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Abstract

This article shows how to construct a likelihood for a general class
of censoring problems. This likelihood is proven to be valid, i.e. its
maximiser is consistent and the respective root-n estimator is asymp-
totically efficient and normally distributed under regularity conditions.
The method generalises ordinary maximum likelihood estimation as
well as several standard estimators for censoring problems (e.g. tobit
type I - tobit type V).
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1 Introduction

The value of a variable of economic interest can often only be observed under
particular circumstances – the variable is censored. Ignoring censoring will
generally lead to inconsistent estimators. The seminal example is from Tobin
(1958): because household expenditure is only observed when it is positive,
ordinary least squares estimators for the relationship between household ex-
penditure and income are downwardly biased. Since Tobin’s contribution, a
plethora of censoring problems has been examined where the observation of
a particular random variable depends on whether it is above or below a fixed
threshold or the value of another random variable. The classical approach to
obtain estimates under these circumstances is to derive a likelihood function
and use its maximiser – Amemiya (1984) surveys and classifies respective
articles. But writing down an objective function alone does not guarantee
that the maximiser has the properties of a maximium likelihood estimator
(for a recent example see Attanasio 2000). In a seminal article Amemiya
(1973) provides an involved proof why the tobit type I estimator has such
properties. Fortunately, it is now considerably easier to ensure these prop-
erties for maximisers of a given objective function by using the results on
M-estimation (for an overview see Newey and McFadden 1996). This, how-
ever, does not solve the problem how to obtain the objective function in the
first place. There is no rule which explains how to derive a valid likelihood in
the presence of censoring. Without such a rule it is not only difficult to find a
likelihood, it is –in principle– also necessary to ensure asymptotic properties
afresh from first principles for each censoring problem.

Here, we provide an explicit, unified framework for maximum likelihood
estimation with multi-dimensional censored variables.1 Starting from the
specifics of the censoring problem and the distribution of the latent vari-
ables, we explain how to find an objective function such that its maximiser
has all the asymptotic properties of a maximum likelihood estimator. The
framework is general, covers several standard problems, and incorporates the
respective estimators such as tobit types I - V or Nelson’s estimator (1977).

The next section introduces the necessary notation to describe the censoring
problem. In section 3, this description is used to derive a valid likelihood.
In section 4, the method is applied to some classical and new censoring

1The seminal classification of Amemiya (1985) exclusively deals with one-dimensional
censored variables; the important work of Gourieroux, Monfort, Renault, and Trognon
(1987) is limited to exponential families, while their formula for the likelihood (2.3) is not
particularly accessible.
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problems. Finally, section 5 concludes.

2 Describing the censoring problem

In this section, we start out with a simple representation of the censoring
mechanism (visibility sets) in order to derive another representation which
can be used for estimation (state set). Finally, we introduce the notation
needed to describe the data available for estimation.

The following example illustrates a typical censoring problem. An employer
pays the moving costs of workers, who have to relocate. To keep costs low,
the employer uses the following rule: the worker has to obtain two quotes and
the cheaper one is paid for. The employer records the name of the selected
moving company and its price. Is it possible to estimate the mean price
suggested by a moving company using the records of the employer? Clearly,
the average price observed for this moving company underestimates its mean
price offer. The price is simply more likely to be observed when it is lower.
Is there nevertheless a way to consistently estimate this mean?

This example is a special case of the more general problem, how to esti-
mate a p-dimensional parameter θ ∈ IRp, which governs a random vector
Y = (Y1, . . . , Yq) with realisation y = (y1, . . . , yq) ∈ IRq when some com-
ponents of y cannot be observed sometimes. We assume to know the joint
density of Y with respect to some measure µ and denote it by f(·, θ).2 In the
example of the moving companies, the parameters of interest are the mean
prices. For simplicity, we want to assume that there are only two moving
companies, so θ = (µ1, µ2). Then, Y describes how prices are generated and
y = (y1, y2) are the actual prices.

Before we can advance with the estimation, we need a formal description
of how and when the censoring occurs. Suppose the vector Y consists of
all censored variables as well as the variables which determine observability
(which may or may not be censored themselves). This is not a very restrictive
assumption because any missing relevant variable can simply be added as a
component to Y . Since we have all relevant variables at hand, we can say
for which realisations y of the vector Y , we can observe the j-th component
yj. We collect the respective realisations in the visibility set for the j-th

2If F (·, θ) is the cumulative distribution function of Y , then the density and measure
are formally defined as: dµ := dy if F (y, θ) absolutely continuous in y and one else; while
f(y, θ) is the derivative of F (y, θ) if it is absolutely continuous and P (Y = y) otherwise.
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component: Vj := {y|yj visible}. Conversely, V̄j denotes the realisations for
which yj is not observable.

In the example, the price by the first moving company y1 is observed when-
ever it is smaller or equal than y2 (for simplicity, we suppose that the first
offer is chosen when both prices are equal). Conversely, y2 is observed when
it is smaller than y1. So, the visibility set for y1 is V1 = {y1, y2|y1 ≤ y2} and
that for y2 is V2 = {y1, y2|y2 < y1}.

In order to be able to compute the probability that a component is visible,
we need the following assumption.

Assumption 1. The visibility set Vj is (µ-)measurable for all j.

This assumption restricts the type of censoring problem to which we can
apply the method proposed later. However, it is the only restriction and it is
hard to imagine any other form of likelihood estimation once it is violated.

While the visibility sets already embody all relevant information about the
censoring problem, they represent it in a form which cannot be used for es-
timation because the estimation procedure has to deal with the visibility of
more than one component. For an individual component, visibility can be
characterised by two outcomes: either it is observable or not. Describing
the visibility of all q components together, there are 2q different outcomes.
We call these outcomes (visibility) states. These states can be numbered
s = 0, . . . , 2q − 1, where we reserve the label s = 0 for the state in which no
component is visible.

In the moving example, there are four states: no price is visible (s = 0), only
the price of the first company is visible (s = 1), only the price of the second
company is visible (s = 2), and both prices are visible, (s = 3).

Since the visibility state describes the visibility of every component, it also
imposes restrictions on the realisation of Y . The state s occurs if and only
if y is in the following (visibility) state set :

Ws :=
⋂

{j|j visible in s}

Vj ∩
⋂

{j|j not visible in s}

V̄j

With the states and the state sets we have derived a representation of the
censoring mechanism that we can (and will) use for estimation later.
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In the moving example, the state sets are W 0 = V̄1 ∩ V̄2 = ∅ for state s = 0
because one price is always observable, W 1 = V1 if the first price is observ-
able, W 2 = V2 if the second price is observable, and W 3 = V1 ∩ V2 = ∅
because both prices are never observable at the same time.

Before we can describe the available data, we need a final piece of notation.
Let vs be an operator which extracts the observable components of y for a
given state s. In addition, we define the operator v̄s to extract the compo-
nents of y which are not observable in s.3 In order to see how the operators
work, reconsider the moving company example: v1y = y1 because the observ-
able component in state s = 1 is y1, while v2y = y2 in state s = 2 when the
second provider submitted the lower bid (y2 < y1). Likewise the unobserv-
able component in state s = 1 can be obtained by the invisibility operator
v̄1y = y2, while the invisibility operator yields v̄2y = y1 in state s = 2 where
only y2 is observable.

With this operator in place, we can now formally express the data available
for estimation. Let i = 1, . . . , n be the index of n observational units which
are an independent random sample of Y . A particular realisation of this
random sample is denoted by yi = (yi1, . . . , yiq) and leads to a state si.
Then, the visibility operator allows the following succinct representation of
the data which is available for estimation:

(si, vsi
yi)i=1,...,n.

In words: the econometrician knows which variables are observable and the
values for those variables.

3 Estimation

How can we use the data to consistently estimate the parameters? In ordinary
maximum likelihood estimation, we would take the density evaluated at the
observed realisation and maximise it in the unknown parameter. Here, this
is not possible as some components of y are not observed in some states.

3Formally, the operator v is a function of both, the state s and the realisation y:

v : {0, . . . , 2q−1} × IRq −→ IRl(s) ⊆ IRq

(s, y) 7−→ (yj1 , yj2 , . . . , yjl(s)),

where j1, . . . , jl(s) ∈ {j|j visible in state s} and l(s) is is the number of observable com-
ponents in state s. The operator v̄s is defined completely analogously.
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However, we can deduce that the values of the unobserved components lie in
the state set of the respective state. Also, we know their distribution on this
set. Using this information, we can eliminate the unobserved components
in state s by integrating them on the state set Ws. The contribution of a
realisation y in state s then only depends on observable components:

f̃s(vsy, θ) :=

∫
Ws

f(y, θ)dµ(v̄sy),

where the integration is ignored if all variables are observable. Note, that
while looking complicated, the term dµ(v̄sy) simply indicates that integra-
tion should be carried out for the components which are not observed.

The contribution of realisation y can also be motivated differently. For dis-
crete variables, the maximum likelihood estimator is obtained as the param-
eter value θ̂ under which an observed event is most likely. Take the event
that the observable components vsy fall into some set A and that the state
is s. This event has the probability:

P (vsy ∈ A ∧ y ∈ Ws|θ) =

∫
A

∫
Ws

f(y, θ)dµ(v̄sy)dµ(vsy) =

∫
A

f̃s(vsy, θ)dµ(vsy).

The parameter which maximises this probability also maximises a multiple
of this probability. As the integral is proportional to the integrand for small
changes, we can eliminate the outer integral and take the inner integral as
the contribution of y. This leads to the same contribution suggested before:
f̃s(vsy, θ).

There is also a third motivation for the form of the contributions. In state s,
the variables vsy are observable. We could directly use the density of vsy for
a given state s: fs(vsy, θ).4 This density accurately describes the observed
values, however it does not take into account the likelihood of state s itself.
In order to incorporate this likelihood, we weigh the density with the proba-
bility of state s. This results in fs(vsy, θ)·P (y ∈ Ws), which again is identical
to f̃s(vsy, θ).

If we want to compute the contribution for the i-th observational unit, we
simply replace s and vsy by the visibility state and observed values of this
unit: si and vsi

yi. The joint objective function for n independently drawn

4The density is computed as fs(vsy, θ) :=
∫

Ws
f(y, θ)dµ(v̄sy)/

∫
Ws

f(y, θ)dµ(y).
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units is then obtained by multiplying the contributions. This leads to the
likelihood estimator :

θ̂n := argmaxθ

n∏
i=1

f̃si
(vsi

yi, θ) (1)

Of course, this is only one of many possible ways to define a likelihood es-
timator. The chosen definition is based on the idea of visibility states and
there is a-priori no reason to classify contributions by these states. Even
when contributions are linked to visibility states, they could be calculated
differently, for example by not restricting the unobserved components (see
formula 5.1 in Rubin 1976 or formula 5.11 in the textbook of Little and Rubin
1987) or by limiting them to some other set instead of the state set Ws. Also,
contributions could be weighed differently. A specific example for a different
weighing is the state conditional likelihood estimator which uses fs(vsy, θ) in
place of f̃s(vsy, θ).

Nevertheless, the name likelihood estimator for θ̂n is justified because it has
various desirable properties known from ordinary maximum likelihood esti-
mators:

Theorem 1. Under regularity conditions, the maximiser θ̂n is consistent.√
nθ̂n is asymptotically normally distributed and asymptotically efficient.

In order to prove this theorem, we can directly apply the results for M-
estimators to the general form of the objective function in (1). Hence, the
novelty of the theorem does not lie in its proofs (the interesting reader finds
them and the regularity conditions in the appendix) but in the theorem it-
self. We extended the idea of maximum likelihood estimation to the censored
context by providing a rule how to derive a likelihood (definition of visibil-
ity sets, state sets and calculation of contributions). The theorem guarantees
that the respective estimator also has the properties of a maximum likelihood
estimator. Due to this result, our approach puts an end to the problem of
how to find an objective function when there is censoring and to the ensuing
difficulty of ensuring that the maximiser of this objective function is “good”.

The method proposed here does not only resemble the ordinary maximum
likelihood method in its relative ease of application and the properties of
the estimator θ̂n, this estimator is even identical to the ordinary maximum
likelihood estimator if no censoring is present. So, the approach can truly
be regarded as an extension of the maximum likelihood method to censored
variables.
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The concept of state sets is instrumental in the proofs of the theorem because
it ensures that each realisation y only contributes to the likelihood in one
way:5 the state sets are a disjoint decomposition of all possible realisations
(see Appendix A). This is not necessarily the case if state sets are not used
for integration. The state conditional likelihood estimator is based on the
same state sets as the likelihood estimator and similar proofs can be used to
show that it is also consistent. On the other hand, it does not employ the
information which is embodied in the probability of observing a particular
state and is thus not root-n asymptotically efficient (see Appendix B.3).
Also, its contributions are more difficult to calculate as P (y ∈ Ws) needs to
be computed and thus additional integration is required.

4 Applications

The developed framework covers a large range of censoring problems. This
section reconsiders some classical censoring problems, derives the likelihood,
and compares it with likelihood functions that were used for the respective
problem by other authors. In the end, we construct the likelihood for differ-
ent variations of the moving company problem.

Recall the simple tobit model in which a (one-dimensional) realisation y1

cannot be observed when it is below zero. Thus the visibility sets are V1 =
{y1|y1 ≥ 0} and V̄1 = {y1|y1 < 0}. The model has only two states: state
s = 0 with state set W0 = V̄1 and state s = 1 with state set W1 = V1.
The invisibility and visibility operators yield v̄0y = y1 and v1y = y1. Given
a normally distributed Y1 with mean µ, variance σ2, density φ(·|µ, σ2) and
cumulative distribution function Φ(·|µ, σ2), the calculated contribution for
state s = 0 is:

f̃0(θ) =

∫
W0

f(y, θ)dv̄0y =

∫
V̄1

f(y1, θ)dy1 = P (y1 < 0) = Φ(0|µ, σ2),

where θ = (µ, σ2). If y1 is observable (s = 1), the formula for the contribution
yields:

f̃1(y1, θ) = f(y1, θ) = φ(y1|µ, σ2).

Using the data, the objective function from equation (1) becomes:∏
{i|si=0}

Φ(0|µ, σ2)
∏

{i|si=1}

φ(yi1|µ, σ2)

5This is a rule of thumb sometimes used to “check” likelihoods under censoring.
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But this is exactly the likelihood which is usually used to obtain the tobit
estimator. Consequently, this estimator is a special case of estimator θ̂n and
inherits its properties. In the case of the tobit estimator, this might not be
very exciting since Amemiya (1973) has already derived its properties. How-
ever, for other estimators, the properties of which have not been proven, the
method is more useful.

As an example take the tobit type II model as introduced by Amemiya (1984).
In this model, there are two components y = (y1, y2) which are normally
distributed around the means µ1 and µ2 with variance-covariance matrix

Σ =

(
σ11 σ12

σ12 σ22

)
so that θ = (µ1, µ2, σ11, σ12, σ22).

The realisation y1 is never observable but y2 is observable whenever y1 > 0.
The visibility set for y2 is V1 = {(y1, y2)|y1 > 0}. There are two relevant
states s = 0 and s = 1 and the corresponding state sets are W0 = V̄1 and
W1 = V1. The respective contribution for state s = 0 is:

f̃0(θ) =

∫
W0

f(y, θ)dv̄0y =

∫
W0

∫
f(y1, y2, θ)dy1dy2 = P (y1 ≤ 0) = Φ(0|µ1, σ11)

while state s = 1 contributes:

f̃1(y2, θ) =

∫
W1

f(y, θ)dv̄1y = φ(y2|y1 > 0, µ1, µ2, Σ) · P (y1 > 0).

Plugging in the data, we get the following likelihood, which coincides with the
objective function given by Amemiya (1984) for the tobit type II estimator:∏

{i|si=0}

Φ(0|µ1, σ11)
∏

{i|si=1}

φ(yi2|y1 > 0, µ1, µ2, Σ) · (1− Φ(0|µ1, σ11)).

Thus, the tobit type II estimator is also a special case of the estimator θ̂n.
Unlike for the tobit type I estimator, Amemiya (1984, 1985) gives no proof,
why the type II estimator is consistent and root-n asymptotically normal
distributed. Since the estimator is a special case of θ̂n, these properties are
now formally ensured by Theorem 1. It can be shown that the likelihood
function for the tobit models of type III to V according to Amemiya’ s classi-
fication (1984) are also special cases of the objective function in (1). Hence,
the respective maximisers all have desirable properties (under regularity con-
ditions).
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Nelson (1977) examined a censoring problem, which does not fall into the
five categories of Amemiya (1984). In this model, there are again two reali-
sations y1 and y2 from normally distributed random variables and the same
parameters as in the tobit type II model. This time the second component
operates as an unobservable censoring threshold. That means y1 is observ-
able whenever it is above y2, the visibility set for y1 is V1 = {y|y1 > y2}.
Nelson (1977) proposes the following likelihood function:

∏
{i|si=0}

Φ

(
µ2 − µ1

σ11 + σ22 − 2σ12

) ∏
{i|si=1}

yi1∫
−∞

φ(yi1, yi2|µ1, µ2, Σ)dy2.

Nelson does not prove why this likelihood is valid but he conducts a small
simulation study which suggests that its maximiser has the standard asymp-
totic properties. Again, the properties can be formally affirmed if the pro-
posed likelihood function coincides with the likelihood function in (1). To
check this, compute the contribution for the state s = 0, in which y1 is not
observable:

f̃0(θ) =

∫
V0=V̄1

f(y, θ)dv̄0y =

∞∫
−∞

∞∫
y1

φ(y1, y2)dy2dy1 = Φ

(
µ2 − µ1

σ11 + σ22 − 2σ12

)
.

The contribution for the state where y1 can be observed (s = 1) is:

f̃1(y1, θ) =

∫
V1

f(y, θ)dv̄1y =

y1∫
−∞

φ(y1, y2|µ1, µ2, Σ)dy2.

This implies that Nelsons objective function is indeed a likelihood function
and that the estimator has the standard asymptotic properties.

Recent examples for likelihood functions, which are embedded in the cur-
rent framework, are the multi-variate analysis of milk product purchases by
Cornick, Cox, and Gould (1994) and the estimation of a productivity distri-
bution from bonus data by Ferrall and Shearer (1999).

Not only does the framework accommodate various classical approaches, it
also allows to generate estimators for new censoring problems. Let us re-
turn to the two moving companies. We already know that the mean of the
observed prices is inconsistent because high prices are not observed. Often,
robust methods can be successfully applied to censoring problems (for an
overview of the use of quantile methods in censoring models see Fitzenberger
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(1997)). Here, however, taking the median of the observed prices is problem-
atic because it is only known for a company when it submitted the lowest
price in more than half of the cases. On the other hand, if we are willing to
make distributional assumptions, we can employ the proposed methodology.
If the price of company j was below that of company k, the contribution is:

f̃j(yj, θ) :=

∞∫
yj

f(yj, yk, θ)dyk,

where θ is a vector summarising the parameters of interest (e.g. the mean
prices). If companies are not colluding, the price distributions are indepen-
dent for fixed characteristics, the density can be rewritten as f(y1, y2, θ) =
f1(y1, θ)f2(y2, θ), and the contribution simplifies to:

f̃j(yj, θ) = (1− Fk(yj, θ)) fj(yj, θ).

What if there are q bidding moving companies and we can only observe the
identity j of the company with the lowest price and its price yj? Then, the
contribution is:

f̃j(yj, θ) :=

∞∫
yj

· · ·
∞∫

yj

f(y, θ)dy1 · · · dyj−1dyj+1 · · · dyq.

Given indepently distributed price bids, the contribution becomes:

f̃j(yj, θ) =
∏
k 6=j

(1− Fk(yj, θ)) fj(yj, θ).

What if the reimbursing firm runs a second-price auction between two firms,
where the moving company with the lower bid wins the contract but gets paid
the higher bid? If only the reimbursed price is recorded, the visibility set for
company j is Vj := {y|yj > yk}. Accordingly, the contribution of an obser-
vation where k wins the bid and j’s price is observable is:

∫ yj

−∞ f(y, θ)dyk.
All these examples should convince the reader that the estimation approach
is rather versatile and that it can be applied to a large range of problems if
the visibility sets are known and measurable.

When we discussed the independence of prices, we already hinted at the
possibility that observable explanatory characteristics may be incorporated
in the estimation problem.6 As usually, the parameter of the i-th observation
θi may be regarded as a function of an underlying common parameter and
these explanatory characteristics – for more details see Appendix C.

6The explanatory characteristics may be censored random variables themselves. For
this case, Donald and Paarsch (1993) examine how their distribution can be retrieved.
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5 Conclusion

This article proposes a method to obtain likelihood estimators when there is
censoring. The chosen approach has several virtues.

First, it is general. The method can be applied to an almost arbitrary censor-
ing problem. For many standard censoring problems, the resulting estimator
then coincides with known estimators. Thus, it can be regarded as a gener-
alisation of these estimators. In addition, it embedds maximum likelihood
estimation when there is no censoring as a special case. Since the estimator
has the typical asymptotical properties of maximum likelihood estimators,
the method can be seen as a natural extension of the maximum likelihood
method to the problem of censored variables.

Second, likelihood estimation of censored variables becomes more accessible
for applied econometricians. At the moment, econometricians have to rely
on experience, conceived wisdom and folk theorems to find a valid likelihood
when being confronted with a censoring problem. The present approach pro-
vides an explicit rule. In order to increase the accessibility further, it would
be helpful to implement the method in a computer programme; the general-
ity of the approach could be maintained by calculating contributions on the
basis of Monte-Carlo simulations.

Third, the approach renders likelihood estimation with censoring more trans-
parent and clarifies why asymptotic properties hold. As Davidson and MacK-
innon point out (1993, p. 539), likelihoods for censoring problems sometimes
appear “fishy” to the uninitiated, because they are neither (Lebesgue-)density
nor probability functions but seemingly odd mixtures. While Amemiya
(1973) has proven that the mixture employed in the tobit type I estima-
tor yields the usual asymptotic properties, the approach here identifies a
whole class of such mixtures which are valid likelihood functions.

Fourth, it provides a structured way to describe censoring problems. In
order to write down the likelihood, the censoring problem needs to be put
in a particular structure. This imposes a discipline on the presentation of
the model which helps the reader (and possibly also the modeller) to better
understand the nature of the censoring problem.

11



References

Amemiya, T. (1973): “Regression Analysis when the Dependent Variable is
Truncated Normal,” Econometrica, 41(6), 997–1016.

(1984): “Tobit Models: A Survey,” Journal of Econometrics, 24,
3–61.

(1985): Advanced Econometrics. Basil Blackwell, Oxford.

Attanasio, O. P. (2000): “Consumer Durables and Inertial Behaviour:
Estimation and Aggregation of (S,S) Rules for Automobile Purchases,”
Review of Economic Studies, 67(4), 667–696.

Cornick, J., T. Cox, and B. W. Gould (1994): “Fluid Milk Purchases:
A Multivariate Tobit Analysis,” American Journal of Agricultural Eco-
nomics, 76(1), 74–82.

Davidson, R., and J. G. MacKinnon (1993): Estimation and Inference
in Econometrics. Oxford University Press, Oxford.

Donald, S. G., and H. J. Paarsch (1993): “Piecewise Pseudo-Maximum
Likelihood Estimation in Empirical Models of Auctions,” International
Economic Review, 34(1), 121–148.

Ferrall, C., and B. Shearer (1999): “Incentives and Transaction Costs
Within the Firm: Estimating an Agency Model Using Payroll Records,”
Review of Economic Studies, 66, 309–338.

Fitzenberger, B. (1997): “A Guide to Censored Quantile Regression,” in
Handbook of Statistics, Vol 15: Robust Inference, ed. by G. Maddala, and
C. Rao, pp. 405–435. Elsevier, Amsterdam, Reprint.

Gourieroux, C., A. Monfort, E. Renault, and A. Trognon (1987):
“Generalised Residuals,” Journal of Econometrics, 34, 5–32.

Little, R. J. A., and D. B. Rubin (1987): Statistical Analysis with
Missing Data. John Wiley, New York.

Nelson, F. D. (1977): “Censored Regression Models with Unobserved
Stochastic Censoring Thresholds,” Journal of Econometrics, 6(3), 309–
328.

12



Newey, W. K., and D. McFadden (1996): “Large Sample Estimation
and Hypothesis Testing,” in Handbook of Econometrics, ed. by Z. Griliches,
and M. D. Intriligator, vol. 4, pp. 2111–2241. North-Holland.

Rubin, D. B. (1976): “Inference and Missing Data,” Biometrika, 63, 581–
592.

Tobin, J. (1958): “Estimation of Relationships for Limited Dependent Vari-
ables,” Econometrica, 26, 24–36.

A Collection of states decomposes IRq

Lemma 1. {Ws}s≥0 is a disjoint decomposition of IRq.

Proof. Part 1:
⋃

s Ws = IRq: Take any y ∈ IRq. Call the respective visi-

bility state s′. For this visibility state s′, it must hold that y ∈ Vj if yj

observable and y ∈ V̄j if yj not observable. Thus, y ∈
⋂
{j|j visible in s′} Vj ∩⋂

{j|j not visible in s′} V̄j, which by definition is equivalent to y ∈ Ws′ and hence

y ∈
⋃

s Ws′ . Overall, y ∈ IRq ⇒ y ∈
⋃

s Ws′ and hence
⋃

s Ws ⊇ IRq. On
the other hand, Ws′ ⊆ IRq for all s′ and thus

⋃
s Ws ⊆ IRq. Together we get:⋃

s Ws = IRq.

Part 2: Ws ∩Ws′ = ∅ for s 6= s′. If states differ (s 6= s′), it follows that there
exists a component k which is visible in one state but not in the other.
Without loss of generality, let s be the state where it is visible, then Ws ⊆ Vk

and Ws′ ⊆ V̄k by the definition of the visibility set. Hence, (Ws ∩ Ws′) ⊆
(Vk∩ V̄k). But the latter is by construction the empty set: Vk∩ V̄k = ∅. Thus,
the visibility sets must be disjoint: (Ws ∩Ws′) = ∅.

B Properties of the maximiser (Theorem 1)

In this section, we analyse the properties of the estimator defined by (1). The
first part deals with consistency, the second part with asymptotic normality,
and the third part with efficiency.

B.1 Consistency

In this section, consistency is proven by using a standard result on the con-
sistency of M-estimators. As θ̂n is the maximiser of any monotone transfor-
mation of the objective function in (1), one can alternatively work with the
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following objective function:

Qn(θ) :=
1

n

n∑
i=1

log f̃si
(vsi

yi, θ) (2)

and use the machinery of M-estimation to determine the properties of the
maximiser and in particular to check whether it is consistent. To do so we
employ the following standard result (see e.g. Amemiya 1985 or Newey and
McFadden 1996):

Theorem 2 (Consistency of M-estimators). If there are measurable
functions Qn(θ) and a non-stochastic function Q0(θ) such that (i) Qn(θ)
converges uniformly in probability to Q0(θ), (ii) Q0(θ) is continuous, (iii)
Q0(θ) is uniquely maximised at θ0, and (iv) the parameter space is compact,

then θ̂n is consistent for θ0: θ̂n
p→ θ0.

The rest of this section will be devoted to find primitive conditions for (i) to
(iii) to hold.

The objective function needs to converge to the non-stochastic function
Q0(θ). Before we are able to find the maximiser of the limit of the ob-
jective function, we must ensure that this function exists and is finite. Thus,
we assume that the expected value of the logarithm of the density exists:

E| log f(Y, θ)| < ∞. (FIN)

From this condition on the general density, we can conclude the finiteness of
the expectation of the contributions of state s.7

Lemma 2. From (FIN) follows:

EY |S

∣∣∣log(f̃s(vsY ), θ)
∣∣∣ < ∞.

Proof. By the mean-value theorem for integrals, we can rewrite the contri-
bution of state s:

f̃s(vsy) =

∫
Ws

f(h(vsy, v̄sỹ), θ)dµ(v̄sy) = f(h(vsy, ζ)) for some ζ ∈ Ws, (3)

7Note that the states s are generated by a well-defined random variable S because Ws

is µ−measurable.
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where h is the appropriate permutation of the values such that y1 is the first
argument of f(·) and yn is the last. Now, take condition (FIN) and rewrite
it.

∞ > E |log {f(Y, θ)}|
= ES

[
EY |S |log {f(Y, θ)}|

]
= ES

[
Ev̄sY,vsY |S |log {f(Y, θ)}|

]
= ES

[
Ev̄sY |S

[
EvsY |v̄sY,S |log {f(Y, θ)}|

]]
.

This implies:

∀(v̄Sy) : E(vSY )|(v̄SY ),S |log {f(h(vSY, (v̄SY )), θ)}| < ∞
⇒ E(vsY )|ζ,S |log {f(h(vsY, ζ), θ)}| < ∞.

Together with (3), we get:

∞ > E(vsY )|ζ,S |log {f(h(vsY, ζ), θ)}| = E(vsY )|S

∣∣∣log
{

f̃s(vsY, θ)
}∣∣∣ .

Using the finiteness and the law of large numbers, we can determine the
probability limit of the objective function when the number of observations
tends to infinity.

Proposition 1 (Convergence). Given condition (FIN), Qn(θ) converges
uniformly in probability to

Q0(θ) =
∑

s

∫
Ws

log
{

f̃s(vsy, θ)
}

f̃s(vsy, θ0) dµ(vsy). (4)

Proof. Since observational units are drawn independently, Qn(θ) is the mean
of independent random variables. The law of the large numbers applies, and
the mean converges in probability to its expected value

EY |θ0

[
log
{

f̃S(vSY, θ)
}]

= ES|θ0

[
EY |S,θ0

[
log
{

f̃S(vSY, θ)
}]]

, which is finite by (FIN)

=
2q−1∑
s=0

P (S = s, θ0)

∫
Ws

log
{

f̃s(vsy, θ)
}

fs(vsy, θ0)dµ(vsy)

=
2q−1∑
s=0

∫
Ws

log
{

f̃s(vsy, θ)
}

f̃s(vsy, θ0)dµ(vsy).
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Next, we have to ensure continuity of the limiting objective function Q0(θ) so
that stochastic convergence of the argument leads to stochastic convergence
of the values of the function.

Proposition 2 (Continuity). If

f(y, θ) is continuous in θ (CON),

Q0(θ) is continuous in θ.

Proof. If f(y, θ) is continuous in θ, f̃s(vsy, θ) =
∫

Ws
f(y, θ)dµ(v̄sy) is contin-

uous in θ, and so is Q0(θ).

Like in the case of maximum likelihood estimation, it must be possible to
extract the desired information about parameters from the observations. Two
different parameter values which generate the same observations cannot be
distinguished. In other words it must be possible to identify the parameter
from the observations. We define the statistical model to be identified if and
only if

∀θ 6= θ′ ∃s P (S = s) > 0 : fs(vsy, θ) 6= fs(vsy, θ′). (ID)

In other words, there must exist at least one state under which differences in
the parameter translate into differences in the conditional density. Similarly,
to the identification condition in maximum likelihood estimation, this condi-
tion may be difficult to verify. The next result proves that the parameter is
indeed uniquely determined when the condition can be verified. The proof is
very similar to the proof of the uniqueness of the maximiser of the limiting
objective function when working with ordinary likelihoods.

Proposition 3 (Unique maximiser). Under (ID) and (FIN),
Q0(·) is uniquely maximised at the true parameter θ0.

Proof. Consider the difference between the limiting objective function eval-
uated at the true parameter, Q0(θ0), and at a different parameter Q0(θ):

Q0(θ0)−Q0(θ) = EY |θ0

[
log
{

f̃s(vsy, θ0)
}
− log

{
f̃s(vsy, θ)

}]
= EY |θ0

[
− log

{
f̃s(vsy, θ)

f̃s(vsy, θ0)

}]

> ES|θ0

[
− log

{
EY |S,θ0

[
f̃s(vsy, θ)

f̃s(vsy, θ0)

]}]
,

(5)

where the last inequality follows from the strict version of Jensen’s inequality
for non-constant random variables. By (ID), the expected value is indeed
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taken over a non-constant random variable. As EY |S

[
f̃s(vsy,θ)

f̃s(vsy,θ0)

]
= 1, we get

Q0(θ0)−Q0(θ) > 0, and θ0 is the unique maximum.

The consistency of the estimator (1) can now be deduced from the conditions
(FIN), (CON), and (ID) which together with the propositions 1 to 3 imply
that the requirements of the standard consistency theorem are valid.

Theorem 3 (Consistency of the estimator). If there are measurable
functions Qn(θ), (FIN), (CON), (ID) hold, and the parameter space is com-

pact, then θ̂n
p→ θ0.

It is simple to construct an alternative to estimator (1) by replacing f̃s(·)
by the conditional density contributions fs(·) where the “density” for state
s = 0 is defined as f0(y, θ) ≡ P (S = 0, θ). Multiplying these conditional
density contributions, we get the state conditional likelihood function QSCL

n ;
the maximiser will be referred to as state conditional likelihood estimator or
as SCL-estimator. All propositions and proofs in this section can be adapted
to the state conditional likelihood estimator, so that it is also consistent under
(FIN), (CON), (ID). In addition to the evaluation of an integral, which is also
necessary to obtain the generalised likelihood, the state conditional likelihood
requires the computation of the probability of all states. If there is no closed
form for the respective probabilities, this will increase the computational
effort substantially. In order to save space, the likelihood estimator θ̂n defined
in (1), is abbreviated to L-estimator.

B.2 Asymptotic normality

Another property of maximum likelihood estimators is their asymptotic nor-
mality and efficiency. In this section, conditions are derived under which (1)
has these properties. More precisely, we assume that the objective function
in (1) has an interior maximum and examine the solution to the first-order
condition which results from maximising the objective function. Again, the
conditions resemble the respective conditions for maximum likelihood esti-
mators. This is no coincidence, since the proof is based on a standard result
for M-estimators (Theorem 4.1.3 in Amemiya 1985 where assumption B is
replaced using Theorem 4.1.5):

Proposition 4 (Asymptotic normality of M-estimators). If (i) θ̂n, the
maximiser of Qn(·), is consistent for θ0, (ii) θ0 lies in the interior of the
parameter space Θ, (iii) Qn is twice continuously differentiable in an open

and convex neighbourhood N of θ0, (iv)
√

n∇θQn(θ)|θ=θ0

d→ N(0, J), (v)
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∇θθQn(θ)|θ=θ̂n

P→ H(θ0) with H(θ) finite, non-singular, and continuous at θ0,

then
√

n(θ̂n − θ0)
d→ N(0, H−1JH−1).

Under the assumptions of theorem 3, condition (i) is valid. Condition (ii)
ensures that the maximum is not a corner solution and hence that the first
derivative of Q0(·) disappears at θ0. Subsequently, conditions (iii) to (v)
should be replaced by primitive conditions on the density f(y, θ).

We begin by assuming:

f(y, θ) is twice continuously differentiable at θ0. (DIFF)

Denote the operator which yields the first derivative of a vector-valued func-
tion by ∇θ and use the convention that this operator turns a real-valued
component of the function into a (1, p)-vector, where the first value is the
derivative with respect to θ1, the second with respect to θ2 and so forth. Like-
wise ∇θθ is the operator which gives the second derivative of a real-valued
function, the Jacobian matrix. We want the differentiation operators to be
exchangeable with integration which is for example fulfilled if the area over
which is integrated does not depend on θ:

∇θ

∫
f(y, θ)dµ(y) =

∫
∇θf(y, θ)dµ(y)

∇θθ

∫
f(y, θ)dµ(y) =

∫
∇θθf(y, θ)dµ(y),

(EID)

where we require the equalities to hold only evaluated in the neighbourhood
of θ = θ0. We can use the exchangebility to compute the first and second
derivative of f̃ s(vsy, θ) with respect to θ at θ0:

∇θf̃s(vsy, θ)

∣∣∣∣
θ=θ0

=

∫
Ws

∇θf(y, θ)dµ(v̄sy)

∣∣∣∣
θ=θ0

∇θθf̃s(vsy, θ)dµ(v̄sy)

∣∣∣∣
θ=θ0

=

∫
Ws

∇θθf(y, θ)dµ(v̄sy)

∣∣∣∣
θ=θ0

(6)

Next, define:

J(θ) := EY |θ0

[
∇θf̃S(vSY, θ)′∇θf̃S(vSY, θ)

f̃S(vSY, θ)f̃S(vSY, θ)

]
, (7)

where expectations are taken with respect to the true parameter θ0 and
where the prime denotes the transpose of a vector or matrix. Later, it will
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be proven that J(θ) is the second derivative of the limit function Q0(θ) and
thus deserves the letter “J” indicating that it is a Jacobian matrix. Since,
we want this second derivative to exist and to be finite at its maximiser θ0,
we suppose that

J := J(θ0) exists and is finite. (EX)

Under the defined conditions, it is now possible to calculate the distribution
of the first derivative of the objective function:

Proposition 5 (Asymptotic normality of the first derivative). Under
(DIFF), (FIN), (EX), (EID), and if J defined in (EX) is non-singular, then

√
n∇θQn(θ)|θ=θ0

d→ N(0, J).

Proof.
√

n∇θQn(θ)|θ=θ0 can be rewritten as the sum of i.i.d. random vari-
ables:

√
n∇θQn(θ)|θ=θ0 =

1√
n

n∑
i=1

∇θf̃s(vsi
yi, θ)|θ=θ0

f̃s(vsi
yi, θ)|θ=θ0︸ ︷︷ ︸
=:Qi

∇

, (8)

and by the central-limit theorem its distribution converges to a normal dis-
tribution with mean E(Qi

∇) and variance-covariance matrix COV [Qi
∇] . The

existence of E(Qi
∇) is assured by (EX) and Jensen’s inequality, its value is:

E(Qi
∇) =

∑
s

P (S = s, θ0)

∫
∇θf̃s(vsy, θ)|θ=θ0

f̃s(vsy, θ0)
· f̃s(vsy, θ0)

P (S = s, θ0)
dµ(vsy)

(EID)
=

∑
s

P (S = s, θ) · ∇θ

∫
f̃s(vsy, θ)

P (S = s, θ)
dµ(vsy)︸ ︷︷ ︸

=1

∣∣∣∣
θ=θ0

= 0.
(9)

As the expected value is the zero vector, COV [Qi
∇] = E [(Qi

∇)′Qi
∇]. By

plugging in Qi
∇ one immediately gets COV [Qi

∇] = J, the existence of which
is ensured by (EX).

Assumptions (DIFF), (EX), and (EID) do not only enable us to compute the
first but also the limit of the second derivative when it is evaluated at the
maximiser:

Proposition 6 (Convergence of the second derivative). Given (DIFF),

(EX), (EID), and θ̂n → θ0, it follows that ∇θθQn(θ)|θ=θ̂n

P→ −J , where J is
positive definite.
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Proof. The second derivative of the objective function with respect to θ is:

∇θθQn(θ) =
1

n

n∑
i=1

f̃s(vsy, θ)∇θθf̃s(vsy, θ)−∇θf̃s(vsy, θ)′∇θf̃s(vsy, θ)

f̃s(vsy, θ)2︸ ︷︷ ︸
=:Qi

∇∇

.

(10)
By the law of large numbers Qi

∇∇ approaches its expected value:

E(Qi
∇∇(θ)) = E

(
∇θθf̃s(vsy, θ)

f̃s(vsy, θ)

)
− E

(
∇θf̃s(vsy, θ)′∇θf̃s(vsy, θ)

f̃s(vsy, θ)2

)
=

∑
s

P (S = s, θ0)

∫
∇θθf̃s(vsy, θ)dµ(vsy) · 1

P (S = s, θ0)
− J(θ)

(EID)
=

∑
s

P (S = s, θ0)∇θθ

∫
f(vsy, θ)dµ(vsy)︸ ︷︷ ︸

=0

−J(θ) = −J(θ).

(11)

As this expected value is continuous in θ around θ0, we can use Theorem
4.1.5 in Amemiya (1985) to conclude that from θ̂n

p→ θ0 it follows that

E[Qi
∇∇(θ̂n)]

p→ E [Qi
∇∇(θ0)] . So overall, we get∇θθQn(θ)|θ=θ̂n

p→ E [Qi
∇∇(θ0)] =

−J . As −J is the second derivative of the objective function evaluated at a
unique and interior maximum, it must be negative definite. So, J must be
positive definite.

Using theorem 3 and propositions 4 to 6, we can state:

Theorem 4 (Asymptotic normality of the L-estimator). If (ID),
(EX), (FIN), (EID), and (DIFF) hold, and θ0 is in the interior of the com-

pact parameter space Θ, then
√

n(θ̂n − θ0)
d→ N(0, J−1).

Again, the results for the state conditional estimator θ̂SCL
n can be derived

by replacing the contributions f̃s(·) by the conditional density contributions
fs(·) and the generalised likelihood Qn by the state conditional likelihood
QSCL

n in propositions 4 to 6. This yields the following result.

Corollary 1 (Asymptotic normality of the SCL-estimator). If (ID),
(EX), (FIN), (EID), and (DIFF) hold, and θ0 is in the interior of the compact

parameter space Θ, then
√

n(θ̂SCL
n − θ0)

d→ N(0, (ΣSCL)−1), where

ΣSCL := EY |θ0

[
∇θfs(vsY, θ)′∇θfs(vsY, θ)

fs(vsY, θ)fs(vsY, θ)

]
. (12)
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The asymptotic variance-covariance matrix of the derivative of the state de-
pendent likelihood function ΣSCL is identical to the variance-covariance ma-
trix for the generalised likelihood J , if the probabilities of the various states
do not depend on the unknown parameter: ∇θP (S = s, θ) = 0 ⇒ ΣSCL = J.
However, generally the two matrices will be different. Then, the respective
root-n estimators have different asymptotic properties. Is one of the esti-
mators preferable because it has a smaller asymptotic variance-covariance
matrix?

B.3 Asymptotic Efficiency

To show that root-n times the L-estimator is asymptotically efficient, we
proceed in two steps. First, we determine the Cramer-Rao lower bound for
the class of censoring problems under consideration. This yields the “small-
est” variance-covariance matrix which can be attained using the available
(censored) information. Second, we observe that the asymptotic variance-
covariance matrix of the root-n L-estimator coincides with this lower bound.
Hence, the root-n L-estimator must be asymptotically efficient.

Proposition 7 (Cramer-Rao lower bound). In the censoring problem de-
scribed above and given that (ID), (EX), (FIN), (EID), and (DIFF) hold, the
asymptotic variance-covariance matrix limn→∞ COV [

√
nT ] of any asymptot-

ically unbiased estimator
√

nT for θ0 is larger or equal to J according to the
Löwner ordering:

∀x : lim
n→∞

x′COV
[√

nT
]
x ≥ x′J−1x.

Proof. Denote the observable sample by vsy := (vs1y1., . . . , vsnyn.) Let
√

nT (·)
be an asymptotically unbiased estimator for the true parameter: E [T (vSY )] =
θ0, for n → ∞. Then, write out the expected value using the independence
of the observations:

θ0 = lim
n→∞

EY |θ0 [T (vSY )]

= lim
n→∞

2q−1∑
s1=0

P (S = s1, θ0) · · ·
2q−1∑
sn=0

P (S = sn, θ0) ·

·
∫
· · ·
∫

Ws1 Wsn

T (vs1y1, . . . , vsnyn)
n∏

i=1

fsi
(vsi

yi, θ0) dµ(vs1y1) · · · dµ(vsnyn).
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Using relationship f̃s(vsy, θ) = P (S = s)fs(vsy, θ), this simplifies to:

θ|θ=θ0 = lim
n→∞

2q−1∑
s1=0

· · ·
2q−1∑
sn=0

∫
Ws1

· · ·
∫

Wsn

T (vsy)
n∏

i=1

f̃si
(vsi

yi, θ0) dµ(vs1y1) · · · dµ(vsnyn).

(13)

Now, take the derivative with respect to θ on both sides:

I = lim
n→∞

2q−1∑
s1=0

· · ·
2q−1∑
sn=0

∫
· · ·
∫

Ws1 Wsn

T (vsy)∇θ

n∏
i=1

f̃si
(vsi

yi, θ0) dµ(vs1y1) · · · dµ(vsnyn).

(14)
Next, consider the following sophisticated expression for a zero matrix:

θ0 ∇θI = θ0∇θ

2q−1∑
s1=0

· · ·
2q−1∑
sn=0

∫
· · ·
∫

Ws1 Wsn

∇θ

n∏
i=1

f̃si
(vsi

yi, θ0) dµ(vs1y1) · · · dµ(vsnyn).

(15)
Subtracting this sophisticated zero from the right-hand side in (14) yields:

I = lim
n→∞

2q−1∑
s1=0

· · ·
2q−1∑
sn=0

∫
Ws1

· · ·
∫

Wsn

(T (vsy)− θ0)∇θf̃s.(vsy, θ0) dµ(vs1y1) · · · dµ(vsnyn),

where f̃s.(vsy, θ0) :=
∏n

i=1 f̃si
(vsi

yi, θ0). By multiplying with and dividing by

√
nfs·(vsy, θ0) :=

n∏
i=1

fsi
(vsi

yi, θ0),

we get:

I = lim
n→∞

2q−1∑
s1=0

· · ·
2q−1∑
sn=0

∫
Ws1

· · ·
∫

Wsn

√
n (T (vsy)− θ0)

∇θf̃s.(vsy, θ0)√
nfs·(vsy, θ0)

fs·(vsy, θ0)dµ(vsy)

= lim
n→∞

E [T W ] , (16)

where T =
√

n (T (vsy)− θ0) and W =
(∇θ f̃s. (vsy,θ0))

′

√
nfs· (vsy,θ0)

=
(∇θ log{f̃s. (vsy,θ0)})′√

n
.

Next, write the complete asymptotic variance-covariance matrix of (T ,W).

lim
n→∞

(
E

[(
T T ′ T W ′

WT ′ WW ′

)]
−
(

E [T ] E [T ]′ E [T ] E [W ]′

E [W ] E [T ]′ E [W ] E [W ]′

))
.
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Recall that
√

nT is an asymptotically unbiased estimator such that limn→∞ E [T ]
is a zero vector of length q. By writing out E [W ] and exchanging the order
of integration and differentiation, it can be shown that E [W ] is also a zero
vector of length q. Thus, the subtracted matrix cancels and the asymptotic
variance-covariance matrix is:

lim
n→∞

COV [T W ] = lim
n→∞

E

[(
T T ′ T W ′

WT ′ WW ′

)]
.

Next, note that E [T T ′] = COV [T ] = COV [
√

n(T − θ0)] = COV [
√

nT ],
while

E [WW ′] =
1

n

n∑
i=1

E

[
∇θ log

{
f̃si

(vsy, θ0)
}′
∇θ log

{
f̃si

(vsy, θ0)
}]

= J.

and E [T W ′] = I. So overall, we get:

lim
n→∞

COV [T W ] = lim
n→∞

(
COV [

√
nT ] I

I J

)
. (17)

Being a variance-covariance matrix, this expression must be positive semi-
definite, so in particular

∀a (a′,−a′J−1) lim
n→∞

(
COV [

√
nT ] I

I J

)(
a

−J−1a

)
≥ 0.

If we multiply out this inequality, we get the result:

lim
n→∞

∀a a′
(
COV

[√
nT
]
− J−1

)
a ≥ 0.

Proposition 7 gives us the lower bound on the variance-covariance matrix.
Because this bound is asymptotically attained by the root-n estimator, we
can conclude immediately:

Corollary 2 (Asymptotic efficiency). In the censoring problem described
above and given that (ID), (EX), (FIN), (EID), and (DIFF) hold, the root-n
estimator

√
nθ̂n is asymptotically efficient.

The L-estimator is thus superior to the SCL-estimator in the sense that its
root-n estimator has a lower asymptotic variance-covariance matrix. In other
words, the L-estimator makes better use of the available information.

23



C A remark on censored regression

In many applications, observational units will differ by observable character-
istics Xi which have an effect on the distribution of Y . To allow for this in
our modelling framework, we suppose that the formerly fixed θ is an individ-
ual parameter which results from the interplay of observable characteristics
Xi with a fixed parameter β: θi = g(β, Xi).

Since observational units are drawn randomly, the observable characteristics
Xi can be modelled by a random variable. The joint density of Y and X can
be decomposed: fY,X (y, g(β, x)) = fY |X (y|g(β, x)) · fX(x). Accordingly, the
contribution of a particular state s becomes:

f̂s(vsy, β, x) =

∫
Ws

f(y|β, x)dµ(v̄sy)

︸ ︷︷ ︸
=:f̃(vsy|β,x)

·fX(x),

and thus the logarithmitised objective function is:

Qn(θ) =
n∑

i=1

log
(
f̃s(vsi

yi|β, xi)
)

+
n∑

i=1

log (fX(xi)) . (18)

As the last term does not change in β, it can be ignored when maximising.
So we are left with an objective function which closely resembles the objec-
tive function from formula (2) which we analysed in the preceding sections.
All conditions, proofs, and theorems can be adapted to this new objective
function by replacing f(y, θ) by f(y|β, x) and f̃s(vsy, θ) by f̃s(vsy|β, x), and
requiring the respective statement to hold for all x. Additionally, one needs∫

log(fX(x))fX(x)dx < ∞, to ensure finiteness of the limiting objective func-
tion. The identifiability condition becomes:

∀β 6= β′ ∃s,X : PX(x ∈ X ) > 0 : f̃s(vsy, β, x) 6= f̃s(vsy, β′, x). (ID’)

For the linear case g(X, β) = Xβ and given (ID), this is fulfilled if X has full
rank with positive probability.

On the asymptotic normality result the introduction of X has no effect: all
proofs are based on derivatives of the objective function with respect to the
parameter. Since the second sum in the objective function is independent of
the parameter β, it cancels when taking derivatives.
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