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Abstract

The growing literature in behavioral finance and macroeconomics that uses dy-
namic discrete choice models has overwhelmingly assumed that individual choices
are made on the basis of a logit framework. While this assumption allows for analyt-
ical tractability, it comes with a number of restrictions with regards to the economic
environments it can represent. These restrictions are lifted if a probit framework
is used instead. In this paper we compare the two approaches and show that, due
to its ability to allow for correlations between the random part of different choice
alternatives as well as random taste variation, the probit-based model can better
fit actual choice data from an existing laboratory experiment, especially if there are
more choice alternatives. On the other hand, for the case of two choice alternatives
without random taste variation, the probit-based and logit-based models result in
very similar dynamics. But even in that case, we find that important qualitative
differences arise – in terms of an additional region of chaos – in the cobweb model of
the seminal work of Brock and Hommes (1997). Our work highlights the usefulness
of using the probit framework for extensions of existing theoretical models and as
a way to better fit dynamic experimental or real world choice data.
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1 Introduction

Over the last decades, large literatures on behavioral finance and behavioral economics

have been developed that aim to provide more robust modeling and policy implications

by taking account of deviations of full rationality of financial and economic actors (see

e.g. De Bondt and Thaler, 1985; De Long et al., 1990; Shleifer and Vishny, 1997; Bordalo

et al., 2018; Evans and Honkapohja, 2012; Woodford, 2013; Azeredo da Silveira and

Woodford, 2019; and Gabaix, 2020). A growing literature within behavioral finance

and behavioral macroeconomics, starting with Brock and Hommes (1997, 1998), has

incorporated behavioral insights like bounded rationality (Simon, 1957, 1979) and the

use of heuristics (Kahneman and Tversky, 1973; Kahneman, 2003) into the modeling of

expectation formation. Models of this type rely on a discrete choice framework (Manski

and McFadden, 1981; McFadden, 2001) and assume that individuals have heterogeneous

expectations and choose from a set of prediction rules. The fractions of individuals

that follow the different prediction rules in a given period directly influences aggregate

forecasts and so determines the values of the financial or macroeconomic variables in

the model. Crucially, the choice of prediction rules is based on their relative performance

(fitness) through a discrete choice model. This setting, where the choice of prediction rules

determines model outcomes and where these model outcomes subsequently impact on

future prediction rule choices results in a dynamic switching framework. This framework

has not only allowed for more realistic assumptions regarding prediction rules observed in

experiments (for example see Hommes et al., 2005; Anufriev et al., 2016, 2018) but also is

able to capture several empirically observed phenomena (for example see Branch, 2004;

Hommes, 2006; Heemeijer et al., 2009; Lux, 2009; Cornea-Madeira et al., 2019; Hommes,

2021).

The standard assumption within this literature is that switching between different

expectation rules takes the functional form that corresponds to choices being made on

the basis of a logit discrete choice model. This (implicit) assumption is convenient as

it allows for closed form expressions of the choice probabilities; however, it comes with

some limitations. In particular, the logit framework assumes that the unobservable factors



which influence choices between alternatives are independent and identically distributed

(Train, 2009). As a consequence, random variation across tastes is not allowed for.

Moreover, the logit framework is restricted to feature the independence of irrelevant

alternatives property, which can be a restrictive assumption. Furthermore, Anufriev

et al. (2016) show that the standard logit model is not able to capture well the switching

behavior when more choice alternatives are available.

In this paper we use, instead, a probit framework which does not suffer from these

limitations. We show that this framework is better able to capture switching behavior

documented in the labratory experiment of Anufriev et al. (2016) for more than two

choice alternatives. We provide intuition for this result by investigating in detail (i) how

the probit model allows for deviations from the independence of irrelevant alternatives

property and (ii) what the implications of allowing for random taste variation are. We

further show that for the case of two choice alternatives and no random taste variation,

the probit- and logit-based heuristic switching models are very similar. As a consequence,

the key insights from the seminal paper of Brock and Hommes (1997), which shows the

emergence of chaotic price dynamics, carry over to the case of a probit-based heuristic

switching mechanism. However, even in that case, important qualitative differences may

arise depending on whether the logit- or probit-framework is chosen. In particular, we

show that, under the probit-based framework, an additional region of chaos arises in

a relevant region of the parameter space. The key implication of our results is that

the relevant literature should be using a probit framework at least a robustness check

especially in cases where the emergence of chaos is discussed and in situations where

more than two alternatives are available.

Our results, showing the usefulness of a probit framework for the experiment of

Anufriev et al. (2016), contribute to the behavioural/experimental literature on asset

pricing with agents choosing among heterogeneous expectation rules (Hommes et al.,

2005; Anufriev and Hommes, 2012; Bao et al., 2012; Anufriev et al., 2018) and where

the switching process assumes a logit framework. In this way, our work is connected to

the broader experimental literature on learning to forecast (Colasante et al., 2017; Bao
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et al., 2017; Kopányi-Peuker and Weber, 2020). By showing the similarities between

the logit and the key insights of Brock and Hommes (1997, 1998) hold even under more

general economic assumptions and (ii) provide a robustness criterion for models in this

tradition which have been used to study a number of economic and social phenomena.

Examples of applications of dynamic discrete choice models include, social interactions

(Brock and Durlauf, 2001) asset pricing (Chiarella and He, 2002, 2003), the effective-

ness of financial transaction taxes (Westerhoff and Dieci, 2006), macroeconomic activ-

ity (De Grauwe, 2012), monetary policy (De Grauwe, 2011; Hommes and Lustenhouwer,

2019; Hommes et al., 2019; Assenza et al., 2021), exchange rate dynamics (De Grauwe and

Grimaldi, 2005), fiscal policy (Hommes et al., 2018), real-financial interactions (Flaschel

et al., 2018), voting (Di Guilmi and Galanis, 2021) and physical distancing in response

to COVID-19 (Di Guilmi et al., 2020).1

The structure of the rest of the paper is as follows. The next section introduces the

behavioral microfoundations of discrete choice models and discusses what the economic

assumptions are upon which logit and probit models are based. In Section 3, we compare

the logit- and probit-frameworks, especially focusing on the independence of irrelevant

alternatives, as well as their fit to the Anufriev et al. (2016) experimental data. Section 4

focuses on random taste variation in a probit-framework. In Section 5, we present a probit

version of the Brock and Hommes (1997) model and analyze its dynamic equilibrium

properties. The final section concludes.

2 Random Utility Models

Assume an environment with a large number N of individuals who face a choice between

mutually exclusive alternatives from a set J . An individual i ∈ {1, . . . , N} would choose

alternative A in period t iff

UAi
t > Uki

t , k ∈ J with k 6= A, (1)
1As the relevant literature is too extensive to review, we refer the reader to the reviews of Hommes

(2006); Chiarella et al. (2009); Branch and McGough (2018); Dieci and He (2018) for models in finance
and macroeconomics.
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where U ji
t is the utility of individual i from choosing j ∈ J in t, and is given by

U ji
t = βixj,t + εjit , (2)

where βixj,t captures the observable attributes that affect i’s decision and εjit the

unobservable ones which are assumed to vary across individuals. xj,t is a column vector

of observable variables at t which affect the decision between the different alternatives

and βi is a row vector which captures the importance and type of effect (positive or

negative) of the each of the variables in xj,t. For example, in Flaschel et al. (2018) the

decision of agents between adopting a fundamentalist or chartist rule depends on relative

economic performance, profitability, price volatility and the shares of investors that follow

the different strategies.

When decisions are made based on a weighted average of past forecast errors, the first

element of xj,t in (2) corresponds to the most recent forecast error, whereas the other

element(s) of xj,t capture forecast errors further in the past. Correspondingly, the first

element of βi is the weight that is put on the most recent forecast (e.g. (1− ρ) with ρ a

memory parameter). Other examples include the case where forecasters forecast multiple

variables and switch their forecasting strategy jointly on all these variables, as in e.g.

Hommes and Lustenhouwer (2019). Forecast errors of different variables then can be

seen as taking different entries in the vector xj,t with corresponding weights in the vector

βi.

Note that we can identify two types of heterogeneity across individuals related to

preferences with respect to both observable factors through βi and unobservable ones

through εjit . The first type of heterogeneity could be related both to different preferences

(for example different levels of risk aversion) and to behavioral factors related to the

importance individuals may give to the various variables of xj,t. The second type of

heterogeneity captures different types of individual biases which are not related to the

observable factors and vary over the population.

In order to calculate the probability that a particular agent chooses a certain choice

alternative it is necessary to make some concrete assumptions regarding εjit . We will next
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discuss the specific assumptions in the most standard discrete choice models: logit and

probit.

2.1 Logit

The logit model is based on the assumption that εjit are independent and identically

distributed (IID) and follow an extreme value distribution, which has the property that

the difference between εAit and εBit , i.e., εABit = εAit −εBit follows the logistic distribution for

all t. As it is obvious from (1), it is only the relative value of the utilities that influence

individual decisions, hence this modeling approach to discrete choices has important

advantages due to the fact that it allows for analytical solutions as we discuss in more

detail below. However, the analytical tractability comes with restrictions regarding the

economic environments that it can represent.

The main reason for this is the IID assumption of the error terms that must be

imposed. This puts limits on the exact form of heterogeneity between individuals that

may arise. More concretely, in the applications that we are interested in, it must be

assumed that the heterogeneity between individuals materializes only in εjit , whereas

βi = β must be equal for all individuals.2 The reason for this can be seen from rewriting

the utility of individual i from choice j at time t as

U ji
t = β̄xj,t + β̃ixj,t + εjit , (3)

where β̃i = βi − β̄. Let ηjit = β̃ixj,t + εjit , so that the utility can be expressed as

U ji
t = β̄xj,t + ηjit . (4)

In principle, this would be a form that could be used for estimating the logit model.
2More generally, heterogeneity in βi is only allowed if it is directly linked to observable characteristics

of the individual agents populating the model. However, in the way that the discrete choice model is
used in behavioral macroeconomics and finance, no explicit assumptions are made about the source of
heterogeneity across agents or their individual characteristics. Hence, the option of having heterogeneity
in βi that is directly related to observable characteristics is eliminated and it is assumed that there is a
β that is common across agents. See Train (2009) for details.
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However, given that β̃i is now implicitly part of the error term ηjit , these error terms

cannot possibly be IID distributed anymore. Hence, for logit, any specification where

individual characteristics become part of the error terms leads to a misspecification of

the model.3 As a consequence, the logit framework does not allow for variation in tastes.

In terms of the heuristic switching models used in behavioral macroeconomics and fi-

nance, it is far from clear that all the heterogeneity amongst people that we are interested

in can be captured by the additive term εjit . In the real world, heterogeneity between

investors and economic participants would also take the form of different weights on the

different components of xj,t. For example, there may be heterogeneity on the rate of dis-

counting of past forecast errors, or investors may have different risk aversion coefficients.

Finally, the logit model implicitly assumes independence of irrelevant alternatives, or

IIA. In some situations this may be a realistic assumption, but this is not always the

case. We can think of the following expectation formation parallel to McFadden’s (1974)

Red Bus/ Blue Bus example. Assume that investors face a choice between costly rational

expectation and a non-costly adaptive expectation with a weight µ1 ∈ (0, 1) capturing

the adjustment process. The IIA would imply that if another type of expectation, for

example an adaptive one with parameter µ2 6= µ1, was an available option, this would

not affect the probability ratio between the two first choices. This may not be realistic,

especially if µ2 is close to µ1. Instead, one would expect the people that preferred the

adaptive rule to divide themselves over the two adaptive rules, whereas the people that

preferred the fundamentalists rule should be largely unaffected by the introduction of the

additional adaptive rule.

Based on the previous assumptions, the probability of choice A at t under the logit
3Another limitation of the logit model that stems from the IID assumption is that the εjit terms may

not be assumed to be autocorrelated. This assumption may be especially limiting in dynamic models
where only a small set of observable variables is assumed. Here, the unobservable component may refer
to behavioral biases which remain the same over time. Individuals may have a very strong preference
towards adopting one strategy independent of the observable characteristics. For example, in a framework
like Brock and Hommes (1997) where it is costly to be ‘fundamentalist’, a subset of investors may never
choose this strategy due to financial or cognitive constraints which persist over time.
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model, for the example of two different alternatives, is given by4

PrlA,t = e
β
s
xA,t

e
β
s
xA,t + e

β
s
xB,t

, (5)

where s is the scaling parameter of the logistic distribution that is related to the variance

of εit. This paramter captures the extent of heterogeneity of the unobserved factors for

given β. The fraction β
s
, which – in the behavioral finance and macro literature – is known

as the intensity of choice parameter of the logit-based heuristic switching model. The

intensity of choice parameter captures how easily individuals switch between alternative

prediction rules.

2.2 Probit

The probit model is able to overcome all of the above mentioned limitations. By assuming

that εjit are normally distributed, there is no longer a need to assume that these shocks

are IID. Hence, different correlation structures between the error terms of different choice

alternatives are allowed, and the model is no longer restricted to comply with the IIA

property.5 Moreover, persistent differences between the subjective utility of different

people with respect to different alternatives are allowed, and random taste variation can

be incorporated.

For the case of two choice alternatives without taste variation (i.e. for the case where

βi = β is the same across individuals), the probability of an individual choosing option

A under the probit model at t will be given by

PrpA,t = Φ

(
1

σ
√

2
β(xA,t − xB,t)

)
, (6)

where σ is the standard deviation of the normal distribution of εjit and Φ() is the cumu-

lative distribution function (CDF) of the standard normal distribution.

A reason that the probit model may not be chosen by a modeler is that the normal
4For a formal proof see Train (2009).
5For the theoretical details on this see Train (2009) and Paetz and Steiner (2018).
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CDF needs to be calculated numerically and this puts limits on the analytical results

that can be obtained when including probit in a model. However, as we show in Section

5, a number of analytical results can still be obtained on top of the numerical analysis

that is more often than not needed for both approaches. Further, depending on the

application, the advantages that arise for the probit-model due to the the relaxation of

the IID assumption may outweigh and concerns for analytical tractability.

3 Comparing Discrete Choice Models

Before turning to the implications of allowing for random taste variation in Section 4,

we first analyze the differences between the logit-based heuristic switching model and a

probit-based heuristic switching model without random taste variation. In Section 3.1, we

study how well the logit-based and probit-based models can approximate each other when

errors are assumed to be IID. Here we put particular focus on the role of the intensity of

choice parameter. Next, in Section 3.2, we highlight the role of the independence of irrel-

evant alternatives property as a driver of differences between the logit- and probit-based

heuristic switching models when there are more than two choice alternatives. Finally, in

Section 3.3, we show that, depending on the number of choice alternatives, the probit-

based model can lead to a considerably better fit to the experimental data of Anufriev

et al. (2016) than the standard logit-based heuristic switching model.

3.1 Aligning Behavioral Heterogeneity

The variance of the unobserved characteristics εjit captures a type of behavioral hetero-

geneity across individuals. A high variance, relative to β, means that, in general, more

people exist with relatively strong biases towards some choice or another. The ratios
β
s
and β

σ
√

2 , thus, determine the mapping from differences in fitness measures to choice

probabilities of the logit-based and probit-based model, respectively. Since the logit-

based and probit-based models follow from different distributions, they require different

values of the extent of behavioral heterogeneity to imply a similar mapping. Therefore,
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Figure 1: Optimal intensity of choice scaling and maximum distance between probit and
logit for this intensity of choice scaling for different values of m.

we will normalize σ and s in such a way that the logit-based and probit-based models

imply similar mappings for any common value of β. The latter can then be interpreted

as the intensity of choice parameter of both normalized models.

First normalizing σ = 1√
2 , we numerically search for the value of s in the logit model

that minimizes the maximum absolute difference between the logit- and the probit-based

heuristic switching models.6 We do so for the case of K = 2, . . . 10 choice alternatives.

Further, in order to let the two models be most comparable, we assume for now that the

εjit ’s of the probit model are IID. When calculating the maximum absolute distance, we

consider all possible combinations of the fitness measures of all K alternatives.

Panel (a) of Figure 1 shows the resulting values of the distance minimizing scaling

factors related to behavioral heterogeneity. For the case of two choice alternatives, we find

that the logit- and probit-based models best approximate each other when β
s

= 1.702 β

σ
√

2 ,

which implies for our normalization of σ that

s = 1
1.702 ≈ 0.588. (7)

For larger numbers of choice alternatives, s in the multinomial logit model should be
6Since the probit and logit mappings for the case of two choice alternatives equal the normal and

logistic CDF, our numerical exercise heavily borrows from Bowling et al. (2009) who search for the param-
terization for which the logistic CDF best approximates the univariate-normal CDF. In our extended
numerical optimization for the case of more than two choice alternatives, we minimize the maximum
absolute difference between the two mappings using local optimization routines in combination with a
grid of different initial conditions to make sure that the global maximum is found.
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Figure 2: Mapping from difference in fitness measures to probability of choosing an
alternative for probit (blue dashed) and logit (orange)

smaller to best approximate the independent multinomial probit model.

In panel (b) of Figure 1, we present the maximum absolute difference that arises

between the choice probabilities of the logit-based and probit-based models under the

corresponding value of s of panel (a). It can be observed that the largest absolute differ-

ence between the models rises when the number of choice alternatives increases. However,

for numbers of choice alternatives that are most commonly used in the behavioral finance

and macro literature (up to K = 4), the largest absolute difference remains relatively

small (less than 0.025).

Moreover, for the case of two choice alternatives, the maximum absolute distance

even is as low as 0.0095. In Figure 2 we plot the fraction of agents choosing option A

as a function of the difference in fitness measures when s satisfies (7). As can be seen

in that figure, for any value of the difference in fitness measures between the two choice

alternatives, the resulting probability of choosing one of the two options is almost the

same under the logit-based as under the probit-based model.

One might, therefore, conclude that, for the case of two choice alternatives and in the

absence of random taste variation, the restrictions of the logit-based model do not pose

a significant threat, and that the logit model can be seen as a good approximation of

the probit-based model. However, there is also a considerable class of behavioral finance

models for which a small change in the law of motion of the heuristic switching equation

may lead to considerably altered dynamics, not only quantitatively, but even qualitatively.

This is especially the case for dynamical systems that may result in chaotic dynamics
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with sensitive dependence on initial conditions. In Section 5, we focus on the model

from the seminal paper of Brock and Hommes (1997) that has these properties and on

which many behavioral finance models are based. We show that the main results of that

model continue to hold when one assumes the probit model for the heuristic switching

mechanism instead of the logit one, but that in a considerable, and relevant, region of

the parameter space dynamics are completely altered by the probit assumption.

3.2 The IIA property of logit

Next, we turn to the above mentioned IIA property of logit. Studying this property in

some detail will provide more intuition into the differences between logit- and probit-

based models for more than two choice alternatives and highlights the flexibility of the

latter model.

For the logit-based model, the probability of choosing alternative A at t when there

are a total of K alternatives is given by

PrlA,t = e
β
s
xA,t∑

j∈J e
β
s
xj,t
, (8)

where J denotes the set of K different choice alternatives.

When calculating the ratio between the probabilities of choosing two different choice

alternatives (A and B) at time t one then gets

PrlA,t
PrlB,t

= e
β
s
xA,t

e
β
s
xB,t

= e
β
s (xA,t−xB,t). (9)

That is, this ratio does not depend on the fitness measures of any of the other alterna-

tives, no matter how many other alternative choices there are. This is the independence

of irrelevant alternatives (IIA) property. When the fitness measures of other choice al-

ternatives change, the ratio between the probabilities of choosing alternative A and B

will stay the same in the logit model. Moreover, the logarithm of this probability ratio

is linear in the fitness measures of the two alternatives.

For the probit model, both these things do not hold, even when there is no correlation
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Figure 3: Log probability ratios for K = 3 for two different values of xC,t. xA,t is varied
along the x-axis, and xB,t = 0. The solid-orange lines correspond to the logit-based
model, whereas dashed curves correspond to probit-based models. In the red case, the
error terms of different choice alternatives are correlated, whereas blue corresponds to
independent multinomial probit.

between the error terms of the choice alternatives. We illustrate this in Figure 3 where

we plot the log probability ratio between two choice alternatives for the case of K = 3.

In particular, we normalize fitness measure of choice alternative B to xB,t = 0 and vary

the fitness of choice alternative A from −4 to 4. The x-axis can therefore be interpreted

as xA,t − xB,t. In line with Equation (9), the log probability ratio for the logit model

is linear in this difference of fitness measures, as indicated by the upward sloping solid-

orange lines. The dashed curves that correspond to the probit model, on the other hand,

depict a non-linear relationship between xA,t−xB,t and the log probability ratio. Dashed-

blue corresponds to the independent probit model from the previous subsection, where

there is no correlation between the error terms. The red curves (in panel (a) overlapping

with blue), depict a case where the error terms of the different alternatives are correlated.7

The slope of the orange-solid line compared to the dashed curves depends on the value of

s which we have set to s = 0.57, in line with the optimal value for three choice alternatives

from panel (a) of Figure 1.

Panels (a) and (b) of Figure 3 correspond to two different values of the fitness mea-

sure of the third choice alternative. In panel (a) this is set to xC,t = −10, making the

probability of choosing that alternative effectively zero in both the probit and the logit
7In particular we take the estimated correlation structure of the SI3 data from Anufriev et al. (2016)

that is introduced in the next subsection. The variance covariance matrices that are implied by our
estimation are presented in the online appendix.
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model. This case is, therefore, practically equivalent to a model with K = 2. The dif-

ference in the log probability ratios between the logit and the probit model remain here

relatively small, and the correlation structure between the error terms has no effect on

the log probability ratio.

In panel (b), the fitness measure of the third alternative is, instead, set to xC,t = 2

and hence considerably larger than the fitness of alternative B. The IIA property says

that the probability ratio (and hence also its log) does not change when the fitness

of another alternative is changed. Accordingly, the orange line is in exactly the same

position in panel (b) as it was in panel (a). However, the probit model does not satisfy

this property and, accordingly, the dashed blue and red curves change when the fitness

of the third alternative is changed. As a consequence, the difference between the logit

and probit-based models can become larger when the fitness of the third alternative is

varied. Furthermore, which combination of fitness measures leads to a larger difference

between logit and probit depends on the correlation structure of the error terms in the

probit model. By assuming a different correlation structure, choice probabilities will be

affected in a different way by the fitness measures of other alternatives.

The differences between the blue and orange curves in panel (b) can explain why

the maximum absolute difference between the probit- and logit-based model is larger for

the case of K = 3 than for K = 2. Similarly, the different behavior of the two models

when other alternatives are varied can also explain why the maximum absolute difference

becomes larger and larger as the number of choice alternatives is further increased (as

found in panel (b) of Figure 1).8

3.3 Fitting Experimental Choice Data: Logit VS Probit

One of the motivations of this paper, has been the laboratory experiment of Anufriev et al.

(2016) where experimental human subjects choose between two, three or four profitable

alternatives which represent mutual funds, with the time series of the returns of each of
8Moreover, the steeper slope in the middle part of the dashed curves in panel (b) of Figure 3 compared

to panel (a) also hint at an intuition for why a larger K implies a lower optimal value of s. This is because
the slope of the orange line is decreasing in s.
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the funds having been generated ex ante.9

Anufriev et al. (2016) find that, while for cases with a small number of choice alterna-

tives, the logit structure is able to capture the behavior shown in the experimental data,

the standard logit-based heuristic switching model does not capture the actual choices

of the subjects very well when there are four choice alternatives. In order to see whether

a probit framework overcomes this limitation, we use the same data and compare the

performance of both models.

The probit-based model has the potential to fit actual choice data considerably better,

by allowing for correlations between (the error terms of) different choice alternatives. As

discussed above, the logit-based model, instead, features the IID property and, therefore,

may not be able to take account of some important aspects of the actual decision problems

in practical applications. We note, however, that the probit-based heuristic switching

model features more free parameters than the standard logit-based one. Therefore, we

compare the performance of both models by considering the Akaike Information Criterion

(AIC) and the Bayesian Information Criterion (BIC), rather than looking only at the log

likelihoods directly.

In Tables 1 and 2, we compare our probit-based estimation results with the logit-

based findings of Anufriev et al. (2016). Table 1 corresponds to the two data-sets with

three choice alternatives and Table 2 depicts the results for the two data-sets where

subjects had four choice alternatives. In this section, we focus on the first two columns

of each data-set, while the final columns (that correspond to a model with random taste

variation) will be discussed in the next section.

For the case of three choice alternatives, the probit-based heuristic switching model

has three parameters, two of which determine the correlation between the differences in

the errors of the three choice alternatives as well as the relative variances of these error

differences. Similarly, for the case of four choice alternatives, there are five parameters

that pin down these relations. Similar to the normalizaion of σ = 1√
2 above, in the

estimated probit model, we have normalized the first element of the variance covariance
9The time series in Anufriev et al. (2016) correspond to three types of data: (i) white noise, (ii) data

from simulating Brock and Hommes (1997, 1998) and (iii) actual data from stock indices.
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Table 1: Maximum likelihood estimation for experimental data with three choice alter-
natives

SI3 BH3
logit probit probit-RT logit probit probit-RT

β 2.008 0.925 2.829 0.039 0.026 0.026
(0.158) (0.250) (1.206) (0.012) (0.007) (0.007)

φ21 0.867 1.871 0.582 0.582
(0.183) (0.749) (0.114) (0.113)

φ22 0.655 0.950 0.707 0.707
(0.290) (0.348) (0.123) (0.122)

σβ 1.753 0.000
(0.874)

log-likelihood -155.882 -149.664 -140.983 -654.266 -653.501 -653.501
AIC 313.764 305.328 289.966 1310.531 1313.001 1315.001
BIC 317.399 316.232 304.505 1314.928 1326.192 1332.589
As in Anufriev et al. (2016), estimations are based on the final 20 experimental periods.

matrix of differences in error terms to 1. Details of how these estimated parameters shape

the different variance-covariance matrices are provided in the online appendix. In order

to obtain the same parameter estimates for the logit case as Anufriev et al. (2016), we

set s = 1 in our estimated logit-based heuristic switching model.

Comparing the performance of probit versus logit in Table 1, it can be seen that, for

the treatments where subjects made decisions based on actual stock market date (SI3),

the log likelihood under the probit-based estimation is considerably less negative than

in the logit-based case. On the other hand, for the treatments with the three choice

alternatives based on Brock and Hommes (1998) (BH3), the log likelihood under probit

is only marginally better than that of probit. As a consequence, the AIC and BIC favor

the logit model for the latter case. For the SI3 case, the probit-based model is (slightly)

favored by both AIC and BIC.

For the cases with four choice alternatives in Table 2, a quite different picture arises.

Here the differences in log likelihood between the probit- and logit-based models are much

larger for both SI4 and BH4. Furthermore, even though the probit-based model has five

additional estimated parameters, this specification is favored over the logit-based model

by both AIC and BIC. For both SI4 and BH4 the margin by which these criteria favor

the probit-based model are considerable.
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Table 2: Maximum likelihood estimation for experimental data with four choice alterna-
tives

SI4 BH4
logit probit probit-RT logit probit probit-RT

β 2.694 1.075 1.156 0.031 0.041 0.039
(0.162) (0.135) (0.351) (0.022) (0.010) (0.011)

φ21 1.079 0.942 0.999 0.998
(0.137) (0.245) (0.018) (0.001)

φ22 0.585 0.321 0.109 0.000
(0.265) (0.340) (0.032) (0.002)

φ31 1.015 0.902 0.999 0.988
(0.125) (0.133) (0.011) (0.010)

φ32 0.499 0.131 0.052 0.000
(0.126) (0.677) (0.016) (0.003)

φ33 0.274 0.184 0.002 0.000
(0.044) (0.406) (0.005) (0.003)

σβ 0.198 0.0013
(0.096) (0.0007)

log-likelihood -418.554 -351.672 -348.075 -387.197 -281.588 -268.979
AIC 839.109 715.345 710.151 776.395 575.177 551.957
BIC 843.437 741.312 740.447 780.029 596.985 577.401
As in Anufriev et al. (2016), estimations are based on the final 20 experimental periods.

We hence conclude that the ability of the probit model to allow for different correlation

structures between the errors of the choice alternatives allows it to potentially fit actual

choice data considerably better. For the case of three choice alternatives, we find mixed

evidence regarding the added value of the probit-based model. However, for the case of

four choice alternatives we find that the the probit-based heuristic switching model is

strongly the preferred model when it comes to matching choices made in a laboratory

experiment.10 Together, these results confirm that the limitations of the logit-based

heuristic switching model, as compared to the probit-based one, seem to be of more

concern the large the number of potential choice alternatives. As discussed above, this

can be explained by the IIA property of the logit model, which, in many applications, is

not a realistic assumption.
10We also estimated our probit-based heuristic switching model for the case of two choice alternatives.

Here, we not only find mixed results in terms of AIC and BIC but also with regard to the log likelihood
of the logit-based and probit- based models directly. This is because the probit-based model does not
feature any additional parameters in the case of two choice alternatives. Full results are presented in
Table 3 in Appendix B.
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4 Random Taste variation

So far, we have compared logit- and probit-based models under the assumption that the

βi’s in Equation (2) are the same for all individuals. As mentioned in Section 2, one of the

advantages of the probit model is that it allows for random taste variation across agents.

In particular, the βi’s are allowed to be normally distributed across individuals with some

mean β̄ and some variance-covariance matrix. The utility function of agent i, can then

be rewritten as in (4), i.e. U ji
t = β̄xj,t + ηjit , with ηjit = β̃ixj,t + εjit and β̃i = βi− β̄. Then,

under the assumption that the βi’s are normally distributed, ηjit will still be normally

distributed, but with a different variance-covariance matrix than that of εjit . Since the

probit framework does not require ηjit to be IID, this model specification can be used for

estimating or simulating a probit model.

Consider the case of a single observable variable to measure performance, so that

βi and xj,t are scalars. Letting σ2
β be the variance of the normally distributed βi’s, we

then have βi ∼ N (β̄, σ2
β) and β̃i ∼ N (0, σ2

β) . Further using that εjit ∼ N (0, σ2) , the

variance-covariance matrix of ηjit for the case of two choice alternatives becomes

Ω = σ2
β

 x2
A,t xA,txB,t

xA,txB,t x2
B,t

+ σ2

1 0

0 1

 (10)

Hence, the difference between ηjit ’s is distributed as ηAit −ηBit ∼ N (0, (xA,t−xB,t)2σ2
β+

2σ2) . Therefore, the random-taste equivalent of (6) can be written as

PrpA,t = Φ

 β̄√
(xA,t − xB,t)2σ2

β + 2σ2
(xA,t − xB,t)

 . (11)

This means that, even if we normalize for scale by setting σ = 1√
2 , the switching intensity

still is affected by two parameters: σβ and β̄.

Figure 4 presents the mapping from differences in fitness measures to the probability

of choosing heuristic A under random taste variation for the case that β̄ = 1. The solid

orange lines present the logit case without random taste variation and with s = 0.588,

just as in Figure 2. Panel (a) depicts the case of σβ = 0.25, whereas panel (b) corresponds
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Figure 4: Mapping from difference in fitness measures to probability of choosing an
alternative for logit (solid) and probit with random taste variation (dashed) for two
different levels of heterogeneity in tastes.

to σβ = 0.75.

In Panel (a) of Figure 4, the dashed-blue curve of the probit-based model always re-

mains very close to the solid logit curve. Apart from the different range of values displayed

on the x-axis, this panel is practically indistinguishable from Figure 2. However, when

the heterogeneity in tastes is increased further, as in panel (b), an important qualitative

differences arises in the probit based-model with random taste variation. In particular,

the dashed curve in panel (b) no longer converge to 0 and 1 when the difference in fitness

measures becomes very negative or very positive. This leads to a considerable difference

between the mappings of fitness measure to choice probabilities of the logit-based and

probit-based models when differences in fitness measures are not close to zero.

The intuition for this result is that, for σβ = 0.75 and β = 1, some agents will

draw a βi around 0, or even a negative βi. These agents become completely indifferent

to fitness measures or even prefer alternatives with lower xj,t over alternatives with a

higher xj,t. Therefore, a small fraction of agents will still choose a heuristic that has

a considerably smaller fitness measure than the alternative. Therefore, no matter how

large the difference in fitness measures, fractions of 0 or 1 are never reached.

Next, we consider whether allowing for random taste variation can further improve

the fit of the probit-based heuristic switching model to the experimental data of Anufriev

et al. (2016), compared to the estimates discussed in the previous section. The estimation

results of random-taste probit (’probit-RT’) are presented next to their logit and regular-
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probit counterparts in Tables 1 and 2.

For the case of three choice alternatives in Table 1, we again obtain mixed results.

For the SI3 model there is a relevant role for random taste variation, and, with just

one extra parameter, the log likelihood is improved considerably compared to the probit

model without random taste variation. In terms of AIC and BIC, random-taste probit

is hence clearly the preferred model, also compared to the logit-based heuristic switching

model. For BH3, on the on the other hand, there seems to be no role for random taste

variation in the experimental data. Here σβ is estimated to be 0, and the likelihood is

exactly the same as in the probit model without random taste variation.

At the same time, in Table 2, we find a further improvement of the log-likelihood as

well as the AIC and BIC for both data-sets with four choice alternatives when random

taste variation is allowed for. All in all, the above underlines further advantages of the

probit-based framework and shows that random taste variation is an empirically relevant

phenomenon. However, this seems to depend on the particular choice problem considered.

5 A Probit-based Cobweb Model

In this final section, we turn to a theoretical application of the probit-based heuristic

switching model where we abstract from random-taste variation. Moreover, in this ap-

plication, there only are two choice alternatives, so that correlations of errors of different

choice aternatives do not play a role. The purpose is to show that although most results

are robust to assuming probit instead of logit, important qualitative differences may

arise, even in this case where the logit-based and probit-based models are most similar

(see Figure 2).

In particular, we investigate the adaptive rational equilibrium dynamics (A.R.E.D.)

that arise in the probit-based version of the cobweb model of Brock and Hommes (1997)

(henceforth BH). Assume an economy populated by a large number of heterogeneous

agents who, in each period, produce an asset. The price Pt of the asset at time t is

revealed at the end of the period based on agents’ total supply and on the demand of the
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asset.

As in BH, agents can choose between two predictors, Hj, j ∈ {P,N}, to make predic-

tions about the price. Here, predictor HP corresponds to perfect foresight and predictor

HN corresponds to naive, or static, expectations:

HP (P t) = Pt+1, (12)

HN(P t) = Pt, (13)

where P t is a vector of known past prices, P t = (Pt, Pt−1, Pt−2, ..., Pt−L), extending L ∈ N

periods back. In order to utilize predictor HP during a period t, agents need to pay a

fixed positive information cost, C ∈ [0,∞). There is no such cost incurred by agents who

utilize the naive expectations predictor, HN .

Demand and supply are linear and are given by

D(Pt) = A−BPt (14)

with A,B ∈ (0,∞) and

S [Hj(P t)] = bHj(P t), (15)

where the supply function is given by agents’ maximization of profits, assuming quadratic

costs per output q equal to q2/2b, with b ∈ (0,∞).

The performance measures for predictors is net realized profits. These are derived in

BH to be

xP,t = πP (Pt+1) = b

2P
2
t+1 − C, (16)

for the perfect foresight predictor and

xN,t = πN(Pt+1, Pt) = b

2Pt(2Pt+1 − Pt), (17)

for the naive expectations predictor.

The evolution of the price, given by the equalization of supply and demand is the
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same as in BH and is given by

Pt+1 = − b(1−mt)Pt
2B + b(1 +mt)

. (18)

Plugging (16) and (17) into (6) gives us the fractions nP,t+1 and nN,t+1 of agents

following each of the two predictors under the probit assumption. After some rearrange-

ment and normalizing σ = 1√
2 , the difference in the fractions of agents following the two

predictors can be written as11

mt+1 = nP,t+1 − nN,t+1 = 2Φ
(
β
[
b

2

(
b(1−mt)Pt

2B + b(1 +mt)
+ Pt

)2
− C

])
− 1. (19)

Hence, the final form of the second-order dynamics for Pt and mt is given by (18) and

(19).

The following Proposition corresponds to the case of no costs for having the perfect

foresight predictor (C = 0). The proofs of all Propositions are provided in Appendix A.

Proposition 1. Consider the economy described by (18) and (19). Then, if C = 0,

(P̄ , m̄) = (0, 0) is the unique fixed point and it is always globally asymptotically stable.

Next, we will turn to the more interesting case of positive costs, C. Before we present

the characterization of the fixed points for that case, we define two different types of fixed

points.

Definition 1. Let f(x, y) = (f1(x, y), f2(x, y)) be a map on R2.

Assume that
(
f1(p1, p2), f2(p1, p2)

)
= (p1, p2) is a fixed point.

(i) If all of the eigenvalues of the Jacobian matrix ∂(f1, f2)
∂(x, y)

∣∣∣∣∣
(p1,p2)

are, in absolute

value, smaller than 1, then the fixed point is asymptotically stable.

(ii) If one of the eigenvalues of the Jacobian matrix ∂(f1, f2)
∂(x, y)

∣∣∣∣∣
(p1,p2)

is, in absolute value,

greater than 1 and the other eigenvalue smaller than 1, then the fixed point is called

a saddle and is unstable.
11The derivation is given in the online appendix.
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Now, let β? =

√
2erf -1

(
B

b

)
C

.

Proposition 2. Let C ∈ (0,∞), then:

(i) For each β ≥ 0 the fixed point is (P̄ , m̄) =
 0,−erf

(
βC√

2

).
(ii) At β = β? a period-doubling bifurcation occurs such that the fixed point is globally

stable for 0 ≤ β < β?and the fixed point is a saddle for β > β?.

The first part of Proposition 2 shows that when the costs of choosing the perfect

foresight predictor are positive, then the fixed point value of the relative share of agents

choosing the perfect foresight – compared to the naive one – depends negatively both on

the costs and on the intensity of choice parameter. Given that, at the fixed point, the

two predictors give the same predictions, it is intuitive that the relative share depends

on the costs of choosing the perfect foresight one. The exact fraction that still chooses

the perfect foresight predictor for a given value of its costs then depends on the intensity

of choice parameter, in line with the discussions of this parameter in Sections 2 and 3.

The next part of the proposition focuses on the relation between the intensity of

choice parameter and the asymptotic stability properties of the fixed point. When the

intensity of choice parameter is low, the fixed point is locally stable, while when it crosses

a threshold value, the fixed point becomes locally unstable (a saddle). The interesting

point here is that, as β captures agents’ level of rationality, instability emerges due to

agents being sufficiently rational. Obviously, this is due to the costs of using the foresight

predictor. Higher β means that more agents would choose the perfect foresight predictor

when profitable. However, this implies less profits, and, given that costs of having the

perfect foresight predictor are fixed, the predictor becomes less profitable. Hence, the

force that leads to agents choosing one predictor due to the related profits is the same as

the one that makes the predictor less profitable in future periods and this is the source

of instability. In the limiting case of β → ∞, (P̄ , m̄) = (0,−1) which means that the

optimal predictor at the fixed point is the naive one for all agents. However, as noted

above, this would not be a stable regime.
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Further, observe that the period-doubling bifurcation presented in Proposition 2 im-

plies the creation of a 2-cycle. It turns out that this 2-cycle is initially locally stable, but

then loses stability in another bifurcation. This is formally presented in Proposition 3.

Proposition 3. Let C ∈ (0,∞), then there exists a βp∗∗:

(i) For β? < β < β??, there exists a locally stable 2-cycle.

(ii) At β = β??, a Hopf bifurcation occurs such that the 2-cycle is unstable for β > β??.

Proposition 3 describes a second bifurcation where the two-cycle moves to instability

as the system’s eigenvalues become complex. This is similar to BH Theorem 3.4, with

one key difference. While the analytical results presented in Propositions 1, 2 and 3 are

qualitatively the same as in BH (Theorem 3.1 and parts (i) and (ii) of 3.4), we have not

shown that after the second bifurcation when the 2-cycle loses stability a four-cycle exists

(BH, Theorem 3.4 (iii)). Hence, we can only conclude from the above that the behavior

of the two approaches is qualitatively the same up to the secondary bifurcation. As we

show below with a numerical analysis, there are some key differences after that, with

the probit-based model featuring an additional region with chaotic behavior instead of a

four-cycle.

For the numerical analysis, we start with a comparison of the bifurcation diagrams of

our model and the one of BH. Here, we have normalized s in the logit specification as in

(7) in order to make the two models comparable.

We note two interesting features. First, we observe very similar behaviors in the two

models, including the same initial region of local stability of the steady state followed

by a two-cycle, in line with the above propositions. Moreover, under our normalization,

bifurcations in both model specifications occur at similar values of β. For example, for

the probit-based model we find β? ≈ 0.48, whereas for the logit-specification the first

bifurcation occurs at β ≈ 0.47.

At the same time, the second interesting feature that can be observed in the bifurca-

tion diagrams is that in the probit framework an extra ‘dark’ region is created, directly

after the region where a 2-cycle occurs. That is, directly after the Hopf bifurcation (β??)
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(a) Logit

(b) Probit

Figure 5: Bifurcation diagrams

of Proposition 3. To investigate, whether this means that the probit-based models fea-

tures different results regarding the occurrence of chaotic dynamics, we plot the largest

Lyapunov exponents as a function of the intensity of choice for both models in Figure 6.

In both panels, the largest Lyapunov exponent is positive in the right part of the

graph, which indicates that there are chaotic dynamics in that region of the parameter

space. The well known chaotic behavior for large intensity of choice, which is a key

charachteristic of the model in BH, hence, can be said to be robust to assuming a probit

framework.

However, for the probit-based model, there is an additional region with positive Lya-

punov exponent already for lower intensity of choice. This implies that chaos also already

appears in the extra ‘dark’ region in the bifurcation diagram, directly after the second

bifurcation. Since chaos now already arises for much lower value of the intensity of choice,

we consider this to be an important qualitative difference between the probit- and the

logit-based versions of the model. Note, though, that in the probit model, chaos first

disappears again when the intensity of choice is increased to values above the new chaos

region, and then reappears at a similar intensity of choice value as in the logit model.
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(a) Logit

(b) Probit

Figure 6: Largest Lyapunov exponents
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Figure 7: Time series simulations
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Figure 8: Strange attractor and 4-cycle in P,m-plane

Next, we investigate the properties and dynamics of the model in this additional chaos

region somewhat more closely. Figure 7 shows the the dynamics of Pt anmt for the probit

and logit model for β = 1.7.12 For the logit-based model, a clear 4-cycle can be observed

(especially when looking at the price dynamics). Moreover, there are periods (e.g. periods

120-160) where the dynamics of the probit-based model are very similar to those of the

logit-based one. However, in other periods (e.g periods 50-80) the price dynamics of the

probit-based model seem to be inverted compared to the logit case. Furthermore, there

are transition periods (e.g periods 80-120) where both Pt and mt take on a range of values

that considerably differ from the regular dynamics in the logit-based model.

Finally, we simulate the model for 1,000,000 periods and plot the simulated points

in P,m-space in Figure 8.13 The top panel features 4 points. This is in line with the

4-cycles that arise in the logit model. For the probit case in the bottom panel, we observe

a strange attractor where a continuum of points is reached during the simulations. This
12We throw away the first 20,000 observations of the simulations to prevent dependence on initial

conditions and show the subsequent 200 periods which are representative for all subsequent periods.
13We again remove the effects of initial conditions by not displaying the firs 20,000 periods
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figure therefore clearly illustrates that in a region of relatively low intensity of choice,

where under logit regular 4-cycles occur, the probit assumptions instead results in a

strange attractor with chaotic dynamics.

We conclude that most qualitative properties of the logit-based version of the cobweb

model with two alternatives remain when we instead assume a probit-based specification.

However, there are also important qualitative differences between the two models in a

relevant region of the parameter space, with the probit framework leading to additional

chaotic behavior. This highlights that small differences related to the (de)tails of the

different distributions – which in economic terms are related to assumptions regarding

heterogeneity and preferences over alternatives – can lead to significant changes in the

behavior of the model.

6 Conclusion

The behavioral finance and behavioral macroeconomics literature using dynamic discrete

choice models is growing in a number of directions. However, the modelling approach

related to the random utility framework exclusively assumes that the random element

follows an extreme value distribution. As we discuss here, even though this assumption

leads to a logit structure of the switching mechanism which is useful in terms of offering

analytical tractability, this comes with limitations with regards to the economic environ-

ments that it can represent, which is also reflects in limitations as regards to matching

experimental data. Even though a probit framework is more general, it has been unclear

whether it is able to fit better the data than logit and what the implications of using a

probit structure would be in other models. This has been the motivation of this paper.

We first show that, whereas in the case of two alternatives the two approaches are very

similar, their differences become more obvious with higher number of choice alternatives.

The independence of irrelevant alternatives property of logit plays an important role here.

We then find that the probit framework is able to better fit the data with more than two

choice alternatives of Anufriev et al. (2016) who found the standard logit model not to
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be convincing there. Additionaly, we find that, for most time series, the probit model

performs even better (in terms of AIC and BIC) if random taste variation is allowed for.

Finally, we study the behavior of the BH heterogeneous cobweb asset pricing model under

the more general probit assumption and show that while the key results hold, the probit

framework leads to a more rich behavior with one more region of chaos appearing.

Our paper raises the point that future works should also consider the robustness of

the results under alternative economic assumptions regarding variation in preferences

for example. In particular, our work opens the door for many different extensions. In

an ongoing follow-up project, we investigate the implications of allowing for random

taste variation in the BH model. The same can be done in other models from the lit-

erature, including macroeconomic models with heuristic switching, such as in Hommes

and Lustenhouwer (2019). At the same time, the implications of different correlation

structures between choice alternatives for financial and macroeconomic models that fea-

ture heuristic switching with more than two choice alternatives can be investigated in a

probit-framework. Furthermore, the probit based heuristic switching model can be esti-

mated on a wealth of other experimental data from various existing learning-to-forecast

experiments.
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Appendix

A Proofs of Propositions

Proof of Proposition 1

At the fixed point (P̄ , m̄), (18) and (19) become

P̄ = − b(1− m̄)P̄
2B + b(1 + m̄) , (A.1)

and

m̄ = 2Φ
(
β
[
b

2

(
b(1− m̄)P̄

2B + b(1 + m̄) + P̄
)2
− C

])
− 1 (A.2)

from which it is apparent that (P̄ , m̄) = (0, 0) is a fixed point when C = 0. We first

prove local stability.

We know that for any f(x, y) = (f1(x, y), f2(x, y) ) which is a map on R2 and a

fixed point
(
f 1(p1, p2), f 2(p1, p2)

)
= (p1, p2), if all eigenvalues of the Jacobian matrix

∂(f 1, f 2)
∂(x, y)

∣∣∣∣∣
(p1,p2)

have magnitude less than 1, then (p1, p2) is a fixed-point sink.

The eigenvalues of the Jacobian matrix ∂(f, g)
∂(P,m)

∣∣∣∣∣
(0,0)

are 0 and − b

2B + b
both of which

have magnitude less than 1. This implies that the origin is a hyperbolic fixed-point sink.

This proves local stability of the origin.

In order to prove global stability set At = − b(1−mt)
2B + b(1 +mt)

. Then the price dynamics

given by (18) can be written as

P t+1 = AtPt.

The difference between the fractions of agents choosing between predictors HP and HN

is less than one in absolute value, i.e., |mt| < 1.

The function At = − b(1−mt)
2B + b(1 +mt)

is a hyperbola with negative values for all |mt| <

1, is strictly increasing, and its curve has a horizontal asymptote given by the line At = 1

Therefore, as long as |At| =
∣∣∣∣∣− b(1−mt)

2B + b(1 +mt)

∣∣∣∣∣ < 1 this implies directly that P t → 0 as

t→∞ which in turn implies that mt → 0.
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Proof of Proposition 2

(i) If C ∈ (0,∞), P̄ = 0, and m̄ denotes the steady state value of the state variable mt,

then (19) becomes

m̄ = 2Φ(−βC)− 1, (A.3)

or equivalently

m̄ = 1− 2Φ(βC) (A.4)

where

Φ(βC) = 1√
2π

∫ βC

−∞
e−

z2
2 dz = 1√

2π

∫ 0

−∞
e−

z2
2 dz+ 1√

2π

∫ βC

0
e−

z2
2 dz = 1

2+ 1√
2π

∫ βC

0
e−

z2
2 dz,

implies

m̄ = 1− 2
(

1
2 + 1√

2π

∫ βC

0
e−

z2
2 dz

)
= −
√

2√
π

∫ βC

0
e−

z2
2 dz. (A.5)

Let z√
2 = u such that dz =

√
2du. Then, (A.5) becomes

m̄ = −
√

2√
π

∫ βC√
2

0
e−u

2√2du = −erf
(
βC√

2

)
, (A.6)

where erf(t) := 2√
π

∫ t
0 e
−s2
ds. Hence for C 6= 0, (P̄ , m̄) =

(
0,−erf

(
βC√

2

))
(ii) The Jacobian matrix ∂(f, g)

∂(P,m)

∣∣∣∣∣ (0,−erf
(
βC
√

2

)) has two eigenvalues, one equal to 0

and the other equal to− b(1− m̄)
2B + b(1 + m̄) . As the intensity of choice parameter, β, increases

from 0 to∞ the steady state value m̄ = −erf
(
βC√

2

)
decreases from 0 to−1 which implies

that the eigenvalue − b(1− m̄)
2B + b(1 + m̄) decreases from − b

2B + b
to − b

B
< −1. Hence,(

0,−erf
(
βC√

2

))
is a hyperbolic fixed point saddle for some critical value of the switching

parameter. For all β < β∗, where β∗ =
√

2erf−1
(
B
b

)
C

, the eigenvalue − b(1− m̄)
2B + b(1 + m̄) is

greater than −1 and hence the system is locally stable. To prove global stability, when
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β < β? first note that for all −1 ≤ mt ≤ 1,mt+1 ≥ −erf
(
βC√

2

)
so we may restrict

the analysis to initial states with m0 ≥ −erf
(
βC√

2

)
. Set At = − b(1−mt)

2B + b(1 +mt)
, as we

did in part (i), and note that as mt increases from −erf
(
βC√

2

)
to 1, then |At| decreases

from
∣∣∣∣∣ − b(1− m̄)

2B + b(1 + m̄)

∣∣∣∣∣ to 0. Hence, |P t+1| ≤
∣∣∣∣∣ − b(1− m̄t)

2B + b(1 + m̄t)

∣∣∣∣∣
t

P 0 and since for all

β < β?,

∣∣∣∣∣ − b(1− m̄)
2B + b(1 + m̄)

∣∣∣∣∣ < 1 we conclude that P t → 0 as t → ∞ which implies that

mt → 1− 2Φ(βC) or mt → −erf
(
βC√

2

)
using the error function.

(iii) Given than an increase of β leads to a decrease of −b(1 − m̄)/(2B + b(1 + m̄))

and for β = β∗, −b(1 − m̄)/(2B + b(1 + m̄)) = −1, it follows that for β > β∗, −b(1 −

m̄)/(2B + b(1 + m̄)) < −1. Hence as the Jacobian has two eigenvalues one equal to zero

and one less than −1, the fixed point is a saddle.

Proof of Proposition 3

(i) From the above we see that when β = β∗, the eigenvalue −b(1−m̄)/(2B+b(1+m̄)) =

−1, which corresponds to a period doubling bifurcation in which a 2-cycle is created.

The proof of the stability part of the 2-cycle is as follows.

The symmetry with respect to the m-axis implies that the two-cycle must be of the

form {(P1, m̃), (P2, m̃)} where P2 = − b(1−m̃)
2B+b(1+m̃)P1. Since the same equality must hold

with P1 and P2 interchanged we get − b(1−m̃)
2B+b(1+m̃) = −1 implying m̃ = −B

b
. Writing

P̃ = P1 = −P2 > 0 and using equation (22) we find that P̃ satisfies the equation

2Φ
(
β

(
2bP̃ 2 − C

))
− 1 = −B

b
or erf

β

(
2bP̃ 2−C

)
√

2

 = −B
b
in terms of the error function

erf(t) := 2√
π

∫ t
0 e
−s2

ds. This equation has a positive solution P̃ =

√
C
2b +

√
2erf−1

(
−B
b

)
2bβ if

and only if −erf
(
βC√

2

)
< −B

b
which implies that the two-cycle is indeed created when the

fixed point becomes unstable at the critical value β∗ =
√

2erf−1
(
B
b

)
C

. Consider the Taylor

series expansion of the dynamics for the states Pt andmt at the fixed point (P,m) = (0, m̄)
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Pt+1 =
[
− 1 + a1(mt − m̄) + a2(mt − m̄)2 + ...

]
Pt + ... (A.7)

mt+1 = m̄+
[
b1 + b2(mt − m̄) + b3(mt − m̄)2 + ...

]
P 2
t + ... (A.8)

The matrix

 −1 0

0 0

 has the following structure: The element −1 corresponds to

the coefficient of Pt in equation (35). The element in the first row, second column, cor-

responds to the coefficient of mt in the same equation, i.e., equation (35). The two zeros

in the second row of the matrix correspond to the coefficients of Pt and mt in equation

(36). Set xt = Pt − 0 and yt = mt − m̄,∀t. Then, equations (35) and (36) are written in

matrix form as follows

 xt+1

yt+1

 =

 −1 0

0 0


 xt

yt

 +

 a1ytxt + a2y
2
t xt + ...

b1x
2
t + b2ytx

2
t + b3y

2
t x

2
t + ...


Neglecting terms of degree greater than 2 gives

 xt+1

yt+1

 =

 −1 0

0 0


 xt

yt

+

 a1ytxt

b1x
2
t

 (A.9)

where the coefficients a1 and b1 correspond to the values a1 = ∂2f1

∂P∂m

(
0, m̄

)
and b1 =

∂2f2

∂P 2

(
0, m̄

)
. We have used the notation f1 and f2 for the functions regarding the dynamics

of the states Pt and mt, respectively, and saved f and g for the purpose of the functional

equation

h
(
Ax+ f(x, h(x))

)
−Bh(x)− g

(
x, h(x)

)
= 0

which is derived in lemma 1 in the online appendix. In this case, A = −1, B =

0, f(x, y) := a1xy, and g(x, y) := b1x
2. Hence, the above equation becomes

h
(
− x+ a1xh(x)

)
− b1x

2 = 0 (A.10)
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Take h to be h(x) = c1x
2 + c2x

3. Then, (37) becomes

c1
(
− x+ a1x(c1x

2 + c2x
3)
)2

+ c2
(
− x+ a1x(c1x

2 + c2x
3)
)3
− b1x

2 = 0 (A.11)

Simplify by keeping only the first and last term in equation (38)

c1
(
− x+ a1x(c1x

2 + c2x
3)
)2
− b1x

2

Solving for c1 and c2 gives c1 = 2 and c2 = 0. Hence, h(x) = 2x2 + O(x3). This

curve is the center manifold of the second-order system (37). Given that f(x, y) = a1xy

it follows that f
(
x, h(x)

)
= a1xh(x) = 2a1x

3, where

a1 = ∂2f1

∂P∂m

(
0, m̄

)
= b2(1− m̄)

(2B + b(1 + m̄))2 + b

2B + b(a+ m̄) > 0.

In view of lemma 2, provided in the online appendix, the dynamics on the center

manifold is given by the map

xt+1 = j(xt) = −xt + 2a1x
3
t

with a1 as previously. Hence, by the period doubling bifurcation theorem (e.g. Guck-

enheimer and Holmes (1983, p. 158)) the two-cycle is stable.

(ii) Let F denote the two-dimensional map F (P,m) = 〈f(P,m), g(P,m)〉 ∈ R2. The

two-cycle is
{(
P̃ , m̃

)
,
(
− P̃ , m̃

)}
, where m̃ = −B

b
and P̃ is the positive solution of the

equation 1
2

{
erf

[
β√
2

(
2bP̃ 2 − C

)]
− erf

[
β√
2

(
C − 2bP̃ 2

)]}
= erf

[
β√
2

(
2bP̃ 2 − C

)]
= m̃ =

−B
b
. Using f

(
P̃ , m̃

)
= −P̃ , which implies fP

(
±P̃ , m̃

)
= −1, a straightforward compu-

tation yields the Jacobian matrix at the period 2 point
(
P̃ , m̃

)

∂(f, g)
∂(P,m)

∣∣∣∣∣(
P̃ ,m̃

) =

 −1 2bP̃
b+B

2
√

2bβP̃ erf ′
(
β√
2

(
2bP̃ 2 − C

))
−2
√

2bβ b
b+B P̃

2erf ′
(
β√
2

(
2bP̃ 2 − C

))


(40)

or writing γ = bP̃
b+B and δ = 2

√
2bβP̃ erf ′

(
β√
2(2bP̃ 2 − C)

)
,

∂(f, g)
∂(P,m)

∣∣∣∣∣(
P̃ ,m̃

) =

−1 2γ

δ −γδ

 and ∂(f, g)
∂(P,m)

∣∣∣∣∣(
−P̃ ,m̃

) =

−1 −2γ

−δ −γδ

 (41)
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The Jacobian matrix of the second iterate, F 2(P,m), at
(
P̃ , m̃

)
, is given by the matrix

product

∂(f, g)
∂(P,m)

∣∣∣∣∣(
−P̃ ,m̃

) · ∂(f, g)
∂
(
P,m

)∣∣∣∣∣(
P̃ ,m̃

) =

1− 2γδ 2γ2δ − 2γ

δ − γδ2 −2γδ + γ2δ2

 (42)

The characteristic equation of the matrix in (42) is

s2 + (4γδ − γ2δ2 − 1)s+ γ2δ2 = 0 (43)

with discriminant D = (γδ − 1)2(γ2δ2 − 6γδ + 1) which is strictly negative for γδ ∈

(3 − 2
√

2, 1) ∪ (1, 3 + 2
√

2). As β −→ ∞ it holds that P̃ −→
√

C
2b , so

bP̃
b+B −→

b
b+B

√
C
2b .

Furthermore, it holds that erf ′
[
β√
2

(
2bP̃ 2 − C

)]
= erf ′

(
erf−1(−B

b

))
. Hence, γδ −→ ∞

as β −→ ∞. Let βp∗∗ and β1 be the values of β for which γδ = 1 and γδ = 3 + 2
√

2,

respectively. At β = βp∗∗ the Jacobian matrix in (42) becomes

−1 0

0 −1

 wich has a

pair of eigenvalues s1 = s2 = −1 with modulus 1. Hence, at β = βp∗∗, the eigenvalues

cross the unit disk, from the inside to the outside, a clear sign of the appearance of a

Hopf bifurcation. It follows that for β < βp∗∗, but sufficiently close to βp∗∗ such that γδ

is in the interval
(
3− 2

√
2, 1

)
, the two-cycle

{(
P̃ , m̃

)
,
(
− P̃ , m̃

)}
is stable with complex

eigenvalues. For βp∗∗ < β, with β sufficiently close to βp∗∗ such that γδ is in the interval(
1, 3 + 2

√
2
)
, the two-cycle

{(
P̃ , m̃

)
,
(
− P̃ , m̃

)}
is unstable with complex eigenvalues

since the discriminant D < 0.
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B Estimated results for two choice alternatives

Table 3: Maximum likelihood estimation for experimental data with two choice alterna-

tives

SI2 BH2

logit probit probit-RT logit probit probit-RT

β 3.747 2.161 2.161 0.431 0.255 0.288

(0.277) (0.141) (0.141) (0.034) (0.019) (0.034)

σb 0.000 0.125

(0.062)

log-likelihood -203.347 -202.950 -202.950 -285.560 -286.284 -285.155

AIC 408.694 407.899 409.900 573.121 574.567 574.310

BIC 413.022 412.227 418.555 577.484 578.930 583.036

As in Anufriev et al. (2016), estimations are based on the final 20 experimental periods.

SI2 is based on stock market time series and BH2 is based on Brock and Hommes (1997).

Online Appendix (Not for publication)

C Derivations and Lemmas

Derivation of Equation (19)

We have

nP,t+1 = Φ

(
β

[
b

2 (Pt+1 − Pt)2 − C
])

,

nN,t+1 = Φ

(
β

[
C − b

2 (Pt+1 − Pt)2
])

.

Then the difference in fractions is

mt+1 = nP,t+1 − nN,t+1 =
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= Φ

(
β

[
b

2 (Pt+1 − Pt)2 − C
])
− Φ

(
β

[
C − b

2 (Pt+1 − Pt)2
])

.

Plugging (18) to the above we get

mt+1 = nP,t+1 − nN,t+1 =

= Φ

β
 b

2

(
b(1−mt)Pt

2B + b(1 +mt)
+ Pt

)2

− C

−Φ
β

C − b

2

(
b(1−mt)Pt

2B + b(1 +mt)
+ Pt

)2
 .

Since Φ(−z) = 1− Φ(z), −∞ < z <∞, the previous can be written equivalently as

mt+1 = 2Φ
(
β
[
b

2

(
b(1−mt)Pt

2B + b(1 +mt)
+ Pt

)2
− C

])
− 1.

Lemmas supporting the proof of Proposition 3

Lemma 1. Consider a sufficiently smooth two-dimensional map F β where β is a bifurca-

tion parameter. Let (x, y) be a fixed point of F β, for β = β0, which we translate, without

loss of generality, to the origin and write the system in a Taylor series expansion as

xt+1 = Axt + f(xt, yt), yt+1 = Byt + g(xt, yt). Then, the center manifold curve yt = h(xt)

of the map xt+1 = Axt + f(xt, yt), yt+1 = Byt + g(xt, yt) satisfies the functional equation

h[Axt + f(xt, h(xt))]−Bh(xt)− g(xt, h(xt)) = 0

Proof

Indeed, yt = h(xt) implies h[Axt + f(xt, h(xt))] − Bh(xt) − g(xt, h(xt)) = 0. This is a

functional equation where the unknown is the function yt = h(xt), i.e., the center manifold

curve.

Lemma 2. Let F β be a sufficiently smooth two-dimensional map which has a fixed point,

(x, y), translated, without loss of generality, to the origin. For a fixed value, β∗, of the

bifurcation parameter, β, the dynamics of the second-order system xt+1 = Axt +f(xt, yt),

yt+1 = Byt + g(xt, yt), where Df(0, 0) = Dg(0, 0) = 0, restricted on the center manifold

are given locally by the map xt+1 = Axt + f(xt, h(xt)).
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Proof

The change of variables x→ x,w → y−h(x) transforms the map x→ Ax+ f(x, y), y →

By+g(x, y), corresponding to the second-order difference equation xt+1 = Axt+f(xt, yt), yt+1 =

Byt + g(xt, yt), into

xt+1 = Axt + f
(
xt, wt + h(xt)

)
(C.1)

wt+1 = B
(
wt + h(xt)

)
+ g

(
xt, wt + h(xt)

)
− h

(
Axt + f(xt, wt + h(xt))

)
(C.2)

In the new coordinates, the dynamics on the center manifold is characterized by

wt ≡ 0⇔ ∆wt ≡ 0. Substituting this identity into equation (33) yields

0 = Bh(xt) + g
(
xt, h(xt)

)
− h

(
Axt + f(xt, h(xt))

)
(C.3)

Adding and subtracting f
(
xt, h(xt)

)
in the right-hand side of equation (32) and also

subtracting equation (34) from equation (33) yields the transformed dynamics

xt+1 = Axt + f
(
xt, h(xt)

)
+N(xt, wt)

wt+1 = Bwt +R(xt, wt)

in the new coordinates x,w , where

N(xt, wt) := f
(
xt, wt + h(xt)

)
− f

(
xt, h(xt)

)
and

R(xt, wt) = g
(
xt, wt + h(xt)

)
− h

(
Axt + f(xt, wt + h(xt))

)
− g

(
xt, h(xt)

)
+ h

(
Axt +

f(xt, h(xt))
)
. It is easily verified that N(x, 0) = R(x, 0) = ∂N

∂w
(0, 0) = ∂R

∂w
(0, 0) = 0.

Hence, in the domain |x| < ρ, |w| < ρ it holds that |N(x,w)| ≤ k1|w| and |R(x,w)| ≤

k2|w|, where the constants k1 and k2 can be made arbitrarily small by choosing ρ suffi-

ciently small. In addition, given that |B| < 1, the stability properties of the origin are

determined by the reduced system x→ Ax+ f
(
x, h(x)

)
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D Estimation on Experimental Data

D.1 Derivation of variance covariance matrices

The general form of the variance-covariance matrix for the three-alternative case is given

by the square, symmetric matrix:

Ω =


σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

 (D.1)

The variance-covariance matrix of error differences for the first alternative is given by

the product:

Ω̃A =

−1 1 0

−1 0 1



σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33




−1 −1

1 0

0 1

 (D.2)

Carrying out this multiplication yields

Ω̃A =

 σ11 + σ22 − 2σ12 σ11 + σ23 − σ12 − σ13

σ11 + σ23 − σ12 − σ13 σ11 + σ33 − 2σ13

 (D.3)

Setting


θ22

θ23

θ33

 =


1 −2 0 1 0 0

1 −1 −1 0 1 0

1 0 −2 0 0 1





σ11

σ12

σ13

σ22

σ23

σ33



, (D.4)

(D.3) becomes

Ω̃A =

θ22 θ23

θ23 θ33

 (D.5)
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which can be normalized to:

Ω̃∗A =

 1 θ∗23

θ∗23 θ∗33

 , (D.6)

where

θ∗23 = θ23

θ22
= σ11 − σ12 − σ13 + σ23

σ11 − 2σ12 + σ22

θ∗33 = θ33

θ22
= σ11 − 2σ13 + σ33

σ11 − 2σ12 + σ22

The variance-covariance matrix is positive definite. Then, by the Cholesky analysis the-

orem, Ω̃∗A can be analyzed in a unique way as

Ω̃∗A = LAL
′
A (D.7)

where LA is a lower triangular matrix whose principal diagonal elements are strictly

positive. LA is called the Cholesky factor of Ω̃∗A. Here:

Ω̃∗A =

 1 0

θ∗23

√
θ∗33 − (θ∗23)2


1 θ∗23

0
√
θ∗33 − (θ∗23)2

 (D.8)

The above shows that we have two free parameters. For the maximum likelihood

estimation, we proceed by parameterizing the two unknown elements (φ21 and φ22) of

LA =

 1 0

φ21 φ22

 (D.9)

as parameters to be estimated. From there, we calculate Ω̃∗A using (D.7). Or in other

words, we have that

θ∗23 = φ21 (D.10)

θ∗33 = (φ21)2 + (φ22)2 (D.11)

Next, we use similar steps as above to express the (normalized) variance-covariance

matrix of error differences for the second alternative in terms of θ∗23 and θ∗33 so that this
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matrix is also pinned down by the estimated values of φ21 and φ22.

In particular, we first use that

Ω̃B =

1 −1 0

0 −1 1



σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33




1 0

−1 −1

0 1

 (D.12)

which reduces to

Ω̃B =

 σ22 + σ11 − 2σ12 σ13 + σ22 − σ12 − σ23

σ13 + σ22 − σ12 − σ23 σ22 + σ33 − 2σ23

 (D.13)

Using (D.4), this can be written as

Ω̃B =

 θ22 θ22 − θ23

θ22 − θ23 θ22 + θ33 − 2θ23

 (D.14)

which, after normalization, can then be expressed in terms of the normalized coefficients

θ∗23 and θ∗33 as

Ω̃∗B =

 1 1− θ∗23

1− θ∗23 1 + θ∗33 − 2θ∗23

 (D.15)

Using the resulting Ω̃∗A and Ω̃∗B, we calculate the fractions of agents following the first

two alternatives using a numerical implementation of the CDF of a multinomial probit

distribution in MATLAB. The fraction of agents following the third alternative is then

pinned down by the fact that the fractions of agents following the three alternatives must

sum up to 1.

For the case of four choice alternatives we proceed in the same way. Consider initially
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the product

Ω̃A =


−1 1 0 0

−1 0 1 0

−1 0 0 1





σ11 σ12 σ13 σ14

σ12 σ22 σ23 σ24

σ13 σ23 σ33 σ34

σ14 σ24 σ34 σ44





−1 −1 −1

1 0 0

0 1 0

0 0 1


⇐⇒

⇐⇒ Ω̃A =


σ11 + σ22 − 2σ12 σ11 + σ23 − σ12 − σ13 σ11 + σ24 − σ12 − σ14

σ11 + σ23 − σ12 − σ13 σ11 + σ33 − 2σ13 σ11 + σ34 − σ13 − σ14

σ11 + σ24 − σ12 − σ14 σ11 + σ34 − σ13 − σ14 σ11 + σ44 − 2σ14


(D.16)

Next, we define



θ22

θ33

θ44

θ23

θ24

θ34



=



1 −2 0 0 1 0 0 0 0 0

1 0 −2 0 0 0 0 1 0 0

1 0 0 −2 0 0 0 0 0 1

1 −1 −1 0 0 1 0 0 0 0

1 −1 0 −1 0 0 1 0 0 0

1 0 −1 −1 0 0 0 0 1 0





σ11

σ12

σ13

σ14

σ22

σ23

σ24

σ33

σ34

σ44



(D.17)

to write (D.16) as

Ω̃A =


θ22 θ23 θ24

θ23 θ33 θ34

θ24 θ34 θ44

 (D.18)
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which can be normalized to:

Ω̃∗A =


1 θ∗23 θ∗24

θ∗23 θ∗33 θ∗34

θ∗24 θ∗34 θ∗44

 (D.19)

where:

θ∗23 = θ23

θ22
= σ11 + σ23 − σ12 − σ13

σ11 + σ22 − 2σ12
,

θ∗24 = θ24

θ22
= σ11 + σ24 − σ12 − σ14

σ11 + σ22 − 2σ12
,

θ∗33 = θ33

θ22
= σ11 + σ33 − 2σ13

σ11 + σ22 − 2σ12
,

θ∗34 = θ34

θ22
= σ11 + σ34 − σ13 − σ14

σ11 + σ22 − 2σ12
,

θ∗44 = θ44

θ22
= σ11 + σ44 − 2σ14

σ11 + σ22 − 2σ12
.

Finally, one can verify that the Cholesky decomposition of the matrix Ω̃∗A is the

following:


1 0 0

θ∗23

√
θ∗33 − (θ∗23)2 0

θ∗24
θ∗34−θ

∗
23θ
∗
24√

θ∗33−(θ∗23)2

√
θ∗44 − (θ∗24)2 − (θ∗34−θ

∗
23θ
∗
24)2

θ∗33−(θ∗23)2




1 θ∗23 θ∗24

0
√
θ∗33 − (θ∗23)2 θ∗34−θ

∗
23θ
∗
24√

θ∗33−(θ∗23)2

0 0
√
θ∗44 − (θ∗24)2 − (θ∗34−θ

∗
23θ
∗
24)2

θ∗33−(θ∗23)2


(D.20)

For the maximum likelihood estimation we use the following paramterization of the

Cholesky factor

LA =


1 0 0

φ21 φ22 0

φ31 φ32 φ33

 (D.21)

so that

θ∗23 = φ21 (D.22)

θ∗33 = (φ21)2 + (φ22)2 (D.23)

θ∗24 = φ31 (D.24)
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θ∗34 = φ21φ31 + φ22φ32 (D.25)

θ∗44 = (φ31)2 + (φ32)2 + (φ33)2 (D.26)

Analogue to the above, we derive

Ω̃∗B =


1 1− θ∗23 1− θ∗24

1− θ∗23 1 + θ∗33 − 2θ∗23 1 + θ∗34 − θ∗23 − θ∗24

1− θ∗24 1 + θ∗34 − θ∗23 − θ∗24 1 + θ∗44 − 2θ∗24

 (D.27)

and

Ω̃∗C =


θ∗33 θ∗33 − θ∗23 θ∗33 − θ∗34

θ∗33 − θ∗23 1 + θ∗33 − 2θ∗23 θ∗33 + θ∗24 − θ∗23 − θ∗34

θ∗33 − θ∗34 θ∗33 + θ∗24 − θ∗23 − θ∗34 θ∗33 + θ∗44 − 2θ∗34

 (D.28)

D.2 Estimated variances covariance matrices of error differ-

ences

For SI3, the estimated φ coefficients imply

Ω̃∗A =

1.000 0.867

0.867 1.181



Ω̃∗B =

1.000 0.133

0.133 0.446


For BH3, we have

Ω̃∗A =

1.000 0.582

0.582 0.839



Ω̃∗B =

1.000 0.418

0.418 0.675


For the case of four choice alternatives we first have for SI4
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Ω̃∗A =


1.000 1.079 1.015

1.079 1.507 1.387

1.015 1.387 1.354



Ω̃∗B =


1.000 −0.079 −0.015

−0.079 0.349 0.293

−0.015 0.293 0.324



Ω̃∗C =


1.507 0.428 0.120

0.428 0.349 0.056

0.120 0.056 0.087


And further for BH4

Ω̃∗A =


1.000 0.999 0.999

0.999 1.010 1.004

0.999 1.004 1.002



Ω̃∗B =


1.000 0.001 0.001

0.001 0.012 0.006

0.001 0.006 0.003



Ω̃∗C =


1.010 0.011 0.006

0.011 0.012 0.006

0.006 0.006 0.003


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