasing with = € [0, 1].
The random variable Y/ :=Y — 1 = % has a beta distribution of the

second kind (Be*(r, s))(see Hartter 1987, p.162) with density

Frr() = (Br,s) 7' (y) 1+ 3) " L0 (4)-

It is known that for m,n € IN

m n

X ~ Be (575):777

I
33
<
=1
-+
=
=
N
I
\3

so that an F-density results for Z := Y’



Moments are derived as follows

B(Y) = Bg’(i,g)l) N rifll :1+3i1 g l—lux =1+£,
oy Br,s—=2) (r+s—-1)(r+s-2) r r
B0 = S e - () (s
Var(Y) = (§Y$2?8__1>2) = py (py — 1>s i 5’
and E(Y') =~ Var(Y') = (v + 1)%,

provided that s > 2. In the sequel, this assumption for the beta param-
eter s will be made, whenever Var(Y') or E(Y?) is mentioned. The mode
is given with

r+s _, r—1 1 r—1

= <
s+1 +s—|—1 1—myx s—1

my =

Taylor-approximation for moments of ¥ = (1 — X)!

(second order approximation at px, cf. Dudewicz, Mishra, (1988, p. 264))
2

E(Y) ~ g(px) +g"(ux)%x

1 1
< <1+ ! >§ (1+5)
1—px s(r+s+1) 1—pux s

™4
Var(Y) ~ (g’(,ux))%g( = 0% (1 + ;) > ] (1+pux),

whereby in the first line, the first inequality holds for pusz > 0, i.e. for
skewness to the right, which is a reasonable assumption for input coeffi-
cients. It is equivalent to s > r.

The figures show two beta densities X with corresponding trans-
formed distributions of Y = 1/(1 — X)) which will be relevant for the
densities of the diagonal coefficients of the Leontief inverse. Remarkable
is the skewness to the right of fx, which seems adequate for the great
number of very small input coefficients. A normal density does not seem
to fit this situation, even if truncated, because of its symmetry.

s—2

).



Densities of X and Y =1/(1 — X)

f(x) f(y)
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Figure 1: r=2,s =18 = ux =0.1

f(x)

f(y)
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X,y

Figure 2: r=4,s =16 = ux = 0.2




3 First Approximation of the Leontief In-
verse and its Moments

If all the elements A;; of the input matrix A have certain distributions,
it seems impossible to determine the densities of the elements L;; of the
Leontief inverse L(A), since they depend on a ratio of two determinants
which are sums of products of the A;;.

Therefore, an approximation of L(A) for a deterministic matrix A is
regarded which will allow an approximation of the distributions of its
diagonal elements and the moments of the other elements after returning
to random input coefficients.

The approximation by minors (Kogelschatz, 1978), which gives good
lower bounds for L, reads in its simplest form

. N Qij S
Vi and [; = A=) (= a) Y i,j with j # i.
For a random matrix A = (A;;) the associated Leontief inverse L. =
L(A) = (L;;) may in a first step be approximated in this way. If the
input coeflicients A;; are assumed to be independent random variables
with known moments E(A;;) =: pi; and Var(Ay) =: o7, then the Taylor-
approximation for moments yields:

E(Ly) =~ ! (l-l—ﬁafi)

lii =
1 —ay

L= pa 1= py
1
= Ni(1+Xo7) with Ay == ,
1 — pii
~ 1
Var(LM) ~ —012 = )\40'2

(1= i)t o
E(Ly) ~ i E(Lu) E(Ly;)
= 5 [)\n'(l + )\?ﬂi?i)] [)‘jj<1 + )‘gjgyzj)] :
The variance of a product of independent random variables (Mood,
Graybill, Boes, 1987, p.180)
Var(XY) = u3 Var(X) + p3% Var(Y) + Var(X) Var(Y)

is needed in the following:
Var(LiLj;) = (BE(Ly))" Var(Lig) + (B(Li))” Var(Ly;) + Var(Lg) Var(Lj;)

= AL+ X500)° 0% + MALonos + M1+ Mjop)?Mo)

737 19741 wWrhygr T jg 737
242 (\2 .2 | \2 2 2y2 2 2
> XA (N + A0 T N0,

5



and finally
Var(f/ij) = (E
~ 2 ~ ~
= (E(LU)) 0'27 + (M,?? + 0'37-) Var(Liiij)a
).

where p; 4+ 07 = E(A7;

)

(f/ij))QO'gj + M,L27 Var(l?,-,fjjj) + Var(lN},-,-ZN}jj)U?-
Correlations will be addressed later.

In the following, the simplified approximation by minors is studied
for random variables A;; ~ Be(ryj, sij).

For the diagonal elements of L the densities are given as for Y =
1/(1 — X)) above:

~ 1 1 1 rii—1 1 Sii—1 ~ ‘
S lia) = 2 Bl sn) (1 - Z) (Z) Lj1,00)(lii) V4.

Furthermore,

~ s .
E L” =1 “ > 1 — =
(Lii) =14 ——>1+ =

4
~ Var(Ay) <1 + ﬁ) ;

Sii

according to the Taylor series approximation in section 2.

For the off-diagonal elements of L the situation is complicated. The
distribution of Lj depends on a ratio and a product of beta random
variables. In the literature, several very complicated formulae can be
found, mainly for special cases of products (Johnson, Kotz, Balakrishnan
(1995, p. 256f)). A very good approximation of a product of beta random
variables, which is usually not beta distributed, was suggested by Fan
(1991, p.4045). By construction, it ensures exact first two moments and,
furthermore, performs very well in approximating higher moments as his
computations show.

Fan’s approximation theorem

If X; ~ Be(ry, s;), X; are independent random variables and Z = Hle X,
then Z has an approximate Be(R,S) distribution with true first two mo-
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ments, where

PACESY ¢ =)W=
ST -U? T T —U?
k
T T ri"'l
d U:= T:: .
o gri-i—si’ gn-l—si ri+ s+ 1

By the way, in the book by Johnson, Kotz, Balakrishnan (1995,
p. 262), where Fan’s result is reported, the formula for p has to be mul-
tiplied by (S — T'), where p and S correspond to R and U here. The
following interpretations result from the independence assumption:

v =T[Ex) = E2) T=T[B(X?) =B(2),

hence T — U? = Var(Z).
Obviously, T'= UV where V = Hle(ri +1)/(ri + i+ 1).

Fan’s method will now be applied to the approximation by minors
with random input coefficients A;; and Ly;, where Ay; ~ Be(ry;, s;;) with
Tij,S; > 1. In order to get some information about the distribution of
the off-diagonal elements of L;;, the denominator (1 — Ay)(1 — Aj;) =:
Zi; is considered first. It seems realistic to assume the diagonal input
coefficients (intrasectoral inputs) to be independent random variables.
As Z;; is a product of (1 — A;;) ~ Be(sy, i) and (1 — A;;) ~ Be(sjj,7j;)
it can be approximated by Z;; ~ Be(S;, Rij) with the same first two
moments using the notation from above with additional indices (i # j in
the following)

Uij (Uy; — Ty5) (1 —=Usj) (Uy — Tyj)
Sij: T.. — U2 ) Rij: T.. — [J2
1] 1% 1] i
with
Uij _ Sii Sjj and T%j _ Ul Sii + 1 Sjj + 1

. j .
’I““'-l-SM ’I“jj+8jj T¢¢+8M+1 Tjj+8jj+1

In the next step, the distribution of Yj; := 1/Z;; = 1/(1 — Z{j), where
Z{j = 1— Z;; with Z{j ~ Be(R;j, Sij), is given as that of Y :=1/(1— X)

above

1 1 Rij—l 1 Sij—f—l
o= e (1) () i
v () B(Ryj, Sij) Yij Yij 10) (81

7



The expected value of 1/ Zij is obtained as

1 Ri; 1+ Uy — 2V, 1 Ri;
E{—|=1+—Y—=...= 4 U =1+,
(Zij> Sij =1 2U;; — V(1 + Uy) = E(Zy) Sij
where Uj; E(Z,) and V;, > U,; for rgk, spre large. In this case,

E(1/Z;) > (= Uij)/ Uy) = 1/Uy; = 1/ E(Z;;). Furthermore,

( ) S@j—1>(1+5¢j—2>'

The first two moments of 1 / ; might deviate slightly from those of 1/Z;;,
because the reciprocal is taken of the approximation Z;; ;; instead of Z;.
However, since the latter random variables have equal first two moments,
this possibly minute error will be neglected.

In the last step, the numerator A of fjij = A;j/Z;; has to be taken
into account. The distribution of L;; which is a product of a beta and a
transformed approximate beta random variable will not be investigated
here. Evidently, no beta density can result since the domain of L;; is Ry.

However, the density of L;;, which is mainly concentrated on [0, 1],
may also be approximated by a suitable beta distribution (of the second
kind) with the same first two moments. For empirical input matrices A
the off-diagonal elements of L(A) are smaller than 1.

In the sequel, expected value and variance of Lw will be derived. As
before, Z;; is substituted by Z;;. Additionally, it is assumed that A;; and
Aii, Aj; are pairwise independent which may be questionable. The intra-
sectoral input coefficients A;;, A;; of different sectors have been supposed
to fulfil this requirement; A;; and A;; of the same sector (production
process) are probably expected to show a slight negative correlation, e. g.
for Dirichlet distributions of the column vectors used in the simulation
(see section 7). If this is neglected, the expected value of Ly; turns out
to be

E(Li;) = E(4;) E <2—U> = BE(4y) (1 + Sf; 1)
= Bly) (1 " Szjﬁ 1) (1 i 3.7‘.:31 1) = Bld) K

(rii + i) (rj; + 555)
B(A;)—— — B(A;;
> E(Ay) E(Z,) (Aij) S5




— B(4,) (1 + T—) (1 + ”—J) = B(Ay) ki

ii 844

Obviously, Eij has not only a greater mean but also greater variance than
A;;. This is shown by the usual computation of a variance

Var(Ly) = B(E%) ~ (B(Ly)) .

2
. 1 1
E(L?)=E|A;;-— | =E(A2)E| —
( Z]) < J Z@]) ( zg) (Z%)

R R
=E(A2) (1 - 1 Cl
( ”)( +5¢j—1)< +5¢j—2)

8 R;; Ri;
) = B(A 4 s
Var(Li;) = E(A};) (l-l— S, — 1> (1 + S, _2)

— (E(4y))? (1 + Sfi 1)2

Since
R;; R;; Sii — 1 Sii — 1
1 i (4 ij Y — K, 2U
+Sij—2 ( +S”—1) S,'j—2 JS,']'—Q
Sii— 1 ~
Val‘(Aw)KZﬁ > Var(Lij)
and

2
Var(Lj) > Var(Aij) (1 + RU > = Var(Aij) K%

Sij —1
Tii Ty ’ 2
> Va,r(Aij) |:(1 + S_> (1 + S_)‘| = Var(A,-j) kij
i Jj

which follows from the lower bound of E(L;;) mentioned above.

Both lower bounds for E(L;;) and Var(L;), respectively, differ from
the corresponding moments of A;; by augmenting factors which only

9



depend on the ratio of beta parameters r and s of the corresponding

diagonal elements. The factor for Var(L;;) is just obtained by squaring
the factor for E(L;;). Also the 3o-region will be extended by the latter
factor. For the values of the example in Figure 2, where u = 0.2 is realistic
for average diagonal elements A;; of input matrices with 10 to 15 sectors,

one would obtain F(L,;) > 1.604-E(A,;) and Var(L;;) > 2.574- Var(A,).

4 Proxies of Beta Parameters

After these theoretical considerations the question arises of how to esti-
mate the parameters r and s of the beta distributions within this model
for the input coefficients. Estimation from a time series is doubtful since
coefficients are changing over time for several reasons. Only input-output
tables based on fixed prices should be used. For estimation procedures of
the parameters r, s (see Johnson, Kotz, Balakrishnan (1995, p. 221-238))
and with special focus on skewness Moitra (1990).

Even from a single input matrix a first proxy for r, s may be given.
A practical proposal made by Bamberg (1976, p. 16) for the moments of
an apriori distribution in Bayesian estimation can be applied here. He
suggests the mode m as a proxy of p and asks for the greatest relevant
deviation d from p. According to the 3o-rule, which says that 99.7 %
of the probability of a normal density lies in the 3o-region and 89 %
according to Chebychev’s inequality for the least favorable distribution,
he suggests to take d/3 as a proxy of o. For unimodal beta densities this
probability will be close to that of the normal distribution.

For stochastic input coefficients one may modify this proposal as fol-
lows. Take the observed value a;; a) as expected value p;; of the distri-
bution of A;; and also as deviation d or b) as mode m;;. It is assumed
that a;; # 0 and that the probability that A;; exceeds 2u;; = pi; + 3045
may be neglected.

When r and s are integers, this probability (or that of a 3o-region)
can be computed by means of the well known relation between the dis-
tribution function F' of the Be(r, s) and that of the binomial distribution

n

F(z) = Z (Z)xk(l —2)" %  wheren=7r+s—1andz € [0,1].

k=r

For the beta distributions in the figures P(X > 2u) < 1.14 %.

10



The two equations for the moments of A;; read
/r’. .
= F(A) = —Y
Fij (Ai) vy + S0
2 fig (1 — i)
%ij ar( ”) Tij + Sij +1

which can be solved for 7;; and s;;:

2
Mg 1
L= (Y 1 — s) — (1 = 1.
i (Uij ) ( lu”) Hig o i (Nij )

Case a): Assume a;; = jt;; = 30;;. Then
rij =9 —10a; and s =ri;(1/a; — 1),
provided a;; # 0, else let a;; = 1073, e.g..
With respect to the skewness (to the right) of adequate beta densities
it might be preferred to take an assymetric, larger region, say, up to 3a;;

with a;; = 20;; in order to capture more of the probability mass. This
might fit better for very small a;; and would yield r;; = 4 — 5a,; instead.

In case b), which corresponds to the idea of maximum likelihood
estimation, a;; = m;; and again y,;; = 30,; are assumed. Then, according
to section 2,

’ 'rij T¢j+S¢j—2 Sij—l
’ul] K Tij — 1 Tij + Sij UMU + Ty — 1

and in the equations of a) u;; has to be substituted by pj;, a third un-
known.! In order to eliminate pi; it is proposed to compute 7;; and sy
according to a) and to insert these values into the last equation. With
the resulting s, instead of ju;; in the equations of a) solve this system
again for 7;; and s;;.

Example:

case a) a;; =0.1=r;; =8,s;; =72 and
Qjj = 0.2= rij = 7, Sij = 28
case b) a;; = 0.1 = pj; = 0.11 = rj; = 7.9, 5, = 62.9

a; =02 = ,u;j =0.22 = 7’23' = 6.8, ng —927.9.

!The prime is used here to distinguish case b) from case a) and does not refer to
the beta distribution of the second kind as in section 2.

11



Here, a;; = p; from a) is increased by about 10% to j;; in b), which
means that p;; exceeds m;; = a;; by this percentage. However, for the
densities in figure 1 and 2, u exceeds m by 80 % and 20 %, respectively.

With the larger region of 3a;; one obtains parameter proxies more
similar to those in the figures:

case a) a;; = 0.1 = r;; = 3.5,5;; = 31.5 and
Q5 = 0.2 = T = 3, Sij = 12
case b) a; = 0.1 = p;; = 0.132 = rj; = 3.34, 5, = 21.96

ay = 0.2 = pj; = 0.26 = rj; = 2.7, 5}, = 7.68.

ij
Now, p;; exceeds my; by about 30 %.

Proxies of the parameters of the density of f/i]’ (for i # j), if assumed
to be approximated by a beta distribution, are derived from its moments

~L . =4 _ _ _
fiij == E(Lij) = Rt Sy [E(Aij) Kij = pij Kij)

and

. nk(1 — pk
(6_L)2 — Var(Lw) o uz]( l’l”LJ) >

2 272
ij N Rij + Sz’j +17~ [vadAij)Kij B OinijJ

where, in square brackets, the simple approximations from section 3 are
given with

R.. /r’ 7"..
o= (1 50) = (1 5) (1 572)
J +Sij—1 +8n'—1 +3jj_1

With the same procedure just applied to A we obtain for L

Y R
Ry ~ <~_l£> (1—/5LiLj>—ﬂ¢Lj=ﬁ(Rij+Sij+1>(1—ﬁé>—ﬂé
1
Sij NR@'J' <IL~L_L - 1)

Example for case a)
Assuming a;; = a;; = 0.2 yields as above r; = rj; =7, s; = sj; = 28,

12



1) aj=p;=01 = 1ry;=28, Sij = 12, Var(A;;) = 0.001
= ik =0159, Ry ~TAl, S;~39.33, Var(Ly) ~ 0.0028

ii) a;=wi; =02 = ry=T1, sij = 28, Var(A;;) = 0.004
= fi; = 0.317, Ry ~5.83, S~ 12.55, Var(L;)~ 0.0112

When passing from A4;; to Lj, in the simple approximation the augment-
ing factors of p;; and o7}, resp., here are K;; = 1.586 and K7, = 2.515.

YR

Similarly, a beta distribution of the second kind with the same first
two moments can be chosen for approximating the density of L;; with
the advantage that both have the same domain. According to section 2
with Y/ = iij for i # j, for case a) 2

and e >
~ fij (g + 1
Var(Liy;) = JSU J_ 2
then have to be solved for the parameters R;;, Si; of the beta distribution

of the second kind which is supposed to yield a better density proxy of
Liji

~L ~ L
N i fii (1 + fi5)
Ry = (S = 1)~ fig; | 1+ =555
(Jij)
R}, ak (1 + ak
Sl{j ~ 1+—£=2+W>2.
i (Uij)

For the previous example (case a) with a; = a;; = 0.2

ai; =0.1 = R =10.57,5;; ~ 67.63
ai; =02 = R;j ~ 12.15, Slfj ~ 39.31.

5 Distribution of the Leontief Inverse

In this section, the distribution of the Leontief inverse of a stochastic
input matrix A = (A;;) will be derived. In order to apply the theorem on

2Here, the prime again refers to the beta distribution of the second kind.
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the density of functions of random variables, an open set of the domain of
A is needed which will be provided by the requirement 0 < A;; < 14, j.
The realizations of A = (A;;) and L = (L;;) are denoted by A = (a;;)
and L = (l;;), resp. Again, the dominant eigenvalue of any A has to be
assumed to be less than one, which is fulfilled, if all column sums of A
do not exceed one and at least one of them is less than one, since A is
irreducible. Assuming all of these sums smaller than one gives a suitable
open domain.

Thus, transforming A into IL(A) is described by a mapping
n mn\o n2 n2
9: U= x3.(5)" CRY, — V CRY,

where (S7)° is the interior of the standard simplex in R" and U,V are
open sets in R™. Furthermore, j(A) := L(A) — I has the range R,
because IL(A) > I, where I denotes the n x n identity matrix. A > 0
implies that I and, furthermore, L(A) is strictly increasing in every
coefficient if any element of A is augmented.

Obviously, g is a bijection which is continuously differentiable and

g~ !, as well. Hence, g is a diffeomorphism. The differentials are given by

dg (I = A)™!' =dL = L(dA)L
dg~' =d(l —L" =dA = A(dL)A,

both with range ]R’fJr

Hence, the theorem on the density of functions of random variables
can be applied and yields

Ju(L) = |det J(I — LY fa(I — L") for L— T € R,

and

fL(L) = |d€t J(AL)|_1fA(AL), for AL € U,

where J is the Jacobian matrix of the mapping ¢ and A; denotes the
input matrix A with image L(A).

Since g maps matrix A onto a matrix L the functional matrix J = g—f‘
has to be carefully defined. This is done by rearranging an n x n matrix
A into a n? x 1 column vector writing the second column of A underneath
the first and so forth (e.g., any1 := @12, 02,11 := a13,...). In the same
way L is transformed into a column vector . The n? x n* functional
matrix J consists of n? blocks of n x n submatrices .J;; given by (,‘9%

14



where [ and @’ are the i-th column of L and the j-th column of A, resp.,
for ¢,7 =1,...,n. Thus, the diagonal blocks .J; = g—(l] capture the direct

partial effects within sector i. The coefficients within each block .J;; are

. ol
]hk=£’},f01“h,k}=17...,n.
k

The Jacobian matrix (n? x n?) has the following form

8l¢j
Oany

J(AL) = < > = (linlg) = (jiL)iy = LT © L >0

and the non-vanishing determinant

[T = (LML = (LY = 7Y = = ALt = [(T=Ay) T (I=A)|" = |C]".
Hadamard’s inequality for positive definite matrices yields an upper bound
for |J|:

n

1C1 < TTes =11 =I5 =TT@115+ (1 = a5)*) = M'(Ap),
j=1 j=1 Jj=1
where M ~ [['_,(1—aj;)? < 1, if (I—AL) has a strictly column dominant
diagonal, i.e. 1 —a;; > Zi# a;;, and if furthermore 2a;; > a;; Vi. The
symbol @ denotes a vector a’ without the j-th component.

The Hadamard-Fischer inequality for (symmetric) positive definite
matrices (cf. Horn/Johnson 1985, p. 485) may give an improved bound:

n—1 2
cs .
|C|§cnnH(%— —— )ZMSM’.

=1 Ci+1,5+1

Hence |J 71| < M™, which leads to the following representation of the
density of the Leontief inverse for any distribution of A

L7l = L7 = |1 = AL fa(AL)

f]L(L) =
< M fa(l—L7Y) = M™fa(AL).
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6 Improved Approximation of Moments of
L and X

6.1 Taylor expansion

The moments of a function ¢ of a random variable X can be approxi-
mated by a (second order) Taylor expansion around px by (cf. Dudewicz,
Mishra (1988, p. 264), see section 2)

1

E(g(X)) = g (nx) + 59" (nx) 0% |

Var(g(X)) = (¢ (1x))" 0% -
These formulae can be generalized to n x n random matrices A and
g : R" — R"™ as follows

E(gi;(A)) = gij(p) + 1E [(vecAA)"HY (r)vecAA]

— N

= gij(p) + Sbr (HY (p)cov(B))

cov(g(A)) ~ J(u)cov(A) (J ()" .

where u, AA,J and H denote E(A), A — E(A), the Jacobian and the
Hessian of g, respectively. The formula with the trace follows from a
result on the expected value of a quadratic form (cf. Magnus, Neudecker,
1988, p. 247) and from E(AA) = 0.

The Taylor approximations of moments are now applied to the stochas-
tic input output-model with g : A — L with A* := E(A) and L :=
E(L). Recalling

J=L"®L or gliﬂ' =11

ir’sj
rs

the Hessian H () consists of n? blocks of symmetric, nonnegative n? x n?
matrices H%(p) with elements

hrjs,pq('“) = m = lﬁi«lé‘pl?jx + lZolgrlgj :
Hence, with Cov(L) = (L” ® L) cov(A) (L ® LT), 02, . := cov(Ays, Apy),
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= (I — A" ' dt and d* = B(D)
cov(Lyj, L) = Z [ Z lﬁplqkars -

8
E( ~ lu +5 Z Z lg“lgplgj + lgolgrlgj) Ors,pq
s Dp,q
1
E(X;) ~ 2 + 5 SN (a2 o,
7,8 »,q

Symmetry of C'ov and H facilitates computation. These 3 approxima-
tions often yield lower bounds since all derivatives of the Taylor expansion
are nonnegative.

The superscript # with [;;, d and = will be suppressed from now on. As-
suming A to be uncorrelated, which is done in the sequel since possible
(little negative) correlations within columns seem negligible, e.g. for
Dirichlet distributions of the column vectors used in the simulation (see
section 7), simplifies the moment proxies as follows

cov (Lij? ]Lhk) ~ Z lirlsjlhrlskazs >0 ,

Var (Li;) =~ ZUWZSJ)Q s s
E(Ly) = lj+ Y lilylaop,.

r,s
For these approximations, Cov(IL) > 0 and Cov(L) > 0, if A is irre-
ducible.

Furthermore, terms without diagonal elements of L might be neglected
without great loss of precision since l;; > [;; Vi, j by a theorem of Metzler
given the above assumption that A has column sums less than one. In
addition, 012Z > 0 seems to be realistic because a; > a;; is mainly ob-
served in emplrlcal input matrices. Hence, the following reduced smaller
sums may be satisfactory proxies:

cov (Lij, Lnk) & Liiljjlnilino?; + Inlislinlnnoig + lilhi 3 lsjlanor,

s

+ ljjljk Z lirlhrazj y

Var (]LU) (l“ljﬂ + lzzz Z lzjo-zs + l2 Z lz’r 'I‘] )
s#£j r#i

E (]L”) ~ lij + liiljjljiaizj + l” Z lsilst'izs + ljj Z lirle(sz .
s#] r#i

17



These crude proxies need only two rows and columns of L and Var(A)
saving n? — 4(n — 1) terms in the Taylor approximation of each of the
n*(n* + 1) moments of L.

These Taylor approximations of E(L) and cov(LL) will now be used
to derive proxies for the corresponding moments of the solution X of the
stochastic, static input output-model. Final demand D is assumed to
be uncorrelated with A and to be normalized by > d; = 1, which is no
restriction. With E(D) = d and E(X) = z for the solution based on
E(A) one obtains

Xi) =) ELy)ED) =ai+) (E(Ly) —1ly)d;
i=1 =1
and applying the Taylor proxy of E (L;;)

Xz) N X + Z T Z lirlsragsy

where z, is a d-weighted mean of row s in L, and l;.l, = gij gives the
change of row ¢ in L due to changes in A.

The double sum provides a proxy for the underestimation (negative
bias), if E(X;) is estimated by z;, the solution of the system based on
E(A). The bias is influenced by all elements of I and all variances of A,
which are weighted by the vector z. The bias increases with each o?2,.

Furthermore,
XD = a0 B+ S S lleo?
SF£1 T
> 1 + lz21 121 + Z 1‘3 l“l"—*iags + lSSliSUSQS)'

SF£1

The derivation of a proxy for Var(X;) is more complicated because of
the correlation within L.

Var(X;) = Var (Y LyD;) =Y cov(Li;Dj, Ly D)  with

j 4,
cov (Ly; Dy, Lig Dg) = cov (L, L) [cov (D;, Dy) + E (D;) E (Dy)]
+ E (]Ll]) E (]le) Ccov (Dj, Dk) .

Assuming D to be uncorrelated yields a simple Taylor approximation

cov (]Liij, ]Lika) =~ Z lsjlsk (djdk + 5jk 0' Z ZWO'TS + 5jklijlik 0'2(Dj) ,

18



and finally,

Var (X;) = Z(:{;z—l—z(ﬁ( )le Ts—l—Zl

Li [Z (25 + 15,0°(Ds)) 0 + 0*(Dy)

S

Y

> 12 [(22 + Bo?(D))ok + 0*(Dy)]

The proxy is now regarded for special variances of A and D

2
2 _ () 4nd 02D = (& _
0~-—(k> anda(Dj)—<k> for k=2 or 3,

which are used in the simulation for the case with observations as ex-
pected values. Then

Var(f(i) ~ Z <x +Zl (?) ) Zl (ars) + Zlfj(d—kj)Q
Var(X;) % [Z <x§ + %Z(lsde)Q) Z (livars)? + Z(lijdj)Q

J

Q

Upper bounds are derived as follows because of LA = L — I and Y y? <
> wi)?

1

Var(X;) < =

S (4 ) + T

s

B +1
< _F_‘”+§:%7 0ij) ]

k* 41

L J

The upper bounds only depend on row i of L, d, x and k, but no longer
(directly) on A. )
A simple but crude lower bound for Var(X;) is given with

Var(X;) > ki [(lud +Z iitis) (x +13 (lssd ) )]
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For the proxy of E(X;) an upper bound is found analogously:
E(X;) ~ x+ % Z T Z lirlsrafs
< it % > ( > lirars) (Z lsrars)
= it o Sl — )l — )

A crude lower bound is given with

E(X@) Z T; + %( Z xrlirlTTa"'Q"r + Z xsliilsia’zzs)

6.2 Inversion-approximation

A further approximation improves the simple approximation by minors,
which was introduced in section 3. It starts from the identity L(I—A) = [

which implies
1 .
li =1 - (1 +) likaki> Vi.

ki

Substituting /;; with the minor-proxy yields

- 1 1 Ak ki
L —ai < N (1—%@');1—%1@)

as a proxy from below. Similarly, it can be seen that

1
lz’j = 1_ ai; <l,’,’a¢j + Z lhhaihahj)
h#i,j

where proxies for [; and [, may be inserted to get l~w Or, less precise,

~ 1 Aip A
l. = a;p; + ).
Y (1 — a,,)(l — Cij) ( " hz;ﬁi:j 1-— QAph
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Another good proxy is given with

These approximations based on only one row and column of A and its
diagonal are considerably better than the minor-proxies based on a 2 x 2
submatrix.

If A is uncorrelated and (p;;) := E(A), proxies of the moments are
given with

E ( n) ~ <1 + >\n 1 + /\@2@ @2@ Z Akkﬂzkﬂkz)

k#i

ORI LICHTIRS s CH P S

h#i,j

where A\;; = (1 — py) ! Improvement can be achieved if \;; is increased
by (1 — pi;)202 due to Taylor.

In contrast to Taylor’s method, no knowledge of L(F(A)) at the ex-
pansion point is needed.

Since proxies for the variances of IL are complicated (see simpler prox-
ies in section 3), in the simulation it is assumed that A;; has a Beta
distribution A;; ~ Be(ry;,5;). Then, according to section 3, simple
approximating Beta distributions of the second kind have the following
variances:

var (1) = ) () =)

(81— 2) ’

and

. EB(Ly) (B(Ly) +1)
Var (]Li ) = .
’ (sij —2)
These proxies are used in the simulation with the inversion-approximation
(denoted there M2).
Furthermore, \; is then replaced by E (1/(1 — Ay)) = 147/ (si—1).

The moments of X then follow in a similar way as described above with
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Taylor.
J
and, if D is uncorrelated,
Var (Xz) = Z cov (]fiij7 IEzk) (djdk + 5jk 0'2(Dj>) + Z llzj UQ(Dj) )
gk J
Where, since lij ~ ln'ljjaij,

cov (]f;ij, lilk) ~E (]]:jj> E (]flkk> MgV ar (]Eu> )

if positive correlations within diag I as well as between diag I and A are
neglected, which underestimates Var(X).

7 Simulation

The simulation is based on German input output-data of the Federal
Statistical Office for 1998. Empirical input matrices are derived from
a database from year 0 such that (I — A%)z" = d° is fulfilled for this
reference system. It is assumed that these values of A° and d° represent
either a) expected values or b) modes of the underlying random variables
A and D which corresponds to maximum likelihood estimation. If there is
no other information, variances are assumed to be derivable by a 3o-rule.
The input coefficients a;; are taken i) as 30y, or, alternatively, as ii) 20;;.
In both versions it is assumed that an interval of length 60;; (ending with
i) 2a;; or ii) 3a;;) captures nearly the whole propability mass. Version ii)
seems to fit better to the asymmetric beta distributions, skewed to the
right, of the bulk of very small input coefficients.

Two types of approximation of I are applied: «) Taylor series and
B)inversion-approximation of each coefficient of L by only one corre-
sponding row and column of A. Approximations of E(IL) and cov(L),
and E(X) and cov(X) are deduced from the Jacobian and Hessian of the
mapping g. The results simplify considerably if correlations within A
and D are negligible, which seems realistic.

Crude probability regions for I and the solution x can be given, which
may be improved, if knowledge of the distribution types of A and D is
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available. Assumption of normality may cause difficulty with respect to
the requirement that (I — A) has a nonnegative inverse.

In a simulation it is assumed that the column vectors of A and normed
final demand D have independent Dirichlet distributions, or its compo-
nents Beta distributions Be(r, s) on [0,1]. It seems reasonable to start
with a multivariate standard beta distribution (Dirichlet-distribution (cf.
Johnson, Kotz, Balakrishnan, 2000) for each sector j since the input co-
efficients and the value added coefficient v; add up to one (columnwise).
Thus, this restriction may be taken into account. In particular, this would
be important for estimation procedures. If all v; are positive, then exis-
tence and non-negativity of L(A) are ensured according to Brauer/Solow.
This is a realistic assumption for all possible realizations of the random
matrix A.

Then, the marginal distributions of Y; = A, are standard beta dis-
tributions Be(r;, s; = R—r;), where R := Y, _ ry, and 7o is the first beta
parameter of v;,. Hence, u and o2 are given as before. Therefore, only

vy Tty Hily
vV Yi) =~ R T TR+1

has to be taken into account. Because of this negative correlation F(L;;)
is smaller than computed above under the assumption of pairwise un-
correlatedness. However, cou(Y;,Y;) is very small on the average. For
n sectors the average absolute covariance approximately amounts to
1/n*(R + 1) < 1/n3, which might be neglected in comparison to the

average F(L;;) ~ 1/n. This is done here.

Beta random variables are obtained with the BB-algorithm proposed
by Chen (cf. Johnson, Kotz, Balakrishnan, 1995, p. 216, with a misprint
(7Y instead of vV')). With these distributions no problem occurs with
invertibility, since it can be ensured that the dominant eigenvalue of A is
less than one. The density of A transformed by ¢ is theoretically derived
for any distribution and, in particular, applied to the beta distribution.
The parameters r and s in the simulation are computed from German
data assumed to be E(Y') (or mode(Y')), and Var(Y) derived by a 30-
(or 20)-rule. A simple approximation of I by minors suggests that the
coefficients of I may have Beta distributions (of the second kind). The-
oretical considerations show that this distribution type then should also
be appropriate for the solution X. This is confirmed by the simulations.
Furthermore, the two types of approximations of E(X) and Var(X) show
a good performance.
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The theoretically expected approximate, relatively narrow, 2c-regions
contain 90 — 95 % of the simulation results for most coefficients. For ver-
sion 2, taking into account the skewness to the right of the distribution
of A, here, it is assumed that the relation of 1 : 2 for left and right parts
(with respect to E(Y)) of the probability region for A may be transferred
to L as a proxy because its distributions are also skewed to the right. The
theoretically derived approximate densities of L and X mainly accord
with the histograms of the simulation. As a result, it may be possible
to do without simulations within this model framework.Further improve-
ment should be possible by implementing the inversion-approximation
from section 6.2.

8 Extensions

If final demand is not normed, then Gamma distributions for its compo-
nents might be assumed. For that case, a recent result on the product of

independent Beta and Gamma distributed random variables is expected
to be helpful (Nadarajah, Kotz, 2005, p.437).

Most of the methods and results more generally are applicable to
stochastic linear systems of equations, if the matrices have a dominant
diagonal which is often encountered in economics and (numerical) math-
ematics.
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A Appendix: Diagonal elements of the Leontief-
inverse

344
32
309
281
26
24
22
20
18
16
14
12
10

o N A O

Figure 3: (i,i)=(1,1), exact=1.06316697, arithmetic mean=1.05769370,
S(Qn_l):.00030499. M2 (inversion-approximation, blue line): esti-
mated expected value =1.06629872, estimated variance=.00026219,
75.00% in interval.  Taylor (red line): estimated expected value
=1.06377250, estimated variance=.00032571, &87.00% in inter-
val. Var.coeff.(simulation)=.016470,  Var.coeff.(M2)=.015185,
Var.coeff(Taylor)=.016965
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Figure 4: (i,i)=(2,2), exact=1.14310441, arithmetic mean=1.13967796,
S(2n—1):'00249099 M2: estimated expected value =1.14197183, esti-
mated variance=.00274387, 93.00% in interval. Taylor: estimated
expected value =1.14616170, estimated variance=.00318553, 94.50%
in interval.  Var.coeff.(simulation)=.043683, Var.coeff.(M2)=.045870,
Var.coeff(Taylor)=.049243
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Figure 5: (1,i)=(3,3), exact=1.37450546, arithmetic mean=1.39105082,
S(Qn_l):.02403603 . M2: estimated expected value =1.38874883, es-
timated variance=.03254323, 97.00% in interval. Taylor: estimated
expected value =1.39771263, estimated variance=.03347502, 97.00%
in interval.  Var.coeff.(simulation)=.111173, Var.coeff.(M2)=.129899,
Var.coeff(Taylor)=.130901
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Figure 6: (i,i)=(4,4), exact=1.48791139, arithmetic mean=1.52147896,
S(Qn_l):.06236211 . M2: estimated expected value =1.52729593, es-
timated variance=.07568236, 98.00% in interval. Taylor: estimated
expected value =1.53082818, estimated variance=.06501317, 95.00%
in interval.  Var.coeff.(simulation)=.163722, Var.coeff.(M2)=.180125,
Var.coeff(Taylor)=.166561
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Figure 7: (i,i)=(5,5), exact=1.46092907, arithmetic mean=1.47999187,
S(2n—1):'055271]‘8 . M2: estimated expected value =1.49312223, es-
timated variance=.06228505, 95.50% in interval. Taylor: estimated
expected value =1.49845880, estimated variance=.05504847, 93.50%
in interval.  Var.coeff.(simulation)=.158453, Var.coeff.(M2)=.167146,
Var.coeff(Taylor)=.156577
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Figure 8: (1,i)=(6,6), exact=1.40000966, arithmetic mean=1.41107149,
S(Qn_l):.04302302 . M2: estimated expected value =1.42364494, es-
timated variance=.04229164, 93.50% in interval. Taylor: estimated
expected value =1.42789508, estimated variance=.03902955, 91.50%
in interval.  Var.coeff.(simulation)=.146627, Var.coeff.(M2)=.144453,
Var.coeff(Taylor)=.138357

31



Figure 9: (1,i)=(7,7), exact=1.23369370, arithmetic mean=1.22373533,
S(2n—1):'00605759 . M2: estimated expected value =1.24279952, es-
timated variance=.00834130, 94.00% in interval. Taylor: estimated
expected value =1.24076088, estimated variance=.00850822, 94.50%
in interval.  Var.coeff.(simulation)=.063442, Var.coeff.(M2)=.073488,
Var.coeff(Taylor)=.074341
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Figure 10: (i,i)=(8,8), exact=1.03518597, arithmetic mean=1.03023664,
S?n_l):.00006946 . M2: estimated expected value =1.03187433, es-
timated variance=.00007263, 90.00% in interval. Taylor: estimated
expected value =1.03570382, estimated variance=.00007266, 73.50%
in interval.  Var.coeff.(simulation)=.008069, Var.coeff.(M2)=.008259,
Var.coeff(Taylor)=.008230
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Figure 11: (i,i)=(9,9), exact=1.21973733, arithmetic mean=1.21417974,
S(Qn_l):.00769641 . M2: estimated expected value =1.22179241, es-
timated variance=.00742207, 91.00% in interval. Taylor: estimated
expected value =1.22674757, estimated variance=.00889194, 92.00%
in interval.  Var.coeff.(simulation)=.072073, Var.coeff.(M2)=.070512,
Var.coeff( Taylor)=.076868
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Figure  12: (i,i)=(10,10), exact=1.44888249, arithmetic
mean=1.48359548, S(Qn_l):.04976908 . M2: estimated expected
value =1.47668964, estimated variance=.05607942, 95.50% in in-
terval.  Taylor: estimated expected value =1.48345906, estimated
variance=.06911659, 97.00% in interval. Var.coeff.(simulation)=.149995,
Var.coeff.(M2)=.160366, Var.coeff(Taylor)=.177221
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Figure  13: (i,i)=(11,11), exact=1.01674161, arithmetic
mean=1.01564277, S(Qn_l):.00002589 . M2: estimated expected
value =1.01625626, estimated variance=.00002656, 90.00% in in-
terval.  Taylor: estimated expected value =1.01682036, estimated
variance=.00002960, 88.50% in interval. Var.coeff.(simulation)=.004997,
Var.coeff.(M2)=.005071, Var.coeff(Taylor)=.005351
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Figure  14: (i,i)=(12,12), exact=1.08619042, arithmetic
mean=1.08194653, S(Qn_l):.00081617 . M2: estimated expected
value =1.08636468, estimated variance=.00092563, 93.00% in in-
terval.  Taylor: estimated expected value =1.08728893, estimated
variance=.00107131, 95.00% in interval. Var.coeff.(simulation)=.026339,
Var.coeff.(M2)=.028006, Var.coeff(Taylor)=.030103
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B Appendix: Off-diagonal elements of the
Leontief-inverse

Figure 15: (i,j)=(1,7), exact=.33423555, arithmetic mean=.37341845,
an_l):.01541727 . M2: estimated expected value =.36459644, es-
timated variance=.01477006, 96.00% in interval. Taylor: estimated
expected value =.33750631, estimated variance=.01699031, 95.50%
in interval. Var.coeff.(simulation)=.331680, Var.coeff.(M2) =.333333,
Var.coeff.(Taylor) =.386206
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Figure 16: (i,j)=(9,2), exact=.08855437, arithmetic mean=.08874559,
S?n_l):.00079986 . M2: estimated expected value =.08820121, es-
timated variance=.00086438, 95.50% in interval. Taylor: estimated
expected value =.09004951, estimated variance=.00059328, 94.50%
in interval. Var.coeff.(simulation)=.317886, Var.coeff.(M2) =.333333,
Var.coeff.(Taylor) =.270488
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C Appendix: Solution components of the
stochastic input output-model

0.08 0.1

Figure 17: i=1, exact=.03361670, arithmetic mean=.03404627,
S(zn_l)=.00008133 . M2: estimated expected value =.03469478, es-
timated variance=.00008486, 91.00% in interval. Taylor: estimated
expected value =.03393318, estimated variance=.00010412, 94.50%
in interval. Var.coeff.(simulation)=.264215, Var.coeff.(M2) =.265512,
Var.coeff.(Taylor) =.300704
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Figure 18: i=2, exact=.05990588, arithmetic mean=.06464508,
S(zn_l):.00017029 . M2: estimated expected value =.06036574, es-
timated variance=.00009513, 87.00% in interval. Taylor: estimated
expected value =.06110863, estimated variance=.00014022, 92.00%
in interval. Var.coeff.(simulation)=.201359, Var.coeff.(M2) =.161576,
Var.coeff.(Taylor) =.193776
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Figure 19: i=3, exact=.15492811, arithmetic mean=.17557625,
S(zn_l):.00173286 . M2: estimated expected value =.15747426, es-
timated variance=.00107107, 89.50% in interval. Taylor: estimated
expected value =.15901284, estimated variance=.00143497, 94.50%
in interval. Var.coeff.(simulation)=.236498, Var.coeff.(M2) =.207825,
Var.coeff.(Taylor) =.238226
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Figure 20: i=4, exact=.10824516, arithmetic mean=.14006088,
S(zn_l):.00270309 . M2: estimated expected value =.11327215, es-
timated variance=.00081649, 82.00% in interval. Taylor: estimated
expected value =.11293384, estimated variance=.00117877, 89.50%
in interval. Var.coeff.(simulation)=.370275, Var.coeff.(M2) =.252263,
Var.coeff.(Taylor) =.304012
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Figure 21: i=5, exact=.32824753, arithmetic mean=.33939668,
S(Zn_l):.01139405 . M2: estimated expected value =.33438189, es-
timated variance=.01239037, 94.00% in interval. Taylor: estimated
expected value =.33715145, estimated variance=.01273639, 94.00%
in interval. Var.coeff.(simulation)=.313721, Var.coeff.(M2) =.332889,
Var.coeff.(Taylor) =.334733
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Figure 22: i=6, exact=.12090179, arithmetic mean=.12779481,
S(zn_l):.00101556 . M2: estimated expected value =.12234544, es-
timated variance=.00096047, 93.50% in interval. Taylor: estimated
expected value =.12402966, estimated variance=.00112529, 93.50%
in interval. Var.coeff.(simulation)=.248743, Var.coeff.(M2) =.253311,
Var.coeff.(Taylor) =.270462
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Figure 23: i=7, exact=.07283257, arithmetic mean=.07228684,
S(zn_l):.00043234 . M2: estimated expected value =.07351924, es-
timated variance=.00041642, 90.00% in interval. Taylor: estimated
expected value =.07343453, estimated variance=.00043335, 90.50%
in interval. Var.coeff.(simulation)=.286924, Var.coeff.(M2) =.277565,
Var.coeff.(Taylor) =.283478
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Figure 24: i=8, exact=.10659005, arithmetic mean=.10979957,
S(zn_l):.00078298 . M2: estimated expected value =.10709090, es-
timated variance=.00078737, 93.00% in interval. Taylor: estimated
expected value =.10720800, estimated variance=.00081302, 93.00%
in interval. Var.coeff.(simulation)=.254206, Var.coeff.(M2) =.262022,
Var.coeff.(Taylor) =.265964
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Figure 25: i=9, exact=.30055556, arithmetic mean=.31937791,
S(zn_l):.00636517 . M2: estimated expected value =.30424774, es-
timated variance=.00523755, 93.00% in interval. Taylor: estimated
expected value =.30438346, estimated variance=.00560275, 94.00%
in interval. Var.coeff.(simulation)=.249179, Var.coeff.(M2) =.237868,
Var.coeff.(Taylor) =.245912
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Figure 26: i=10, exact=.42445949, arithmetic mean=.47700948,
S(zn_l):.01171086 . M2: estimated expected value =.42719243, es-
timated variance=.00742581, 90.50% in interval. Taylor: estimated
expected value =.43845616, estimated variance=.01119914, 97.00%
in interval. Var.coeff.(simulation)=.226297, Var.coeff.(M2) =.201720,
Var.coeff.(Taylor) =.241360

49



|
\
%

I \““'

0170,020.040.060.08 0.1 0.120.140.16 0.18t 0.2 0.220.240.26 0.28 0.3 0.320.34 0.36
- . -

Figure 27: i=11, exact=.12621878, arithmetic mean=.12635430,
S(zn_l):.00132576 . M2: estimated expected value =.12648105, es-
timated variance=.00151695, 93.50% in interval. Taylor: estimated
expected value =.12641081, estimated variance=.00151963, 94.50%
in interval. Var.coeff.(simulation)=.287444, Var.coeff.(M2) =.307936,
Var.coeff.(Taylor) =.308379
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Figure 28: i=12, exact=.12617985, arithmetic mean=.12710113,
S(zn_l):.00121609 . M2: estimated expected value =.12593797, es-
timated variance=.00117813, 92.00% in interval. Taylor: estimated
expected value =.12686433, estimated variance=.00119775, 91.50%
in interval. Var.coeff.(simulation)=.273681, Var.coeff.(M2) =.272546,
Var.coeff.(Taylor) =.272799
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