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Innovation Without Magic Bullets

1 Introduction

In much of the literature studying the linkage between technological change

and the environment, we assume the possibility of a ’clean’ technology or ’en-

vironmental backstop’ that will solve the pollution problem once and for all

[2, 8]. This assumption of a ’magic bullet’ constitutes a very productive mod-

eling shortcut that has allowed the formulation of novel results on the optimal

timing of R&D [for example 2, 18], on the subtle links between R&D policy

and pollution control [17, 1] and other relevant issues. In practice, however,

those technologies that are developed and adopted to provide a solution to an

existing pollution problem themselves commonly involve the production of new

pollutants. In time, therefore, these new technologies require the development

of a new solution. Two examples of many are chlorofluorocarbons (CFCs) and

carbon dioxide (CO2). CFCs are a pollutant blamed for the depletion of the

ozone layer. Their introduction resulted from the search for a substitute for

poisonous refrigerants. After their effective ban by the Montreal Protocol new

substitutes (e.g. HCFC-123) have been developed that are suspected to cause

cancer and decay into toxic substances such as trifluoroacetic acid. CO2 is a

major greenhouse gas accumulating in the atmosphere due to fossil fuel based

energy production. The primary substitute, nuclear power, generates radioac-

tive waste with substantial half-life periods. Modeling R&D as the successful

quest for a ’magic bullet’ may therefore not be a very realistic depiction of what

is achievable through R&D.

If new technologies are imperfect in the sense that new technologies will
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themselves frequently generate new technology-specific types of pollutants that

will accumulate in the environment, then this may have important implications

for environmental R&D. In such a setting, R&D will consist of a sequence of

innovative steps taken against the background of an evolving pollution situation

that is itself a product of previous technological choices.

In order to provide some initial insights into an optimal pollution and R&D

policy without ’magic bullets’, we construct a simple model for studying poten-

tially infinite sequences of innovation targeted at solving stock pollution prob-

lems. The model consists of a production sector producing a single good up

to a fixed output constraint. Production generates a technology-specific stock

pollutant. Damages are convex in each pollutant and additive across pollutants.

At any given time, a new technology with a zero stock of existing pollution can

be provided at a fixed cost. In this set-up, we study the optimal R&D sequence

and pollution stock dynamics.

Our approach is closely related to the literature on stock pollution (starting

with [14]) and optimal ”green” R&D. [17] study the problem of a stock pollutant

and the conditions under which a switch to a perfect backstop should be made.

[6] consider the optimal transition to a perfect backstop technology in terms of

the stock of production capacity. [1] examines the interplay between abatement

policies and innovation policies for a stock pollutant when a clean technology can

be generated through a stochastic R&D process. In related papers developed

in the context of non-renewable resources, [9] study the impact of backstops of

different quality on the optimal timing of adoption and the path of resource
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depletion while [18] analyze the optimal timing of the switch to a backstop

technology when the cost of that technology decreases with the amount of R&D

carried out. [19] investigate the impact of such continuous technological change

on the growth paths of economies.

While focusing on similar questions as these papers, our modeling context

differs on account of the assumption that no single innovation ever fully resolves

the stock pollution problem. This implies that we need to consider not just the

next technology to be phased in, but entire technology trajectories instead. We

also differ in other areas: In contrast to [1], R&D in our model is deterministic;

however, the technology is not yet available as in [6] and needs to be acquired

at a cost. In contrast to [18, 19], technological progress in this model is discrete

rather than continuous. While we initially assume a time-invariant fixed cost

of R&D, we also consider - in the spirit of [18] - the implications of the cost of

R&D decreasing in the stock of R&D already carried out on the optimal timing

of R&D.

Our contributions take the form of a number of propositions and a method-

ological novelty. As our main result, we characterize the optimal R&D path

as involving a finite sequence of innovations carried out at increasing interval

length. Not more than one technology is developed at any single point in time,

so that there is no front-loading of the technology portfolio. In short, therefore,

the finite portfolio of production technologies is built up over time at decreasing

speed. Secondly, we confirm the ’overshooting’ results observed by [6] in that

excess stock of pollution is built up early in the planning period. Thirdly, except
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for finite adjustment periods, the optimal pollution policy involves the joint use

of several production technologies rather than full replacement of technologies of

earlier vintage as observed elsewhere. Fourthly, positive feedback between R&D

activities and the cost of R&D leads to initiating all R&D activities earlier sim-

ilar to [18]. Lastly, on the methodological side we introduce recent results from

multi-stage dynamic optimization theory [11] into the literature on R&D policy.

The structure of the paper is as follows: We present the simple model in

section 2, and derive the optimal pollution policy in section 3. In section 4 we

study the optimal R&D sequence, derive the main results and demonstrate the

empirical relevance of the policy. We discuss alternative specifications of the

R&D process and the effects of more general types of technologies in section 5.

In section 6 we conclude.

2 The Model

The model consists of two fundamental components, one describing the nature

of the stock pollution problem and the other the process of innovation. Jointly,

they describe the social planner’s problem of developing a simultaneous pollution

and innovation policy.

The environmental side of our model consists of standard pollution stock

dynamics common in this literature (for example [6, 1]).1 At time t, there are

n (t) different potential pollutants i ∈ {1, ..., n (t)} with associated stock levels

1See [15] for alternative specifications.
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Si (t) with stock dynamics of the type:

Ṡi(t) = αiqi(t)− δiSi(t) (1)

with αi denoting the rate of accumulation on the basis of emissions of volume

qi and δi denoting the rate of decay in the stock of pollutant i.

Pollutants are technology-specific and, in the interest of tractability, do not

interact with each other. Hence, i denotes both the technology and the sin-

gle pollutant generated by this technology. The pollution damage function is

additively separable in the square of individual stocks of pollutants such that

pollution damage D
(
S1(t), ..., Sn(t)(t)

)
caused by stocks S1(t) to Sn(t)(t) at time

t is

D(S1(t), ..., Sn(t)(t)) =
n(t)∑
i=1

di

2
Si(t)2 (2)

with di denoting the marginal damage coefficient of pollutant i.

The general form of the instantaneous welfare from production at time t is

assumed to be additively separable

W (t) =
n(t)∑
i=1

[
qi (t)β − ci (qi, t)−

di

2
Si(t)2

]
(3)

with ci (qi, t) denoting the production cost at time t given output qi and

0 < β ≤ 1. Given the general form of (3), there are at least five reasons for con-

ducting R&D in such a setting: (1) Cost reduction [16], thus targeting ci (qi, t));

(2) improvements in the output-emission ratio [e.g. 3, 5] through searching for

products with lower αi; (3) amelioration of environmental damages through find-

ing less harmful technologies, implying a lower di, or less persistent pollutants,

implying a higher δi; (4) technological diversification that increases the variety
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of consumer goods on account of new technologies [4] if β < 1 and marginal

welfare is hence decreasing in the output of each individual product; and finally

(5) technological diversification that increases the variety of existing pollutants

because damage is convex in each individual pollution stock but additive across

stocks.

All of the reasons mentioned above individually provide positive incentives

for resources to be devoted to R&D. Most relevant for a policy problem involving

imperfect technologies is the last setting where diversification in pollutants is

the primary reason for devoting resources to R&D. Therefore, we design a model

that strips out all these other well established drivers before exploring the im-

plications of additional factors in section 6. The mechanism underpinning R&D

investments then is similar in spirit to the well-known product differentiation

models of the ”horizontal innovation” type [7], with one important difference:

Instead of increases in the variety of products, it is increases in the variety of

pollutants that generates welfare gains by decreasing marginal damages asso-

ciated with production. In this sense, our paper models a process of ”green”

horizontal innovation of pollution differentiation.

As a consequence, the model that follows contains some important simplifi-

cations: Technologies and pollutants respectively are assumed to be symmetric

in terms of rate of accumulation αi = α, rate of decay δi = δ, and the marginal

damage coefficient di = d, thus eliminating R&D motives (2) and (3). Costs

are assumed symmetric and zero such that ci (qi, t) = 0, eliminating motive (1).

In order to strip out product differentiation gains (4), technologies are perfect
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substitutes (β = 1) and symmetric in terms of net marginal benefits which are

normalized to 1 per unit of output. Aggregate output is exogenously bounded

from above as in [1]. This is an indirect way to take capital stock constraints

into account.

n(t)∑
i=1

qi(t) ≤ 1 (4)

0 ≤ qi(t) ≤ 1 ,∀i ∈ {1, ..., n (t)} (5)

The symmetry of the technologies in terms of the production-pollution side of

the model then simplifies the instantaneous welfare function (3) to

W (t) =
n(t)∑
i=1

[
qi(t)−

d

2
Si(t)2

]
(6)

in which technologies now differ in terms of vintage only.

Innovation is modeled in the simplest fashion as a deterministic process: At

any time t, society can choose to spend resources R (t) which will make available

instantaneously and with certainty the n + 1st technology. Call this point in

time tn+1. We also allow for the development of more than one technology at

the same point in time. In this case tn+1 and tn+2 coincide. The number of

technologies n(t) available for production at t therefore depends on the sequence

of past investments {t1, ..., tn}. All new technologies start with an initial stock

of pollution Sn (tn) = 0 and can at once be used at any level of intensity. We

therefore abstract from questions about the optimal accumulation of technology

specific capital which has been studied by [6]. For convenience, we assume

initially that the current cost of R&D is independent of time such that R (t) = R
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and that at the beginning of the planning period, one technology is available

such that n (0) = 1. Furthermore, we assume that there is an arbitrarily large

but finite number of technologies M that can possibly be developed. One can

think of a finite pool of ideas to solve a particular problem.

The social planner’s problem is to maximize net welfare from production over

an infinite time horizon, subject to the effects of stock pollution and subject to

the deterministic and instantaneous R&D process. Its choice variables are on the

one hand the production intensities qi (t) of the currently available technologies

i ∈ {1, ..., n (t)} and on the other hand, the timing of R&D activities {t2, t3...}

that expand the set of available technologies n (t) from n (0) = 1 up to a finite

N ≤ M that is also endogenously determined. The problem is then

max
{qi(t)},{t2,t3,...,tN},{N}

=
∫ t2

0

e−rt

[(
q1 −

d

2
S2

1

)]
dt− e−rt2R

+
∫ t3

t2

e−rt

[
2∑

i=1

(
qi −

d

2
S2

i

)]
dt− e−rt3R

+ . . .

+
∫ ∞

tN

e−rt

[
N∑

i=1

(
qi −

d

2
S2

i

)]
dt (7)

subject to conditions (1), (4), (5) and the transversality condition

lim
t→∞

H∗
N (t) = 0. (8)

To sum up, the nature of the planner’s problem describes a situation in

which the choice of pollution policy and R&D policy are linked. This is be-

cause the past history of R&D determines the planner’s degrees of freedom in

allocating production shares to different technologies. The solution strategy
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involves separating the problems into an optimal pollution policy given a num-

ber of technologies and the optimal R&D policy that determines the number of

technologies that should be available at any given point in time.

3 The Optimal Pollution Policy

The optimal pollution policy between any two innovation events is a standard

deterministic Markov-process where the number of state variables equals the

number of available technologies. Conditional on this number and the pollution

stocks at the beginning of the considered planning period the optimal policy can

be derived. This is done in this section while the optimal R&D policy is studied

in Section 4. Note that while studying the optimal pollution policy the number

of technologies remains fixed at n = n(ti) for all t ∈ [ti, ti+1], i = {1, ..., N},

where t1 = 0 is the arrival time of the first (free) technology.

Given the number of technologies n and their pollution stock levels Si (t),

the Hamiltonian of this problem is

H =e−rtW (t) +
n∑

i=1

[µi(t) (αqi(t)− δSi(t))] + e−rtκn(t)

(
1−

n∑
i=1

qi(t)

)

where µi is the shadow price of pollution stock Si and κn is the shadow price

of the output constraint (4). The corresponding first order conditions are

∂H

∂qi
= e−rt + αµi(t)− e−rtκn(t) = 0 (9)

−∂H

∂Si
= e−rtdSi(t) + δµi(t) = µ̇i. (10)

Condition (9) requires that the present value of the marginal benefits of
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production equals the sum of marginal future damages and shadow price of the

capacity constraint, which is the present value of the opportunity costs of not

allocating more output to another technology. Note that µ < 0 while κn ≥ 0.

(9) gives rise to the following switching function

σi(t) = αµi(t) + e−rt[1− κn(t)]


< 0 , qi(t) = 0

= 0 , qi(t) = q∗i (t)

> 0 , qi(t) = 1

(11)

There are three relevant cases to be considered: (a) the singular case where

all pollution stocks will be symmetric, (b) a non-singular case where one technol-

ogy has initially a zero stock while stocks of other technologies are at the same

positive level and (c) a non-singular case where one technology has initially a

zero pollution stock and there are different positive stock levels. This selection

is exhaustive because new technologies always start with a zero pollution stock.

Case (a) applies before the first innovation as well as after pollution stocks of

existing technologies have converged. If innovation occurs while the economy is

in an (a) phase, case (b) is relevant. However, if the economy is in phase (b) or

(c) when innovation occurs, (c) is appropriate.

(a) The Singular Solution

Technologies for which the switching function (11) is zero

σi(t) = 0 (12)

are on a singular path. Observe that, due to (9) and (10), the switching

function is zero for more than one technology only if their stocks are symmetric.
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The following shadow price dynamics apply to all technologies on a singular

path

µi(t) =
e−rt

α
(κn(t)− 1) (13)

µ̇i(t) = −e−rt

α
[r (κn(t)− 1)− κ̇n(t)] . (14)

Three relevant cases are considered:2

Case 1: κn = 0 and κ̇n = 0

Case 2: κn > 0 and κ̇n = 0

Case 3: κn > 0 and κ̇n 6= 0

Case 1

Here, supply falls short of the fixed unit production capacity and the constraint

(4) is not binding (κn = 0). Using the first order condition (10) and the shadow

price dynamics (13) and (14) one gets

Si(t) =
r + δ

αd
(15)

qi(t) =
δ(r + δ)

α2d
. (16)

This is a steady state that is ”incomplete” in the sense that the marginal damage

of pollution outweighs the marginal benefit of production before the capacity

constraint becomes binding. A higher discount rate, lower persistence of pol-

lution, lower emission intensity and lower marginal damages increase output
2These are the relevant cases because κn can not become negative in this problem.
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and stock levels of the incomplete steady state. Both, equilibrium output and

pollution stock of technologies are independent of the number of technologies.

However, the condition for this steady state to exist

n
δ(r + δ)

α2d
≤ 1, (17)

which follows from (16) and (4), is a function of n. For each set of exoge-

nous parameters thus, there is an upper bound of n above which the incomplete

steady state is not feasible.

Case 2

This is the complete steady state as the demand constraint (4) is binding

(κn > 0) while the corresponding shadow price is constant (κ̇n = 0). Again,

using (10), (13) and (14) one gets by imposing symmetry

Si(t) =
α

δn
(18)

qi(t) =
1
n

. (19)

Equilibrium output is completely determined by the number of available

technologies. The steady state pollution stocks are a function of the pollution

intensity α, the depreciation rate of pollution δ and the number of technologies.

The discount rate r and the slope of the damage function d do not affect the

steady state. The complete steady state is feasible if and only if

n
δ(r + δ)

α2d
> 1 (20)

holds, since κn > 0. Note, that (17) and (20) are mutually exclusive and

exhaustive.
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Case 3

Supply is at full capacity (κn > 0) but the shadow price of a marginal increase

of the production capacity is changing. Case 3 is therefore not a steady state.

From (1) and by imposing symmetry one gets

Si(t) =
α

δn
− α

δn
e−δt (21)

qi(t) =
1
n

(22)

This is the most rapid approach path to a steady state when all technologies

have equal initial pollution stocks. In t = 0 the economy has to be in this case

because by assumption n(0) = 1.3 As stocks accumulate according to (21),

the economy either reaches the incomplete steady state (Case 1) or approaches

the complete steady state (Case 2). Conditions (17) and (20) determine which

steady state is relevant.

(b) Innovation with Symmetric Stocks

So far only situations where all technologies have the same pollution stock were

analyzed. However, if innovation of k technologies occurs at some point in time

tn > 0 this is no longer the case. While the incumbent technologies {1, ..., n−k}

have already accumulated some stock, that of new ones {n−k, ..., n} is still zero.

Hence, pollution stocks and their respective shadow prices differ across new and

established technologies. Here we will assume that this is the first innovation at

some strictly positive point in time. However, it will be shown later, that the
3The same holds for n(0) > 1. Since for all i ∈ {1, ..., n(0)} it holds that Si(0) = 0.
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analysis also applies to all subsequent sequences of innovation.

Si(tn) =
α

δ(n− k)
− α

δ(n− k)
e−δtn , i = 1, ..., n− k (23)

Sj(tn) = 0 , j = n− k + 1, ..., n (24)

Here, the singular condition (12) cannot hold for all technologies simulta-

neously but only for one of the two sets of technologies. Since Si(tn) > Sj(tn)

and therefore µi(tn) < µj(tn) it has to hold that σi(tn) < σj(tn). Due to (4),

(12) can only hold for the k new technologies while for all n−k old technologies

σi(tn) < 0 and hence

qi(t) = 0 ,∀t ∈
[
tn, t̂n

]
, i = 1, ..., n− 1 (25)

qj(t) =
1
k

,∀t ∈
[
tn, t̂n

]
(26)

This is the most rapid approach path to a situation where pollution stocks

of all technologies are equal. The corresponding stock dynamics are

Si(t) = Si(tn)e−δ(t−tn) ,∀t ∈
[
tn, t̂n

]
(27)

Sj(t) =
α

δk
− α

δk
e−δ(t−tn) ,∀t ∈

[
tn, t̂n

]
(28)

where t̂n is the point in time where Si(t̂n) = Sj(t̂n). Using (27) and (28)

the point of convergence is at

t̂n = tn +
1
δ

ln
[
δk

α
Si(tn) + 1

]
. (29)

From t̂n until the next innovation all technologies are used at equal shares

and stocks grow according to the following ’Case 3’-process

Sl(t) =
α

δn
− α

δn
e−δ(t−t̄n) , t > t̂n, l = 1, ..., n. (30)
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The virtual starting point of this process t̄n is determined by

Sl(t̂n) = Si(t̂n) , i = 1, ..., n− 1, l = 1, ..., n (31)

which yields

t̄n = 0. (32)

Hence, the path of the pollution stock after innovation and convergence (30)

is exactly the same as the one were all n technologies are available at t = 0

(21). Subsequent innovations can therefore be analyzed by exactly the same

procedure substituting in the respective new values for n and k. This, however,

hinges on the condition that innovation occurs after convergence has occurred.

The alternative case is analyzed next.

(c) Innovation with Asymmetric Stocks

Assume innovation occurs at tn ∈ {tn−1, t̂n−1} where pollution stocks of tech-

nologies {1, ..., n− k} have not yet converged. Again, it is optimal to follow the

most rapid approach path, i.e.

qi(t) = 0 ,∀t ∈
[
tn, t̂n

]
, i = 1, ..., n− k (33)

qn(t) =
1
k

,∀t ∈
[
tn, t̂n

]
, i = n− k + 1, ..., n. (34)

Analog to the procedure used to derive t̂n it is possible to get the point in

time where the stocks of technologies n− k and {n− k + 1, ..., n} converge.

t̂n = tn +
1
δ

ln
[
δk

α
Si(tn) + 1

]
(35)
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Whether or not this case actually occurs depends on the optimal timing of

R&D. This is analyzed in the next section.

4 The Optimal Timing of R&D

Given the optimal contingent pollution policies derived in the previous section,

the social planner faces the problem at which points in time to invest into R&D

and thereby buy a new technology with a zero pollution stock.

The following analysis is based on recent results on multi-stage dynamic

optimization techniques derived by [11]. Given the initial endowment of n(0) = 1

technologies the optimization problem is as follows

max
{t2,t3,...,tN},{N}

=
∫ t2

0

e−rt

[
q∗1 −

d

2
S2

1

]
dt− e−rt2R

+
∫ t3

t2

e−rt

[
2∑

i=1

(
q∗i −

d

2
S2

i

)]
dt− e−rt3R

+ . . .

+
∫ ∞

tN

e−rt

[
N∑

i=1

(
q∗i −

d

2
S2

i

)]
dt (36)

where asterisks indicate optimal values, subject to (1), (4) and (8).

The corresponding Hamiltonian for each stage, where n technologies already

exist and given the optimal pollution policy, is

H∗
n ≡

n∑
i=1

[
e−rt

(
q∗i −

d

2
S2

i

)
+ µi(αq∗i − δSi)

]
, n = 1, ..., N. (37)

Asterisks indicate optimal values. We use the necessary conditions for multi-

ple stage dynamic optimization problems established by [11]. Given the optimal
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pollution policies two additional conditions4 determine the optimal instant t∗n+1

to undertake R&D in order to develop the n+1st technology. The first condition

is that

µ∗i (t
∗
n+1) = µ̌∗i (t

∗
n+1) , i = 1, ..., n. (38)

where µ∗i (t
∗
n+1) is the shadow price of stock i at t∗n+1 with n technologies

while µ̌∗i (t
∗
n+1) is the shadow price of the same stock with n + 1 technologies.

The second condition is that

N−1∑
n=1

{[
H∗

n

(
t∗n+1

)
+ e−rt∗n+1rR−H∗

n+1

(
t∗n+1

)]
δtn+1

}
≤ 0 (39)

for any admissible perturbation δtn+1 in the innovation time t∗n+1. This

yields an R&D arbitrage equation of the form (proof see appendix)

rR = α

[
µ̌∗n+1

(
t∗n+1

)
q̌∗n+1

(
t∗n+1

)
−

n∑
i=1

µ∗i
(
t∗n+1

)
q∗i
(
t∗n+1

)]
ert∗n+1 . (40)

Hence, the optimal time to innovate is when the marginal gain of waiting (the

left hand side) equals the marginal cost of doing so (the right hand side). Shadow

prices and optimal quantities differ contingent on whether innovation occurs

during the transition period or when all technologies are used simultaneously.

In the former case q∗1 = ... = q∗n−k = 0, q∗n−k+1 = ... = q∗n = 1/k and µ∗n−k+1 =

... = µ∗n, where k is the number of technologies developed at t∗n, while in the

latter q∗1 = ... = q∗n = 1/n and µ∗1 = ... = µ∗n. In both cases (40) can be rewritten

as

rR = α
[
µ̌∗n+1

(
t∗n+1

)
− µ∗n

(
t∗n+1

)]
ert∗n+1 , n = 1, ..., N − 1 (41)

4Condition (38) in our paper is a simplified version of (21) in [11]. This is possible because

the costs of R&D are independent of the pollution stock in our model.
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using (26) which states that after innovation of a single technology at t∗n+1

its output is at full capacity (q̌∗n+1 = 1). Hence, the optimal timing of R&D

depends only on the shadow prices of the new (µ∗n+1) and of the most recent

active (µ∗n) technology. The latter has a pollution stock that is a lower bound

to all stocks of technologies available prior to innovation.

We now establish the first four key propositions regarding the optimal inno-

vation and pollution policy.

Proposition 1

Innovation is sequential. At most one technology is developed at any point in

time.

If more than one technology is developed at the same instant, (41) would

also have to hold for technologies n + 1 and n + 2. However, by symmetry their

shadow prices have to be the same at the instant they are developed. Hence,

µ∗n+2

(
t∗n+1

)
− µ∗n+1

(
t∗n+1

)
= 0 and therefore (41) can not hold for more than

one new technology at each point in time unless innovation is costless (R = 0)

or discounting nonexistent (r = 0).

The shadow prices can be calculated given the optimal dynamics of pollution

stocks derived above (see appendix). Substituting them into (41) yields the
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following condition for the optimal time of innovation

rR =
αd

r + 2δ

(
S∗n
(
t∗n+1

)
+

α

δ

)[
1−

(
δ

α
S∗n
(
t∗n+1

)
+ 1
)− r+2δ

δ

]

− α2d

δ(r + δ)

[
1−

(
δ

α
S∗n
(
t∗n+1

)
+ 1
)− r+δ

δ

]
. (42)

Figure 1: Optimal pollution policy and R&D sequence (N=3 )

Note, that time enters only via the pollution stock of the most recent tech-

nology n. Hence, there is a constant threshold level S̄ = S∗n
(
t∗n+1

)
that triggers

innovation. Such an S̄ exists for all relevant parameter values, since the right

hand side is monotonic in S∗n, is zero for S∗n = 0 and approaches infinity for

S∗n → +∞, while the right hand side has a finite and non-negative value. Some-
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what surprisingly, only the pollution stock of the most recent technology is

relevant for the timing of innovation. Aggregate pollution in the economy and

all other stocks do not appear in (42). The intuition is the following. Stocks

are only relevant as far as they indicate marginal changes in future damage

of additional emissions (expressed by shadow prices). Hence, only stocks of

technologies actually in use prior to innovation are relevant. Due to symmetry,

technologies are only used simultaneously, when their stocks are also symmetric.

Additive separability of damages across technologies (2) together with symme-

try ensures that shadow prices are equal across all technologies used at the

same time. Hence, the policy maker can restrict attention to the stock of the

most recent technology for the purpose of determining R&D (see the step from

(40) to (41)). Moreover, the threshold pollution stock S̄ that triggers R&D

is constant. All technologies in use prior to innovation have the same shadow

prices. Since the aggregate output constraint is always binding prior to inno-

vation, the number of technologies engaged in production does not affect the

weighted sum of marginal future damages
∑n

i=1 µ∗i
(
t∗n+1

)
q∗i
(
t∗n+1

)
. Further-

more, all new technologies are identical and equally costly. Only the shadow

price of the technologies is dependent on time. Since the problem is a Markov-

process, this dependence is perfectly explained by the corresponding pollution

stocks. Hence, neither time nor the number of technologies already available

directly affect the optimal timing of R&D.

In Figure 1 the threshold S̄ is given by the dotted horizontal line. The

dashed horizontal lines indicate the steady state levels for n = 1, n = 2 and
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n = 3. While the actual equilibrium stocks are represented by bold lines, the

fine (solid) lines are the approach paths to the steady states given 1, 2 or 3

technologies, respectively. Note that the approach path for the first technology

(S1 = α
δ (1− e−δt)) also indicates the evolution of the aggregate stock of pollu-

tion.

Proposition 2

Innovation occurs only when all available technologies are used simultaneously.

The threshold level is the same for innovation to occur on or off the singular

path (see above). Hence, innovation off the singular path is impossible with

fixed costs of R&D. The reason is that the system is off the singular path only

during the process of stock convergence following an innovation and then stocks

are by definition below the trigger level. This has the interesting implication

that the aggregate pollution stock of the economy is twice (n-times) as high

when the third (n + 1st) technology is developed than it was when the second

arrived. However, what matters for the optimal timing are changes in marginal

future damages rather than aggregate stocks. Due to the additive separability

of damages across technologies, the two concepts are not the same.

Proposition 3

The number of technologies developed is finite and the entire portfolio is used in

the long run. Innovation is spread over time with increasing intervals between
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successive innovations.

By comparing S̄ to the pollution stock in the complete steady state (18)

it is apparent that eventually innovation ceases as the complete steady state

level drops below the trigger level of innovation (see Figure 1). Hence, for any

set of exogenous parameters there is a finite number of technologies that are

developed. Moreover, once the pollution stock of the N th technology and those

of the other technologies have converged, the entire technology portfolio is used

simultaneously for the infinite future.

After a new technology is developed pollution stocks converge along the most

rapid approach path. This takes t̂n+1−tn+1. According to (29) the length of this

period is independent of the number of technologies already available. Moreover,

the next innovation is triggered if all pollution stocks simultaneously reach the

constant threshold level. Since after convergence is completed all technologies

are used at a rate of 1/(n+1) the time that passes between successive innovations

increases.

Innovation occurs only if both types of steady state stocks (the complete

and the incomplete) are above S̄. Moreover, since the incomplete steady state

is independent of the number of technologies it will never be reached if innova-

tion occurs at least once.

Proposition 4

Pollution stocks overshoot. Each time innovation occurs, pollution stocks are
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above their long run steady state level.

A direct consequence of the constant threshold and a steady state pollution

stock that decreases in n is an overshooting of the pollution stock if innovation

occurs at least once (see Figure 1). This effect has also been found by [6] in a

model involving only a dirty and a clean technology.

While clearly stylized, key elements of the predicted pattern generated by

this model are empirically observable phenomena, in particular the temporary

displacement of established technologies by new substitutes, the simultaneous

use of different technologies, and a sequential increase in the portfolio of tech-

nologies. These phenomena will be most easily observed in settings where users

are essentially indifferent about the production technology, justifying the as-

sumption of perfect substitutability, and the technology-specificity of capital is

low, thus justifying the assumption of insignificant investment constraints. A

suitable setting for this is the context of refrigeration. Consumers are arguably

indifferent about the technological basis of the refrigeration services they con-

sume; and the rate of product replacement for smaller devices is sufficiently

high and retrofitting is economical for most existing larger installations [12].

From the 1890s, when refrigeration became commercially viable, several tech-

nologies based on different refrigerants competed in this market. The three main

competitors were technologies based on ammonia, carbon dioxide and sulphur

dioxide, each with specific health and environmental drawbacks. In the mid-20th
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century, they were substituted by CFCs on a large scale. After the ozone deplet-

ing effect of CFCs was discovered, three things happened. First, production of

CFCs was phased out. Second, the available alternative technologies based on

ammonia, carbon dioxide and sulphur dioxide were revived [13]. Third, research

in and subsequently production of new substitutes such as perfluorocarbons

(PFCs) and HCFCs increased. Both PFCs and HCFCs have a considerably

lower ozone depleting potential than CFCs. However, both have stock pollution

problems of their own: HCFCs decay into trifluoroacetate (TFA) which is toxic

and accumulates in harmful amounts in soil and vegetation, necessitating policy

intervention in time [10]. PFCs result in the release of greenhouse gases and

therefore contribute to an existing stock pollutant problem. As a result, PFC

production is included as a regulatory target in the context of the Kyoto Pro-

tocol [12]. Hence, despite the highly stylized nature of the model, core features

of the predicted pattern arise in in suitable real world settings.

5 Extensions

In the following two sub-sections we consider generalizations to the model spec-

ifications. In section 5.1., we consider alternatives to the assumption of time-

invariant R&D costs. In section 5.2., we study the effects of allowing for gen-

eralized welfare and stock accumulation functions. It will turn out that the

extensions in the two sections differ with respect to their impact on the optimal

R&D and pollution policy. Both extensions affect the general properties of the
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R&D arbitrage equation (40), with the extensions of the first section affecting

its left-hand side and those of the second affecting its right-hand side. The gen-

eral properties of the optimal pollution policy, on the other hand, are unaffected

by changes to the assumption on R&D costs. A precise characterization of the

effects of generalized R&D processes on the innovation and pollution dynamics

in section 5.1. is therefore possible. Alternative welfare and stock accumulation

functions, by contrast, can have a profound impact on the optimal pollution

policy. As a result, a complete characterization in section 5.2. is not possi-

ble within the limits of this paper. Instead, we offer several partial results as

building blocks for future research.

5.1 Alternative R&D Processes

In this section, we relax the assumption of time-invariant R&D costs to study

cases such as an exogenous reduction in research costs over time as well as in-

creasing and decreasing returns to R&D. All have in common that they affect

only the left hand side of condition (40). With the optimal pollution policy

between innovations unaffected, optimal timing is as before determined by (42)

and hence, only the specific timing of innovation changes.

Exogenous Efficiency Improvements in Research

We now assume that the costs to develop a new technology exogenously decrease

over time

R = R(t) with Ṙ < 0.

26



Innovation Without Magic Bullets

This can be due to technological progress realized outside of the economy or

industry under concern. The cost to acquire a new technology decreases over

time and so does the innovation trigger level, S̄(tn+1) > S̄(tn+2). Hence, the

time between successive innovations does no longer necessarily increase and is

certainly shorter than under constant research costs at the same initial level.

The steeper the slope of the research cost function the more likely are decreasing

intervals between innovations. If the cost decline is sufficiently steep, the trigger

level might be reached before technologies have completely converged. In this

case Proposition 2 ceases to hold. Moreover, if R(t) converges sufficiently fast

toward zero, there might be no finite N ≤ M where innovation stops. If we

relax the assumption of a finite upper bound M on the number of potential

innovations, the first order condition (41) is no longer a necessary condition

and theory offers no guidance on alternative necessary conditions [11]. While

the optimal timing of R&D cannot be established, it is certain that innovation

proceeds ad infinitum.

Increasing Returns to R&D

Assume, e.g. due to learning by doing, that the costs of R&D decrease with the

number of technologies already developed

R = R(n) with
∂R

∂n
< 0. (43)

According to the same logic as in the previous specification with exogenous
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cost reductions, innovation occurs earlier than with constant research costs and

potentially more technologies are developed. The former is in line with findings

by [18]. Propositions 1 and 4 hold while 2 and 3 do not. Again, the formal

analysis is restricted by the lack of a theoretical proof of necessary conditions

for optimal control problems with infinite regime switches and an infinite time

horizon.

Proposition 5

If the costs of research decrease over time, at least as many technologies are

developed than in a situation with similar initial but constant research costs.

Innovation might not cease. If it does, research occurs earlier than in a situa-

tion with similar initial but constant research costs.

Decreasing Returns to R&D

Assume the costs of R&D increase with the number of technologies already

developed. For example, it may become more and more difficult to find new

solutions to the same problem.

R = R(n) with
∂R

∂n
> 0 (44)

Proposition 6

If the costs of research increase in the number of already developed technologies,

research occurs later and at most as many technologies are developed than in a
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situation with similar initial but constant research costs. Innovation neither

guarantees overshooting nor production at full capacity in the long run.

The innovation trigger level increases in the number of technologies already

developed, since R is increasing in n. Hence, the time between successive inno-

vation increases compared to the case with similar initial but constant research

costs. Propositions 1 to 3 hold while 5 does not. Overshooting does not occur

if the long run steady state is above the threshold level of the last innovation

(otherwise it wouldn’t have occurred) but below the new, increased trigger level

of the next (not developed) technology. Hence, Proposition 4 does not hold. In

contrast to the original set-up it is possible that after innovation has occurred

the incomplete steady state is reached.

5.2 Generalized functional specifications

Here we consider a generalization of the social welfare function from (6) to

(3) allowing for asymmetry between technologies. As a result, additional R&D

motives that are determinants of empirically observable innovation and pollution

activities will now enter into the analysis. In contrast to the previous section,

both the R&D and the pollution policy are now directly affected.

A first step in the analysis is to consider the social planner’s problem (7)

now based on the general instantaneous welfare function (3) while retaining all

linearity assumptions such that β = 1 and ci (qi, t) = ciqi. With the symmetry

assumption regarding technologies removed, the n+1st technology can improve

on the nth technology in the form of a lower accumulation rate per unit of
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output, αn+1 < αn, a faster rate of stock decay, δn+1 > δn, a lower marginal

damage of pollution, dn+1 < dn, or a lower cost of production, cn+1 < cn. The

long-run properties of the pollution stocks now take into account the hetero-

geneity of pollutants such that the long-run equilibrium stock of pollutant i

given n technologies is

S∗i (n) =
(δi + r) (1− ci − κn)

αidi
(45)

where κn =
∑n

i=1
δi(δi+r)(1−ci)

αidi
−1∑n

i=1
δi(δi+r)

αidi

is the steady-state shadow price of the output

constraint given n technologies. Since the n + 1st technology unambiguously

improves on the nth technology, κn+1 − κn > 0 and the difference increases

with the magnitude of the improvement. The long-run pollution stocks of all

previous technologies therefore decrease with the number of technologies used

and they decrease by more than in the case of symmetric technologies. While

the long-run steady-states targeted by pollution policy therefore reflect the het-

erogeneity in technologies, the fundamental properties of the approach paths

remain unchanged on account of the linearity of the pollution control problem.

As before, the optimal pollution policy involves a sequence of at most (a) a

most-rapid approach (of the singular solution), (b) a convergent singular solu-

tion path, and (c) a stationary singular solution (the steady state). With the

optimal pollution policy qualitatively unchanged, the first part of Proposition

2 (existence of a period of exclusive use of the most recent technology) remains

therefore intact.

An important implication of (45) is that heterogeneity in all parameters

other than cost ci has no qualitative impact on the optimal pollution policy:
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With ci = c < 1, αi > 0 and di > 0 for all i, all long-run stocks will be positive,

implying that all technologies will be used simultaneously in the steady state. If

- on the other hand - R&D delivers improvements in the cost of production such

that cn+1 < cn for all n > 1 then there exist numbers of technologies n1, n2, ...

for which the long run stock of the first, second and so on technology will be

zero and the technology will be permanently discontinued in the steady-state.

This implies that while the long-run steady-state will feature the use of several

technologies at once, the steady state is no longer guaranteed to include all

available technologies (see Proposition 3).

Even under the retention of the linearity assumptions, the optimal R&D

policy remains inconclusive without the imposition of considerable structure on

the characteristics of new technologies. On the one hand, technological improve-

ments in subsequent technologies provide greater initial incentives for R&D. In

the present set-up, these additional incentives are reflected in the optimal inno-

vation point t∗n+1 determined by (40). Improvements in technological charac-

teristics of the n+1st technology enter into (40) via a lower shadow price µ∗n+1,

thus making it optimal ceteris paribus to engage in R&D earlier. On the other

hand, (40) also implies that greater initial incentives for R&D do not necessarily

translate into more cumulative R&D overall: Compared with a setting of sym-

metric technologies, returns from investing in the n + 1st technology are ceteris

paribus lower the better the portfolio of the previously developed n technolo-

gies. This ’competitive pressure of the past’ is reflected in the weighted shadow

prices of previous technologies
∑n

i=1 µ∗i q
∗
i and a result of the substitutability of
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technologies in production. The net effect can be fully derived for specific R&D

production functions only (in terms of expected properties of novel technologies)

and is the subject of future research.

Other possible generalizations of the model include non-linearities in the

social welfare function. We comment on the case of β < 1 and c (q, t) = c (q) with

dc
dq > 0. As discussed in section 2, in the case of β < 1, the policy-maker faces

decreasing marginal returns from production in each single technology and R&D

incentives exist for reasons of product differentiation. Similarly, with increasing

marginal cost of production in each technology, diversification of production

allows escaping from decreasing net returns, leading to similar R&D incentives

as in the case of β < 1. With the general direction clear, considering the

specific impact of these generalizations on the results of this paper requires a

restatement of both the optimal R&D and the optimal pollution policy. The

reason is that with the linearity in the optimal pollution policy removed, the

results change not only quantitatively, but also qualitatively. The result will be

pollution policies that are characterized (a) by the absence of discontinuities in

production shares by different technologies on account of the concavity of the

net benefit function and (b) more cumulative R&D on account of the additional

rents from technology differentiation [7].

6 Conclusion

In this paper, we studied the optimal pollution and R&D policy in a setting
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in which new technologies are never perfect backstops. In such a situation,

pollution policy and R&D are interlinked on account of past R&D determining

current degrees of freedom in allocating production shares to different technolo-

gies. In this paper, the pollution-R&D link is tight in the sense that typically

the entire technology portfolio developed up to this point is used, except for

transitional adjustment periods. This contrasts with previous papers where the

use of a technology portfolio is a transitional phenomenon.

The characterization of the problem of ’green’ R&D as one involving no

’magic bullets’ also allows us to study the optimal timing of R&D decisions

involving more than one technology. We find that innovation will be sequential

rather than simultaneous and that under certain conditions there is a tech-

nological endpoint in the form of a highly diversified technological portfolio.

Confirming results elsewhere in the literature, pollution stocks overshoot the

long run steady state levels. The pattern of pollution and R&D policies derived

in this paper is a new result and we illustrate its empirical relevance in the

context of stock pollutants emanating from refrigeration technologies.

Extending the modeling framework to include (a) alternative R&D processes,

(b) asymmetries across technologies, and (c) a generalized instantaneous welfare

function provides additional insights. In case of (a), only the timing of R&D is

affected through the R&D arbitrage equation while the optimal pollution policy

remains essentially unchanged. Situations characterized by decreasing R&D

costs involve both accelerated timing of R&D investments and an expansion of

the amount of R&D carried out. Under certain circumstances, this leads to a
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situation in which R&D never ceases. In the case of (b), both R&D timing and

the pollution policy are affected. The changes in the pollution policy are merely

quantitative, however, with the exception of cost heterogeneities since these can

cause technologies to be excluded permanently from the long run production

portfolio. The timing and cumulative amount of R&D are ambiguous under

(b), with the net effect hinging on the expectations regarding the evolution of

the properties of new technologies. In the case of (c), decreasing marginal net

returns in each technology lead to a pollution policy that will be characterized

by an absence of discontinuities in production shares accorded to individual

technologies and more R&D overall.
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A Proofs of Section 4

A.1 Condition for the Optimal Timing of R&D: (39) and

(38) to (40)

Condition (39) requires that G(t∗n+1) = H∗
n

(
t∗n+1

)
+ e−rt∗n+1rR −H∗

n+1

(
t∗n+1

)
is non-negative for all δtn+1 < 0 and non-positive for all δtn+1 > 0. Other-

wise, there exist perturbations for which (39) becomes positive. G(t∗n+1) = 0

is therefore a necessary condition for all t∗n+1 > 0. For t∗n+1 = 0, G is allowed

to be negative. The intuition is that the optimal instant where G = 0 is at

some negative point in time that is not feasible. However, in our case where

technologies start with a zero initial stock this situation does not occur and all

R&D is carried out at strictly positive points in time. Hence,

H∗
n

(
t∗n+1

)
+ e−rt∗n+1rR = H∗

n+1

(
t∗n+1

)
(A.1)

is a necessary condition for all t∗n+1. Substituting (37) into (A.1) yields

e−rt∗n+1

[
n∑

i=1

(
q∗i −

d

2
S∗2i

)
+ rR

]
+

n∑
i=1

µ∗i (αq∗i − δS∗i ) =

e−rt∗n+1

n+1∑
i=1

(
q̌∗i −

d

2
Š∗2i

)
+

n+1∑
i=1

µ̌∗i
(
αq̌∗i − δŠ∗i

)
(A.2)
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where a ˇ indicates post-innovation values. Using
∑n

i=1 q∗i =
∑n+1

i=1 q̌∗i = 1,

Sn+1(t∗n+1) = 0 this reduces to

e−rt∗n+1

[
1−

n∑
i=1

d

2
S∗2i + rR

]
+

n∑
i=1

µ∗i (αq∗i − δS∗i ) = (A.3)

e−rt∗n+1

[
1−

n∑
i=1

d

2
Š∗2i

]
+

n∑
i=1

µ̌i

(
αq̌∗i − δŠ∗i

)
+ µ̌∗n+1αq̌∗n+1.

After innovation has occurred the output of the new technology is one and that

of all other technologies zero (see (25) and (26)). Moreover, the pollution stock

of the new technology is zero and the stocks of all other technologies are the same

as at the instant before innovation occurred, i.e. S∗i = Š∗i for all i = 1, ..., n.

According to (38) it also holds that the shadow prices of the pollution stocks of

all incumbent technologies remain unchanged, i.e. µ∗i = µ̌∗i for all i = 1, ..., n.

Hence, (A.3) simplifies to (40).

A.2 Shadow Prices and Optimal Timing of R&D: (41) to

(42)

The shadow price of the new technology at the time of innovation can be de-

rived by the following procedure. Given that prior to innovation all technologies

are used simultaneously, their shadow prices are equal and unaffected by inno-

vation (38). Their post-innovation movement is completely determined by the

respective stock dynamics (see (10)) which are given by (27).

µ∗n(t) = eδ(t−t∗n+1) (A.4)

·

[
µ∗n
(
t∗n+1

)
+ dS∗n

(
t∗n+1

)
e2δt∗n+1

(
e−(r+2δ)t∗n+1 − e−(r+2δ)t

r + 2δ

)]
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Analogously, using (28) one can determine µ̌∗n+1 (t) as a function of µ̌∗n+1

(
t∗n+1

)
µ∗n+1(t) = eδ(t−t∗n+1)

[
µ∗n+1

(
t∗n+1

)
+

αd

δ
eδt∗n+1 (A.5)

·

(
e−(r+δ)t∗n+1 − e−(r+δ)t

r + δ
− e−(r+δ)t∗n+1 − e−(r+2δ)t+δt∗n+1

r + 2δ

)]

At t̂n+1 stocks and hence the shadow prices of incumbent and new technologies

converge. Hence, from µ∗n
(
t̂∗n+1

)
= µ∗n+1

(
t̂∗n+1

)
and (A.4), (A.5) and (29) it

follows that

µ∗n+1(t
∗
n+1) = µ∗n

(
t∗n+1

)
(A.6)

+
d

r + 2δ
e−rt∗n+1

[
S∗n
(
t∗n+1

)
+

α

δ

] [
1−

(
δ

α
S∗n
(
t∗n+1

)
+ 1
)− r+2δ

δ

]

− αd

δ(r + δ)
e−rt∗n+1

[
1−

(
δ

α
S∗n
(
t∗n+1

)
+ 1
)− r+δ

δ

]
.

By substituting this into (41) it simplifies to (42). For the case where innovation

occurs during the post-innovation transition period the shadow price of the new

technology at t∗n+1 can be calculated analogously. The result is exactly the

same.
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