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Abstract

When designing incentives for a manager, the trade-off between in-
surance and a “good” allocation of effort across various tasks is often
identified with a trade-off between the responsiveness (sensitivity, pre-
cision, signal-noise ratio) of the performance measure and its similarity
(congruity, congruence) to the benefit of the manager’s employer. A
necessary condition for the trade-off between responsiveness and sim-
ilarity to be meaningful is that a perfectly congruent measure creates
a higher benefit than an equally responsive non-congruent measure.
We show that this condition is met if and only if all tasks are exactly
equally difficult and there are no spill-overs or synergies across tasks.
This means that for most practical purposes, notions of responsive-
ness and similarity are not informative about the tradeoff between
insurance and allocation. In order to understand this trade-off, task
difficulty has also to be taken into account.
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1 Introduction

The activity of a manager who carries out various tasks is often reflected
in a rich set of accounting and other data. If the employer of the manager
wants to link the manager’s pay to his performance, such multi-dimensional
information needs to be aggregated into a single performance measure as
forcefully argued by Jensen et al. (2004). There are different ways of aggre-
gating the information leading to different performance measures. Some of
these measures may be better than others. But which measure should the
employer use?

Before addressing this question, we want to examine what the employer
knows. Typically, she has a fair idea about the influence of the manager
on the variation of the performance measure. In other words, she knows
how responsive the measure is. Specific concepts which formalize this notion
is the sensitivity-precision concept (Banker and Datar, 1989), the signal-
noise ratio (Kim and Suh, 1991), the mean-preserving spread of the likeli-
hood (Kim, 1995) and the risk-minimization component (Feltham and Wu,
2000). Another piece of information that is often available to the employer
is how well the measure reflects her benefit from the activity. The idea of
similarity between measure and benefit is embodied in the concept of con-
gruity (Feltham and Xie, 1994), discongruity (Datar et al., 2001), distortion
(Baker, 2000), congruence (Baker, 2002) and non-congruency (Feltham and
Wu, 2000). Here, we are interested in how useful performance measure char-
acteristics like responsiveness and similarity are when deciding what measure
to use.

Suppose there are two performance measures that aggregate the avail-
able data differently: the first measure perfectly reflects the benefit of the
employer; it is congruent with the benefit while the second is not. Both
are equally affected by factors beyond the control of the manager; they are
equally responsive. Is the congruent measure preferable to the non-congruent
one? Here, we show that the answer is “no” for most cases of practical rele-
vance.

There are two effects which determine the usefulness of a performance
measure: how much effort can be bought without imposing too much uncer-
tainty on the manager (an insurance problem) and how this effort is allocated
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across tasks (an allocative problem). The insurance problem is often thought
to be related to the responsiveness of the measure and the allocative prob-
lem to its similarity with the benefit (Feltham and Xie 1994, Baker 2000,
Feltham and Wu 2000, Baker 2002). If responsiveness indeed reflects how
much effort can be bought and similarity how well this effort is allocated,
then a measure should generate higher surplus if it is more responsive. Like-
wise, more similarity with the benefit should lead to a larger surplus. In
particular, a congruent measure should be preferable to an equally respon-
sive non-congruent measure. This superiority of a congruent measure is thus
necessary for performance measure characteristics to reflect insurance and
allocative considerations.

It is a priori not clear why the trade-off between insurance and alloca-
tion can be reflected by characteristics of the performance measure. Neither
this nor the superiority of congruent measures over equally responsive non-
congruent measures has been proven.1 In a single task model, Kim and Suh
(1991) show that a larger signal-noise ratio (more responsiveness) indicates
lower agency costs (higher surplus) and Kim (1995) obtains a similar result
for the mean-preserving spread. If the manager fully controls the variation
of the measure (maximal responsiveness), Datar et al. (2001) find that mea-
sures with lower discongruity (higher similarity) lead to a larger surplus. So,
in absence of multiple tasks more responsiveness is better and in absence of
noise, more similarity is preferable. Unfortunately, these results do not help
us to answer what happens if there are multiple tasks and the measure is
noisy at the same time; the proofs by Kim and Suh (1991), Kim (1995), and
Datar et al. (2001) do not extend to this case. Moreover, Datar et al. (2001)
demonstrate with an example that care has to be taken when generalizing
from the single-task to the multiple-task model:2 a higher sensitivity (more
responsiveness) may actually decrease the attractiveness of a congruent per-
formance measure. 3

Another relevant question is whether performance measure characteris-
tics like responsiveness and similarity provide enough information. Can we

1It has not even been formalized what a “good” allocation of a given effort is.
2See also the distinction between congruent and incongruent sensitivity by Banker and

Thevaranjan (2000).
3In this example, however, they vary the benefit and sensitivity at the same time and

it is hence not possible to isolate the effect of the change in sensitivity.
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ignore how difficult the manager finds which task? If the manager is in full
control of all relevant variables and these variables are combined to form a
congruent performance measure, it is possible to devise an incentive scheme
such that the manager fully internalizes the employer’s benefit and the ef-
ficient solution is reached. This case is an example where task difficulty
does not influence the design of optimal incentives. If the manager is not in
full control and requires insurance, internalization will be partial. This may
lead the manager to neglect costly but beneficial tasks. Should the incentive
scheme not correct for this by focusing attention on such tasks? If yes, a
performance measure that emphasizes these tasks would be preferable to a
congruent measure and task difficulty would influence the optimal design.

Most of the models dealing with multiple task problems and featuring
some notion of responsiveness and similarity assume that all tasks are ex-
actly equally difficult. According to Feltham and Wu (2000) who draw on
Wu (1995), this is an innocuous assumption as “results are substantially the
same”.4 The assumption is sometimes justified on the grounds that the units
in which the manager’s activity is measured are arbitrary. Rescaling these
units (say from hours to minutes), it is possible to obtain a problem with
equalized and independent marginal costs. Following this argument and the
prevailing practice in the literature, task difficulty does not seem to matter
for the trade-off between insurance and allocation. This suggests, it can be
ignored when choosing a performance measure.

In order to check whether task difficulty affects the choice of the per-
formance measure, we use the multiple-task principal-agent model by Holm-
ström and Milgrom (1991) in the form popularized by Feltham and Xie (1994)
and allow for costs to differ and interact across tasks. We introduce this
model in Section 2. There are several notions of similarity between mea-
sure and benefit (Feltham and Xie 1994, Baker 2000, Feltham and Wu 2000,
Datar, Kulp and Lambert 2001, Baker 2002), which exist for this model.
All these notions agree that a measure is congruent with the benefit if the
systematic effect of the manager on the measure is a multiple of that on the
benefit. In geometrical terms, the vector of marginal effects on the mea-
sure and on the benefit have the same direction. Currently, there is only one
notion describing responsiveness in this model: the risk minimization compo-

4see footnote 4 on page 168 in Feltham and Wu (2000)
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nent by Feltham and Wu (2000). This concept has two drawbacks: it requires
the employer to know the optimal activity in the absence of contractual con-
straints (first-best activity) and it does not reduce to the signal-noise ratio of
Kim and Suh (1991) when there is only a single task. As an alternative, we
build on the ideas of Banker and Datar (1989) and Kim and Suh (1991) and
define a multiple-task signal-noise ratio as the (inner vector) product of the
marginal effects of the manager on the measure (signal) divided by the vari-
ation beyond the control of the manager (noise). This definition is perfectly
in line with Baker (2002), who fixes the length of the marginal effect vector
and the variance of the noise term in order to hold responsiveness constant.

We begin the analysis, in Section 3, by considering the case where tasks
are equally costly and find the conventional wisdom confirmed: a perfor-
mance measure with a given signal-noise ratio generates the highest surplus
only if it is congruent. So, for the specific case of equal costs our question
is answered: the congruent performance measure is always preferable. Any
trade-off between notions of similarity and responsiveness implicitly takes this
result for granted; here, it is proven for the first time. The result crucially
depends on the notion of responsiveness: if the risk minimization component
by Feltham and Wu (2000) is used instead of the signal-noise ratio, the mea-
sure which maximizes surplus is not necessarily congruent.

In Section 4, we leave the restrictive setting of exactly equal costs at
all tasks. The second and central finding is that if marginal costs differ,
a performance measure with a given signal-noise ratio no longer maximizes
surplus when it is congruent. The vector of marginal effects of the optimal
performance measure may even be almost orthogonal to that of the benefit.
It is irrelevant for this result how responsiveness is precisely defined: the
generated surplus always depends on the difficulty of tasks and so does its
maximizer when fixing a quantity that does not depend on this difficulty
(e.g. the signal-noise ratio as defined here or the risk minimization compo-
nent by Feltham and Wu 2000). Task difficulty does matter for the choice of
the optimal performance measure and hence notions of responsiveness and
similarity cannot capture the trade-off between insurance and allocative con-
siderations; the idea that characteristics of a performance measure may be
used to determine its consequences on the amount and allocation of effort is
thus confined to the rather limited case of identical costs.
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The difficulty of tasks has hence to be taken into account when selecting a
performance measure. But how? It is not possible to take the original prob-
lem with differing costs, transform this problem to the identical-independent
cost setting by rescaling effort, and carry out comparisons and trade-offs
in the usual fashion because the signal-noise ratio is not invariant to such
rescaling. In Section 5, we explore a different way and adjust the notion of
responsiveness for costs. We prove that when comparing performance mea-
sures with the same cost-adjusted signal-noise ratio, the maximal surplus is
generated by a congruent measure, again.

In the final section, we summarize our results, discuss them and examine
their implications.

2 The model

Consider the designer of an incentive scheme in a multiple task setting, who
wants to choose the best performance measure in order to provide incen-
tives to an agent (e.g. manager) who creates a benefit for a principal (e.g.
employer). We follow the literature and use the working horse model of mul-
tiple task principal-agent analysis (see Feltham and Xie 1994, Baker 2000,
Feltham and Wu 2000, Banker and Thevaranjan 2000, Datar, Kulp, and
Lambert 2001, Baker 2002) to relate to this literature and to obtain simple
closed form solutions. This model was initially devised by Feltham and Xie
(1994) by using the assumptions of the single-task linear-exponential-normal
(LEN) model by Spremann (1987) in the multi-task agency problem of Holm-
ström and Milgrom (1991).

In this model, the principal’s benefit is a linear function of the agent’s
effort vector e:

B(e, η) = β′e + η,

where β′ = (β1, . . . , βn) is a vector of coefficients and η is a noise term
with mean zero. The noise term reflects influences on the benefit beyond the
control of the agent. Likewise, performance measures (which can be regarded
as some aggregation of the available information) are a linear function of
efforts:

P (e, ε) = b′e + ε,
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where b′ = (b1, . . . , bn) is a coefficient vector and ε is a normally distrib-
uted noise term with expected value zero and variance σ2. This noise term
captures any effects on the performance measure that cannot be influenced
by the agent. The noise which influences the benefit may stand in an arbi-
trary relation to the noise influencing the performance measure: it may be
independent, correlated or identical (ε = η). Hence the description of the
performance measure encompasses the special case that it is identical to the
benefit (b = β and ε = η).

Next, we link the coefficient vector of the performance measure to that
of the benefit.

Definition 1 (Congruence). Performance measure and benefit are congru-
ent if their coefficient vectors have the same direction: b = γβ for some γ
different from zero.

This definition relates to various congruity concepts: congruent perfor-
mance measures minimize the discongruity of Feltham and Xie (1994), the
non-congruency by Feltham and Wu (2000), the distortion by Baker (2000)
and the incongruity of Datar et al. (2001) while they maximize the congruence
of Baker (2002). Thus, congruent performance measures are an important
benchmark case in all similarity concepts.

It is customary in the multitasking literature to assume that the wage is
linear in the performance measure: W (P (e)) = w0+w1P (e). This simplifying
assumption is not innocuous because the optimal incentive scheme in the
single-task case is non-linear (Mirrlees, 1999). However, linearity can be
justified under certain additional assumptions about the timing of decisions
(Holmström and Milgrom 1987 and Hellwig and Schmidt 2002). While the
principal is supposed to be risk-neutral, the agent has a negative exponential
utility function U(v) = −e(−vr), where v := W (P (e)) − C(e) is the income
of the agent and r is the Arrow-Pratt measure for risk aversion. It is usually
assumed that costs are quadratic and that marginal costs are identical across
tasks (Feltham and Xie 1994, Baker 2000, Banker and Thevaranjan 2000,
Feltham and Wu 2000, Datar, Kulp, and Lambert 2001, Baker 2002).5 Here,
we examine the more general case of differing and interrelated marginal costs:

C(e) = e′Ce,

5There are a few (unpublished) exceptions such as Wu (1995) and Ratto (2006).
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where the matrix C = (cij) is assumed to be symmetric and non-negative
definite, so that costs are always positive: e′Ce > 0 if e 6= (0, . . . , 0)′. The
more specific cost function normally used can be obtained by setting C = 1

2
I,

where I is the identity matrix.

Which concept should we use for responsiveness? We want to rely on the
results of Kim and Suh (1991) for the single-task case and hence introduce
a generalization of their concept to the multi-task model.

Definition 2 (Signal-noise ratio). The signal-noise ratio is the ratio of the
inner product of the expected marginal effect of activity on the measure divided
by the variance of the noise of the measure:

ρ :=

(
∂Eε(P (e,ε))

∂e

)′ (
∂Eε(P (e,ε))

∂e

)
σ2

=
b′b

σ2
.

In the single-task case, b is a real number and the signal-noise ratio reduces
to that defined by Kim and Suh (1991) and is equivalent with the product
of sensitivity and precision considered by Banker and Datar (1989).6 The
definition of the signal-noise ratio reflects the idea that a longer coefficient
vector means that the respective performance measure is more susceptible to
changes in effort and thus more “informative”.7 On the other hand, fixing
the ratio between the squared length and the variance implies that two per-
formance measures with the same signal-noise ratio are somehow “equally
blurred by noise”. Compare for example two measures, (b, σ2) and (b̃, σ̃2),
where the second is similar to the first but twice as sensitive to changes in
efforts: b̃ = 2b. Then, this higher sensitivity only translates into an advan-
tage if the second measure is less than twice as noisy : σ̃ < 2σ; if it is exactly
twice as noisy, the signal-noise ratio is the same and the two measures are
equivalent in the sense that the consequences of using one measure can be
perfectly replicated by using the other measure and adjusting the wage rate.
Note that even if they have the same signal-noise ratio, performance mea-
sures may still emphasize different effort dimensions. In other words, the

6Banker and Datar (1989) also suggest a a signal-noise ratio for multiple signals. This
suggestion does not concern us here, as we are supposing that the information of various
signals is already embodied in the performance measure.

7Presumably, this is the reason why Baker (2002) fixes this length to illustrate his idea
of congruence.
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allocative properties are not yet determined.

After having introduced congruence and signal-noise ratio as characteris-
tics of the performance measure, we want to return to the agency problem.
What is the maximal surplus that principal and agent can obtain when they
cannot contract on effort? For the answer, we follow the standard procedure
(see e.g. Macho-Stadler and Pérez-Castrillo 1997) of assigning the role of the
mechanism designer to the principal and let her receive any benefit from the
operation of the incentive scheme. An incentive constraint represents the ra-
tionality of the effort choice of the agent. Finally, a participation constraint
ensures that the benefit is indeed generated by the mechanism and not by
exploiting the agent; for convenience, we standardize the certainty equiva-
lent of the outside option to zero, so that the respective utility is minus one.
Overall, the maximization program takes the form:

max
w0,w1

E (B(e)− w0 − w1P (e)) (1)

such that e ∈ argmaxẽE (U (w0 + w1P (ẽ)− C(ẽ))) (2)

and E (U (w0 + w1P (e)− C(e))) ≥ −1. (3)

Thanks to the model assumptions, we can solve this maximization program
and find the optimal (linear) incentive scheme for any performance measure
P , where it is convenient to parameterize this performance measure in b
and the signal-noise ratio ρ rather than in b and σ2. Note, that the two
parameterizations are completely equivalent.

Lemma 1. Given a performance measure with weights b and signal-noise
ratio ρ, the optimal rate of performance pay is:

w∗
1 =

β′C−1b

b′C−1b + 2r b′b
ρ

. (4)

Under this rate, the agent will exert the effort:

e∗ =
w∗

1

2
C−1b, (5)

which yields a surplus of:

φ(b, ρ) =
1

4

b′C−1ββ′C−1b

b′(C−1 + 2 r
ρ
I)b

. (6)
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The proof for this lemma is an extension of the standard proof to more
general costs and can be found in Appendix A.

As we expect, a higher Arrow-Pratt measure of risk aversion r or a lower
signal-noise ratio ρ reduces the performance pay rate w∗

1. Interestingly, the
optimal wage rate also depends on the costs C. Generally, higher costs lead
to a lower wage rate but more importantly, the cost matrix enters the re-
lationship between b and β. This implies that the wage rate may change,
simply because the relative importance of tasks for the performance measure
or the benefit is different. Thus, the relative weights for effort may determine
to what degree a performance measures is used.

Lemma 1 allows us to quickly assess the surplus generated by a perfor-
mance measure characterized by (b, ρ). It thereby enables us to search for
the optimal coefficient vector and to check whether it is congruent in the
next section.

3 Equal marginal costs across tasks

If the various notions of similarity are informative about a good allocation
of effort across tasks, the highest surplus amongst measures with the same
signal-noise ratio should be generated by a congruent measure. Formally, we
can find the optimal measure by maximizing the surplus (as computed in
equation (6)) in b while fixing ρ. This leads to the following observation.

Proposition 1. Suppose costs for tasks are equal (C = c · I, where c is a
positive real number). Consider only measures with the same signal-noise
ratio ρ. Then, the measure which maximizes the surplus φ(b, ρ) is congruent.

The proof of this proposition is less obvious than the expected and simple
result suggests (see Appendix B). Trade-offs between insurance and alloca-
tion can only be reflected in performance measure characteristics when more
similarity is better for given responsiveness. The proposition thus brings
partial relief to various models which illustrate such trade-offs using notions
of similarity and responsiveness (Feltham and Xie 1994, Feltham and Wu
2000, Baker 2000, Baker 2002). The relief is only partial for two reasons.
First, we only consider the benchmark comparison between a congruent and
a non-congruent performance measure. If the respective similarity concept
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is indeed useful, more similarity should also generate a higher surplus when
comparing several non-congruent measures with the same signal-noise ratio.
Such comparisons have to be carried out using the respective notion of sim-
ilarity. Introducing all these concepts and comparing them seems a lengthy
exercise and due to space constraints, we refrain from doing so. It might,
however, prove useful in order to discriminate between the different concepts
of similarity. The second reason why the relief is only partial is that not
all notions of responsiveness can be employed. If the signal-noise ratio is
replaced by the risk-minimization component by Feltham and Wu (2000),
the resulting measure is not necessarily congruent (see Appendix C).

4 When costs differ across tasks

As the assumption of equal costs merely simplifies the analysis and as it
is still possible to obtain closed form solutions if costs differ and interact,
we relax the assumption and move to the more realistic situation that the
agent finds working on some task easier relative to other tasks. Although
the problem gets more involved, the optimal performance measure can still
be computed (the respective details are in Appendix D). It turns out that if
cost differences are present, the finding of Proposition 1 is not valid anymore.

Proposition 2. Given arbitrary costs (e.g. C 6= c · I) and considering all
performance measures with the same signal-noise ratio ρ, the performance
measure that maximizes the surplus takes the form:

b∗ = k

(
I +

2r

ρ
C

)−1

β,

where k is the following standardization factor: k = ±
√

ρσ2

β′(2 r
ρ
C+I)−2β

.

In fact, the optimal coefficient vectors may be almost orthogonal. Con-
sider a two-dimensional example where the agent has costs C(e) = c

2
e2
1 + 1

2
e2
2.

Using the formula in Proposition 2, we find that the optimal performance
measure has the coefficients:

b∗1 = k · β1

1 + c r
ρ

and b∗2 = k · β2

1 + r
ρ

.
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Suppose that the effort on the first task is more costly (c > 1). Then, the
optimal performance measure puts more emphasis on the cheap effort rela-
tive to a congruent measure. The more risk-averse the agent or the lower the
signal-noise ratio of the performance measure, the stronger is the focus on
the cheap task. Imagine that the bulk of the benefit is created by the first
task β1 = 1 − ε whereas the second task only contributes a little: β2 = ε.
Then, the relative weight of the first dimension in comparison with the sec-
ond dimension is

b∗1
b∗2

= 1−ε
ε

ρ+cr
ρ+r

. This implies that for increasing costs c and

decreasing signal-noise ratio ρ, the relative importance of the first effort in
the optimal measure shrinks to zero although the relative importance of this
effort for benefit creation is rather high. The principal does not only prefer
a non-congruent to a congruent performance measure with the same signal-
noise ratio but the emphasis on tasks in the measure may have very little to
do with their importance for the creation of benefit.

Thus generally, the principal does not choose a congruent measure (b =
γβ) but prefers a particular non-congruent measure. If we do not want to
restrict the analysis to specific benefit functions,8 a congruent performance
measure only maximizes the surplus if costs are identical across tasks. This
result can be derived by asking when the optimal performance measure b∗ is
a multiple of β (β∗ = γβ for some real number γ) in the above proposition;
a full analysis is in Appendix E.

Corollary 1. Given any benefit coefficient vector β and signal-noise ratio ρ,
congruent performance measures maximize the surplus if and only if costs are
identical and independent along all effort dimensions: C = I · c, with c ∈ IR.

This result is valid independently from the specific notion of responsive-
ness. Any such notion, whether signal-noise ratio, risk minimization compo-
nent or any other characteristic of the performance measure, is independent
of costs. The surplus, however, does depend on costs (see equation (6)) and
so does its maximizer under a side-constraint which is independent of costs.

The results in this section imply that unless the designer knows costs to
be identical and independent, the trade-off between insurance and allocative

8If the benefit coefficient vector β happens to be an eigenvector of the matrix(
I + 2r

ρ C
)−1

, it also maximizes the surplus – even if costs are not identical and inde-
pendent.
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considerations is not reflected in performance measure characteristics. Thus,
the practical value of using and weighing these characteristics seems rather
limited.

5 Incorporating task difficulty

The last section presented the slightly puzzling finding that under different
costs, non-congruent and even almost orthogonal performance measures cre-
ate a higher surplus than congruent performance measures with the same
signal-noise ratio. In this section, we will identify the source of this finding
and suggest a way to establish the optimality of congruent measures even in
the presence of different costs.

There are two possible sources for the puzzling finding. First, congruent
performance measures are simply not leading to the optimal allocation of ef-
fort across tasks under second-best conditions. Second, the signal-noise ratio
is not appropriate to control for the insurance problem. In this section, we
argue that the latter explanation is valid.

Recall that the optimal wage-rate, w∗
1, depends on the composition of the

performance measure – even if its Euclidean length
√

b′b is kept constant.
However, there is no reason why the wage rate should vary when facing the
same insurance problem. The only reason for the wage rate to change is when
the performance measure imposes more (or less) uncertainty on the agent.
This already hints to the fact that the signal-noise ratio may be insufficient
to capture the insurance problem. Further indication comes from the exam-
ple with the almost orthogonal measure, which was discussed in the previous
section. To obtain an almost orthogonal optimal performance measure, we
either had to increase risk-aversion or decrease the signal-noise ratio. Both
quantities are clearly related to the insurance problem. Using the same ex-
ample, it can also be illustrated why the signal-noise ratio does not fully
capture the insurance problem. Even though the signal-noise ratio is fixed,
the mechanism designer can choose a measure which emphasizes a particular
task. This does not only imply that the agent focuses on this task, it also
means that this task can be better measured: the controlled variation with
respect to this task increases relative to the uncontrolled variation (which
stays constant). So, while the overall controlled variation, as represented
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by the length of the performance measure, does not change, the controlled
variation along a particular dimension may very well change. Consequently,
relatively less uncertainty is imposed on the agent and the performance wage
rate can be increased. In essence, a trade-off between allocation and insur-
ance occurs and a “bad” allocation is accepted for a less noisy payment to
the agent despite our attempt to eliminate such trade-offs by holding the
signal-noise ratio constant.

Independent and identical costs represent a knife-edge case, where trade-
offs between insurance and allocation do not matter once the signal-noise
ratio is fixed. This suggests to adjust the signal-noise ratio for costs in order
to re-establish the results from the equal cost case. We want to lay the
foundation for such an adjustment by considering a broader class of signal-
noise ratios.

Definition 3 (modified signal-noise ratio). The modified signal-noise ratio
is the ratio of the squared length of the marginal effect measured using some
arbitrary norm M divided by the variance of the noise: ρM := b′Mb

σ2 , where
M is some positive definite matrix.

But which norm M should be chosen? Is there a particular choice which
allows us to re-establish optimality of congruent measures? How is this choice
related to costs? The following proposition provides the respective answers
(proof see Appendix F).

Proposition 3. Within the class of performance measures with signal-noise
ratio ρM , congruent measures maximize the surplus if and only if M = C−1.

Thus, we have to use the modified signal-noise ratio ρC−1 := b′C−1b
σ2 if

we want congruent measures to be optimal. Moreover, even if we do not
limit attention to modified signal-noise ratios and consider more general any
notion of responsiveness, this notion has to depend on costs if we want to re-
establish the optimality of congruent performance measures (see Appendix
G).

An alternative way to deal with differing costs seems to be to re-scale ef-
fort in such a way that costs become equal and independent. We would hope
that we can then rely on Proposition 1 and congruent measures are again
attractive. Unfortunately, the signal-noise ratio is not invariant to rescaling.
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Thus, even when the problem is transformed, we cannot work with the or-
dinary signal-noise ratio but have to use a cost-adjusted version of it (see
Appendix H).

Cost-adjusting whatever notion of responsiveness we wish to use has a
major drawback. It requires parameters that are likely to be private infor-
mation of the agent. While it is possible in a single task setting to compare
the quality of measures by looking alone at its characteristics, we know al-
ready that the multiple-task setting also requires information on how benefit
is created. In the general case, which we have considered here for the first
time, even that is not sufficient: agent’s preferences also need to be known.
The value of a performance measure in a general multi-task setting is hence
highly context specific: it depends on parameters of the principal (in form of
β) and on parameters of the agent (in form of C).

6 Conclusion

Is it possible to decide between performance measures on the basis of their
characteristics? Insurance and allocative considerations are often identified
with the responsiveness (signal-noise ratio, precision, risk minimization com-
ponent) of a performance measure and its similarity to the employer’s benefit
(congruity, discongruity, congruence, non-congruence). If this identification
is justified, congruent performance measures are better than equally respon-
sive non-congruent measures. Here, we checked whether this simple intuition
holds and gained the following insights.

First, if all tasks are exactly equally difficult, congruent measures are
more attractive than equally responsive non-congruent ones. This result is
often taken for granted; here, we have formalized and proven it for the first
time. The result is not valid for all notions of responsiveness: it holds when a
multi-dimensional version of the signal-noise ratio is used but not for the risk-
minimization component by Feltham and Wu (2000). The result provides a
necessary but not a sufficient condition for similarity and responsiveness to
be informative criteria when designing incentives. It only tells us that a con-
gruent measure generates the highest benefit and not that a measure with
higher similarity to the benefit yields more surplus. The validity of this more
general statement depends on the specific definition of similarity. Future re-
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search could address the question for which notion of similarity (congruity,
discongruity, congruence, non-congruence, etc.) more similarity implies a
higher surplus when responsiveness is held constant. This might prove useful
to decide which of these notions is most suitable to describe the effect of a
measure on the quality of effort allocation.

Second, once the task difficulty is not the same across tasks (marginal
costs differ), the measure which generates the largest surplus amongst all
measures with the same signal-noise ratio is not congruent. Congruent mea-
sures are no longer preferable to equally responsive non-congruent measures;
it is no longer possible to compare measures on the basis of their charac-
teristics; and the trade-off between more and better allocated effort can no
longer be reflected by notions of responsiveness and similarity. Respective
illustrations in the literature are thus confined to the rather special case of
independent and identical costs.

Third, the information that is required to find optimal incentives seems
to increase in the complexity of the contractual environment. In a single-task
model with a risk-averse manager and risk-neutral employer, the signal-noise
ratio suffices to rank different measures; details of the preferences of the em-
ployer or manager do not matter. It has been an important achievement of
the literature initiated by Feltham and Xie (1994) to point out that prefer-
ences of the employer are important once there are multiple tasks. It has,
however, been neglected that the manager’s preferences are equally impor-
tant. In multiple task models, the value of performance measures depends on
who is using the performance measure and for whom it is used. Accordingly,
the designer needs to be informed about benefits and costs – information that
may be difficult to obtain. If the employer designs the scheme, the manager
has all reason to misrepresent his costs and as they are multi-dimensional it is
hard if not impossible to elicit them with a menu of contracts. If the manager
designs the scheme, he often does not know how different tasks influence the
employer’s benefit. So, overall incentive design in the multiple-task context
is based on rather strong informational requirements.

Fourth, in the case that the employer knows the preferences of the man-
ager, we suggest a way to incorporate them. The notion of responsiveness
(here the signal-noise ratio) needs to be modified in a specific way. Then, the
comparison between congruent and non-congruent measures becomes mean-
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ingful again. A seemingly attractive alternative would be to re-scale effort
in order to have identical costs across tasks and to carry out comparisons in
the transformed problem. This, however, is not possible because the trans-
formation alters the signal-noise ratio. In order to consider the same class of
performance measures, the signal-noise ratio needs to be once more adjusted
for costs – albeit in a different way. It is hence simpler to directly work with
the modification of the signal-noise ratio in the untransformed problem.

Fifth, we identify the reason why a congruent measure does not maximize
the surplus amongst all measures with the same signal-noise ratio. As the
optimal measure puts more and not less emphasis on cheap tasks, the reason
cannot be that the manager should be drawn towards costly but beneficial
tasks. Rather, it has to do with a trade-off between insurance and effort
allocation that is not reflected by the signal-noise ratio and the similarity
of the measure to the benefit. It is possible to increase the influence of one
task and lower the influence on others while leaving the signal-noise ratio
constant. Such a change improves insurance properties but distorts alloca-
tion. For the knife-edge case of equal and independent costs, these two effects
exactly outweigh each other. But if costs are lower on some task, allocating
effort towards this task leads to smaller losses than before and the insurance
outweighs the allocative effect. Again, the specific notion of responsiveness
is not crucial. As long as fixing responsiveness does not fully determine the
allocation across tasks but leaves some freedom, it will not completely re-
flect the insurance side of the problem. The explanation why non-congruent
measures are optimal thus brings us back to the central theme of this article:
the designer of incentives has to take costs into account when trading-off
insurance and allocation of effort.
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A Proof for Lemma 1

Using the linearity of the performance measure, the normality distribution of
the noise, and the shape of the utility function, the base wage can be chosen
to compensate the agent for any harmful effects of uncertainty (w0 = C(e)−
w1b

′e + w2
1r

b′b
ρ

), so that the participation constraint can be eliminated from

the program (see e.g. Salanié 1998). Recalling the definitions of performance
measure, benefit, and costs, as well as the risk neutrality of the principal, the
program then simplifies to:

max
w1

β′e− e′Ce− w2
1

2
r
b′b

ρ

such that e ∈ argmaxẽ E (U (w0 + w1b
′ẽ− ẽ′Cẽ)) .

(7)

Consider the effort choice problem of the agent for a given incentive scheme
(w0, w1) (side constraint). Because the utility function is monotonic in the re-
ceived wage minus the effort costs, the agent chooses effort so as to maximize
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this difference:
max

e
w1b

′e− e′Ce.

The objective function is concave because the second derivative is a symmet-
rical, negative definite matrix (−C). Thus, the maximizer can be determined
by the first-order condition. Solving for e yields:

e =
w1

2
C−1b. (8)

Note, that C−1 exists because C is positive definite. Replacing e in equation
(7) by the optimal effort from equation (8) yields the following expression
for the objective function:

max
w1

w1

2
β′C−1b− w2

1

22
b′C−1b− w2

1

2
r
b′b

ρ
. (9)

Again, the objective function is concave and solving the first order condition
gives the maximizer:

w1 =
β′C−1b

b′C−1b + 2r b′b
ρ

(10)

Using the optimal wage rate in (9) finally results in the surplus from an
optimal incentive scheme based on the performance measure (b, ρ):

φ(b, ρ) =
1

4

b′C−1ββ′C−1b

b′(C−1 + 2 r
ρ
I)b

.

B Proof of Proposition 1

Several steps in the proof are also needed to prove other results in this article.
We summarize these steps in the following lemma.

Lemma 2. The set of maximizers of the expression

b′C−1ββ′C−1b

b′Hb
,

where H is a symmetric and positive definite matrix, is{
b∗

∣∣b∗ = k · (CH)−1 β, with k ∈ IR
}

.

19



Proof. Proof. Because H is symmetric and positive definite, we can decom-
pose it: H = PΛP ′ and define H

1
2 = PΛ

1
2 P ′. Now, define b̃ := H

1
2 b, so that

b = H− 1
2 b̃ and consider the transformed problem:

max
b̃

b̃′H− 1
2 C−1ββ′C−1H− 1

2 b̃

b̃′b̃
.

To advance on this problem, we fix the length of b̃ to some arbitrary value k2:
b̃′b̃ = k2. By varying k, we will later obtain the set of all possible solutions.
The respective Lagrangian for a given k is:

L(b̃, k) = b̃′H− 1
2 C−1ββ′C−1H− 1

2 b̃− λ
(
b̃′b̃− k2

)
.

The corresponding first-order conditions are:(
(H− 1

2 )′C−1ββ′C−1H− 1
2 − λI

)
b̃∗ = 0 and (b̃∗)′b̃∗ = k2. (11)

The first condition is an eigenvalue problem; to obtain b̃∗, we have to find
the eigenvalues λ of the matrix (H− 1

2 )′C−1ββ′C−1H− 1
2 . By defining x :=

(H− 1
2 )′C−1β, the matrix can be re-written as xx′ and it becomes apparent

that the matrix is symmetric and of rank one. Due to the latter, there can
only be one non-zero eigenvalue. Hence, this value is identical to the trace
of the matrix xx′:

EV(xx′) = tr(xx′) = tr(x′x) = x′x,

where EV(·) denotes the eigenvalue and tr(·) is the trace-operator. Replacing
the eigenvalue in the eigenvalue problem, we get:

(xx′ − x′xI)b̃∗ = 0.

Obviously, b̃∗ = kx is a solution to this problem. Again due to the rank
of xx′, it is also the only solution. To recover the solution in the original
problem, we have to reverse the transformation:

b∗ = H− 1
2 b̃∗ = kH− 1

2 x = kH− 1
2 H− 1

2 C−1β = kH−1C−1β = k(CH)−1β

The set of all solutions is then obtained by letting k vary.
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We can now employ this lemma to find the maximizer of the surplus for
a given signal-noise ratio. In order to do so, we set C = I and H = I(1+ 2r

ρ
).

Then, the quantity in the lemma becomes the surplus and this surplus is
maximized for all elements of the set{

b∗
∣∣b∗ = k ·

(
1 +

2r

ρ

)−1

β, with k ∈ IR

}
.

A subset of this set can be obtained by setting k :=
(
1 + 2r

ρ

)
· σ·√ρ√

β′β
. The

elements of this subset still maximize the surplus but they also fulfill the
constraint of having signal-noise ratio ρ. Moreover, they are multiples of the
vector β and hence congruent performance measures. Consequently, con-
gruent performance measures maximize the surplus for a given signal-noise
ratio.

C Risk minimization component

Feltham and Wu (2000) suggest to measure the noise resulting from a per-
formance measure by a risk minimization component, which is defined in
equation (8) in their article. In the case of a single performance measure
considered here and in our notation, this component is:

S := r · b′

σ
eFB, (12)

where eFB is the effort vector in the first-best situation, i.e., when effort e can
be legally enforced. This effort equals the benefit coefficient vector eFB =
β (see page 160 in Feltham and Wu 2000). Overall the risk minimization
component is

S =
r

σ
· b′β.

The surplus generated by a performance measure in the case considered by
Feltham and Wu (C = 1

2
I) is:

Φ(b, ρ) =
1

2

b′ββ′b

b′(I + σ2rI)b
=

1

2

b′ββ′b

b′b(1 + σ2r)
.

Using the definition of S, this is equivalent to

Φ(b, ρ) =
1

2

S2

b′b(1 + σ2r)
· σ2

r2
=

1

2
· 1

( r2

σ2 + r3)
· S2

b′b
.
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Holding S constant, the surplus no longer depends on β and consequently
the maximizer of the surplus will not depend on β. Accordingly, the optimal
performance measure is independent of the benefit of the principal. Thus
there are no restrictions placed on the shape of the performance measure
in relation to the benefit and it does not matter for surplus maximization
whether it is congruent or not.

D Proof of Proposition 2

The proof of this result relies again on Lemma 2 which we stated and proved

in Appendix B The matrix
(
C−1 + 2r

ρ
I
)

is symmetric and positive definite.

Thus, we can apply Lemma 2 with H =
(
C−1 + 2r

ρ
I
)

and solve the un-

restricted problem of maximizing φ(b, ρ). The set of maximizers for the
unrestricted problems is{

b

∣∣∣∣b = k

(
I +

2r

ρ
C

)−1

β with k ∈ IR

}
.

Not all these maximizers have the required signal-noise ratio of ρ. However,
all performance measure vectors with{

b

∣∣∣∣b = k

(
I +

2r

ρ
C

)−1

β with k = ±
√

ρσ2

β′(2 r
ρ
C + I)−2β

}
are also maximizers on the restricted set and are hence a solution to the
restricted maximization program.

E Proof of Corollary 1

For a congruent performance measure to maximize surplus, it must hold that
b∗ = γβ for any β. By Proposition 2, this is equivalent to (2 r

ρ
C + I) = Iκ,

where κ is any real number (The choice of κ is not limited because the stan-
dardization factor k neutralizes any choice). Thus, congruent performance
measures maximize surplus if and only if C = I κ−1

2
ρ
r

for any κ. In other
words, costs must be a multiple of the identity matrix: C = cI, where c is
some positive real number c := κ−1

2
ρ
r
. Note that c > 0 because C is positive

definite by definition.
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F Proof of Proposition 3

We express the surplus in terms of the modified signal-noise ratio, so that H
becomes H = (C−1 + M 2r

ρM
). Applying once more Lemma 2 from Appendix

B, we get the following set of maximizers:{
b∗

∣∣b∗ = k ·
(

I + CM
2r

ρM

)−1

β, with k ∈ IR

}
.

Thus, by a similar argument as in the proof for Corollary 1, b∗ will only be
a multiple of β if M = C−1.

G Impossibility to eliminate agent’s costs

Is there any way to control for noise while ignoring agent’s costs such that
congruent performance measures maximize surplus?

Recall from Section H that the surplus generated by a performance mea-
sure is:

1

4

b̃′β̃β̃′b̃

b̃′(I + 2RC)b̃
,

where R is some component capturing the uncertainty properties, e.g. R =
rσ2 or R = r r

ρ
. By Lemma 2 with H =′ (I +2RC), the performance measure

maximizing this surplus is

b̃∗ = k (C(I + RC))−1 β̃.

Congruence would require that β̃ = k (C(I + RC))−1 β̃. This equation is
never going to hold for arbitrary β̃ unless R depends on C.

H Rescaling

Can we transform a problem with arbitrary costs to a problem with identi-
cal and independent costs and do trade-offs and comparisons in this simple
world? The answer is no. The problem of finding the optimal performance
measure while responsiveness is fixed is not invariant to rescaling because
rescaling affects the responsiveness of a performance measure.
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Lemma 3. If we re-scale efforts in a problem with arbitrary costs C 6= I
such that costs become identical and independent, the signal-noise ratio does
not stay constant: the problem of finding the optimal measure amongst all
equally responsive measures is not invariant to rescaling.

Proof. Proof. If we want to find some linear transformation ẽ = Te such
that

C(e) = e′Ce = ẽ′ẽ = C̃(ẽ),

we have to use T = C
1
2 e, where C

1
2 is some decomposition of the positive

definite matrix C such that (C
1
2 )′C

1
2 = C. Using this transformation, we get

B(e) = β′e + ε = β′C− 1
2 ẽ + ε = B̃(ẽ)

P (e) = b′e + ε = b′C− 1
2 ẽ + ε = P̃ (ẽ),

and the benefit coefficient vectors in the transformed problem is β̃ := (C− 1
2 )′β

while the measure coefficient vector becomes b̃ := (C− 1
2 )′b. The signal-noise

ratio in the transformed problem is b̃′b̃
σ2 = b′C−1b

σ2 while the signal-noise in the

original problem was b′b
σ2 . Since C 6= I, the signal-noise ratio thus changes.

Consequently, the side-condition in the maximization problem changes and
hence the maximization problem itself is not invariant to rescaling.

In order to ensure that the same problem is solved before and after rescal-
ing, the signal-noise ratio has to be rescaled, too. Only if we consider mea-

sures with b̃′Cb̃
σ2 after rescaling, we are examining the same set of measures as

before rescaling: b̃′Cb̃
σ2 = b′b

σ2 . Using this altered signal-noise ratio, we find that
congruent performance measures maximize surplus. So, we cannot just take
the problem with differing costs, transform the problem to identical costs,
and do the usual trade-offs in the familiar setting but we have to adjust the
signal-noise ratio for costs. Note that this adjustment is different from the
adjustment in Proposition 3.
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