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1 Introduction

Ellsberg (1961) argues that there are types of uncertainty for which it is di¢ cult or impossible to

assign subjective probabilities. He describes such uncertainty as ambiguous. It is not implausible that

an individual might perceive ambiguity when the resolution of uncertainty depends on the behaviour

of other people. This suggests that many interactions in economics and game theory may involve

ambiguity. Indeed ambiguity may play an important role in the social sciences more generally.

Traditionally, game theory assumed that one can deduce the behaviour of one�s opponents from

knowledge of the pay-o¤s (games of complete information) or from knowing a probability distribu-

tion over their possible pay-o¤ parameters (games of incomplete information). Nash equilibrium (or

Bayes-Nash equilibrium) may be viewed as a requirement that beliefs about the opponents�behaviour

coincide with their actual behaviour in pure or mixed strategies.

Game theory usually assumes that players hold beliefs, which are both unambiguous and correct,

about their opponents�behaviour. This stands in stark contrast to recent studies of choice under

uncertainty where agents may face ambiguity about the outcome distribution. In the present paper

we model such di¢ culties in predicting behaviour by assuming that players perceive their opponents

actions as ambiguous. There is a recent literature on ambiguity in games. However most of it studies

games in strategic form.1 In this paper we extend these approaches to games in extensive form.2 In

a �rst step, we will focus on games with perfect information.

1.1 Backward Induction and Alternatives

The standard analysis of sequential two-player games with complete and perfect information uses

backward induction or subgame perfection in order to rule out equilibria which are based on �in-

credible�threats or promises. In sequential two-player games with perfect information, this principle

successfully narrows down the set of equilibria and leads to precise predictions. Sequential bargaining,

Rubinstein (1982), repeated prisoner�s dilemma, chain store paradox, Selten (1978) and the centipede

game, Rosenthal (1981) provide well-known examples.

Experimental evidence, however, suggests that in all these cases the unique backward induction

1See Dow and Werlang (1994), Eichberger and Kelsey (2000) and Riedel and Sass (2014) for games of complete
information and Azrieli and Teper (2011), Kajii and Ui (2005) and Grant, Meneghel, and Tourky (2016) for games of
incomplete information.

2There is a small earlier literature on extensive form games with ambiguity, see for instance, Bose and Renou (2014),
Eichberger and Kelsey (1999), Eichberger and Kelsey (2004), Kellner and LeQuement (2015), Lo (1999), or Mouraviev,
Riedel, and Sass (2017),
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equilibrium is a poor predictor of behaviour.3 It appears as if pay-o¤s received o¤ the �narrow�

equilibrium path do in�uence behaviour, even if a step by step analysis shows that it is not optimal

to deviate from it at any stage, see Greiner (2016). This suggests that we should reconsider the

logic of backward induction. We propose a concept of Consistent Planning Equilibrium (in Beliefs)

Under Ambiguity (CP-EUA), which extends the notion of strategic ambiguity to sequential two-player

games with perfect information. Despite ambiguity, players remain consistent with regard to their

own strategic plans of action. With this notion of equilibrium, we reconsider some of the well-known

games mentioned above in order to see whether ambiguity about the opponent�s strategy brings game-

theoretic predictions closer to observed behaviour. CP-EUA suggests a general principle for analysing

extensive form games without embedding them into an appropriately structured game of incomplete

information.

The notion of an Equilibrium under Ambiguity (EUA) for strategic games in Eichberger and Kelsey

(2014) rests on the assumption that players take their knowledge about the opponents� incentives

re�ected in their pay-o¤s seriously but not as beyond doubt. Although they predict their opponents�

behaviour based on their knowledge about the opponents�incentives, they do not have full con�dence

in these predictions. There may be little ambiguity if the interaction takes place in a known context

with familiar players or it may be large in unfamiliar situations where the opponents are strangers.

In contrast to standard Nash equilibrium theory, in an EUA the cardinal pay-o¤s of a player�s own

strategies may matter if they are particularly high (optimistic case) or particularly low (pessimistic

case). Hence, there will be a trade o¤ between relying on the prediction about the opponents�

behaviour and the salience of one�s own strategy in terms of the outcome.

In dynamic games, where a strategy involves a sequence of moves, the observed history may

induce a reconsideration of previously planned actions. As a result one needs to consider issues of

dynamic consistency and also whether equilibria rely upon incredible threats or promises. The logic

of backward induction forbids a player to consider any move of the opponent which is not optimal,

no matter how severe the consequences of such a deviation may be. This argument is weaker in

the presence of ambiguity. In contrast in our equilibrium, players maintain sophistication by having

correct beliefs about their own future moves.

These considerations suggest that ambiguity makes it harder to resolve dynamic consistency prob-

lems. However there are also advantages to studying ambiguous beliefs. We shall update beliefs by
3For the bargaining game Güth, Schmittberger, and Schwarze (1982) provided an early experimental study and for

the centipede game McKelvey and Palfrey (1992) �nd evidence of deviations from Nash predictions.
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Figure 1: The Centipede Game

the commonly used Generalized Bayesian Updating rule (henceforth GBU). It has the advantage that

it is usually de�ned both on and o¤ the equilibrium path. This contrasts with standard solution

concepts, such as Nash equilibrium or subgame perfection, where beliefs o¤ the equilibrium path are

somewhat arbitrary, since Bayes�rule is not de�ned at such events.

We do not assume that players are ambiguity-averse but also allow for optimistic responses to

ambiguity. Ambiguity-aversion is di¤erent to risk aversion since it is possible for an individual to be

both ambiguity-loving and ambiguity-averse at the same time. This would imply that the decision-

maker over-weights both high and low pay-o¤s compared to an individual with SEU preferences. As a

result middle ranking outcomes are under-weighted. We �nd that cooperation in the centipede game

requires moderate rather than extreme ambiguity-loving. This is compatible with experimental data

on ambiguity-attitudes, for a survey see Trautmann and de Kuilen (2015).

We show that a game of complete and perfect information need not have a pure strategy equilib-

rium. Thus a well-known property of Nash equilibrium need not apply when there is ambiguity.

1.2 Ambiguity in the Centipede Game

The centipede game is illustrated in �gure 1. It has been a long-standing puzzle in game theory.

Intuition suggests that there are substantial opportunities for the players to cooperate. However

standard solution concepts imply that cooperation is not possible. In this game there are two players

who move alternately. At each move a player has the option of giving a bene�t to his/her opponent

at a small cost to himself/herself. Alternatively (s)he can stop the game at no cost. The centipede

game could represent a strategic situation which resembles the case of two countries disarming or

dismantling tari¤ barriers in stages.

Conventional game theory makes a clear prediction. Nash equilibrium and iterated dominance

both imply that the only equilibrium in the centipede game is where the �rst player to move stops the
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game by playing down, d. This is despite the fact that both players could potentially make large gains

if the game continues until close to the end. However intuition suggests that it is more likely that

players will cooperate, at least for a while, thereby increasing both pay-o¤s. This is con�rmed by the

experimental evidence, see McKelvey and Palfrey (1992). Thus it is desirable to �nd an alternative

theory which is more in accord with what we observe. It is plausible that playing right, r, may be

due to optimistic preferences. Players are choosing a high but uncertain pay-o¤ in preference to a low

but safe pay-o¤. Such behaviour can be predicted by models of ambiguity.

One reason why ambiguity may be present in the centipede game, is that many rounds of deletion

of dominated strategies are needed to produce the standard prediction. A player may be uncertain

as to whether his/her opponent performs some or all of them.

Our conclusions are that with ambiguity-averse preferences the only equilibrium is one without

cooperation. Ambiguity aversion increases the attraction of playing down and receiving a certain pay-

o¤. However if players are ambiguity-loving they may be tempted to cooperate by the high pay-o¤s

towards the end of the game.

1.3 Bargaining

As a second application we consider non-cooperative bargaining. Sub-game perfection suggests that

agreement will be instantaneous and outcomes will be e¢ cient. However these predictions do not

seem to be supported in many of the situations which bargaining theory is intended to represent.

Negotiation between unions and employers often take substantial periods of time and involve wasteful

actions such as strikes. Similarly international negotiations can be lengthy and may yield somewhat

imperfect outcomes. It is not implausible that ambiguity-loving behaviour could play a role in ex-

plaining this. Parties to a bargain initially choose ambitious positions in the hope of achieving large

gains. If these expectations are not realised they later shift to make more reasonable demands.

Organization of the paper We �rst describe in section 2, how we model ambiguity and the rule

we use for updating as well as our approach to dynamic choice. We then introduce in section 3 the

class of games we shall be studying along with the attendant notation, as well as explaining how we

incorporate the model of ambiguity developed in the previous section. In section 4 we present our

solution concept. We demonstrate existence and show that games of complete and perfect information

may not have pure equilibria. This is applied to the centipede game in section 5 and to bargaining
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in section 6. The related literature is discussed in section 7 and section 8 concludes. The appendix

contains proofs of those results not proved in the text.

2 Framework and De�nitions

In this section we describe how we model ambiguity, updating and dynamic choice.

2.1 Ambiguous Beliefs and Expectations

For a typical two-player game let i 2 f1; 2g, denote a generic player. We shall adopt the convention of

referring to Player 1 (respectively, Player 2) by female (respectively, male) pronouns. Let Si and S�i

denote respectively the �nite strategy set of i and that of his/her opponent. We denote the payo¤

to Player i from choosing his/her strategy si in Si, when his/her opponent has chosen s�i in S�i

by ui (si; s�i). Following Schmeidler (1989) we shall model ambiguous beliefs with capacities on S�i,

which are de�ned as follows.

De�nition 2.1 A capacity on S�i is a real-valued function � on the subsets of S�i such that A �

B ) � (A) 6 � (B) and � (?) = 0; � (S�i) = 1:

The �expected�payo¤ obtained from a given act, with respect to the capacity � can be found using

the Choquet integral, de�ned below.

De�nition 2.2 The Choquet integral of ui (si; s�i) with respect to capacity � on S�i is:

Vi (si) =

Z
ui (si; s�i) d� = ui

�
si; s

1
�i
�
�
�
s1�i
�
+

RX
r=2

ui
�
si; s

r
�i
� �
�
�
s1�i; :::; s

r
�i
�
� �

�
s1�i; :::; s

r�1
�i
��
;

where R = jS�ij and the strategy pro�les in S�i are numbered so that ui
�
si; s

1
�i
�
> ui

�
si; s

2
�i
�
> ::: >

ui
�
si; s

R
�i
�
.

Preferences represented by a Choquet integral with respect to a capacity are referred to as Choquet

Expected Utility (henceforth CEU). Chateauneuf, Eichberger, and Grant (2007) have axiomatised a

special case of CEU, that we shall refer to as non extreme outcome (neo)-expected utility preferences.

In this model a decision-maker maximises the expected value of utility with respect to a neo-additive

capacity, �. These capacities are characterized by two parameters �; � 2 [0; 1] and a probability

distribution �i on S�i. A neo-additive capacity is de�ned by setting: � (Aj�; �; �i) = 1, for A = S�i;
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� (Aj�; �; �i) = � (1� �) + (1� �)�i (A), for ; $ A $ S�i; and � (Aj�; �; �i) = 0 for A = ?. Fix the

two parameters � and �. For any probability distribution �i on S�i, it is straightforward to show that

the Choquet integral of ui (si; s�i) with respect to the neo-additive capacity � (�j�; �; �i) on S�i can

be expressed as the neo-expected payo¤ function given by:

Vi (sij� (�j�; �; �i)) = (1��) �E�iui (si; s�i)+�
�
� min
s�i2S�i

ui (si; s�i) + (1� �) max
s�i2S�i

ui (si; s�i)

�
, (1)

where E�iui (si; s�i), denotes a conventional expectation taken with respect to the probability distri-

bution �i.4

Thus, given the two parameters � and � and the probability distribution �i, the player�s preferences

over her strategies in Si can be represented by a weighted average of the mean payo¤, the lowest payo¤

and the highest payo¤.

One can interpret �i as the decision-maker�s (�probabilistic�) belief or �theory� about how her

opponent is playing. However, she perceives there to be some degree of ambiguity associated with

her theory. Her con�dence in this theory is modelled by the weight (1 � �) given to the expected

pay-o¤E�iui (si; s�i). Correspondingly, the highest (respectively, lowest) possible degree of ambiguity

corresponds to � = 1, (respectively, � = 0). Her attitude toward such ambiguity is measured by �.

Purely ambiguity-loving preferences are given by � = 0, while the highest level of ambiguity-aversion

occurs when � = 1. If 0 < � < 1, the individual has a mixed attitude toward ambiguity, since she

responds to ambiguity partly in an pessimistic way by over-weighting bad outcomes and partly in a

optimistic way by over-weighting good outcomes.

2.2 The Support of a Capacity

In this section we de�ne the support of a capacity, which represents the strategies that a given player

believes his/her opponent will play. It is not possible for us to use existing de�nitions of the support

unmodi�ed since many of them have implicitly assumed ambiguity-aversion or equivalently that the

capacity is convex. Two of the more prominent de�nitions of support from the literature are the

Marinacci (M) support, and the inner (I) support. Marinacci (2000) de�nes the support of a capacity

� to be the set of strategies with positive capacity, suppM � = fs�i 2 S�i : � (s�i) > 0g : Ryan (2002)

de�nes the inner support, suppI ; as follows.

4To simplify notation we shall suppress the arguments and write Vi (sij�) for Vi (sij� (�j�; �; �i)) when the meaning
is clear from the context.
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De�nition 2.3 If � is a convex capacity on S�i; we de�ne the inner support of �; suppI �; by

suppI � =
\

p2C(�)
supp p; (2)

where the core, C (�) ; of a capacity � is de�ned by,

C (�) = fp 2 �(S�i) ;8A � S�i; p (A) > � (A)g :

However neither of these support notions are suitable for capacities which are not convex. For

example, consider the neo-additive capacity � = � (1� �) + (1� �)�: This capacity assigns positive

values to all strategies s�i 2 S�i; provided � < 1; � > 0: Thus suppM � = suppI � = S�i: Hence,

neither of these concepts allow us to make a distinction between those strategies which a given player

believes are possible for his opponent and others. Whenever there is even a small amount of ambiguity-

loving, neo-additive capacities assign positive capacity to all strategies. However, this does not mean

the player �believes�in these strategies. Looking at strategies with positive capacity confounds belief

and ambiguity-attitude, since optimism increases the capacity values assigned to all strategies. To

overcome these problems we propose the following de�nition.

De�nition 2.4 If � is a capacity on S�i; de�ne

B (�) = fs�i 2 S�i : 8A $ S�i; s�i =2 A; � (A [ s�i) > � (A)g :

The set B (�) consists of those strategies of i�s opponent which always get positive weight in the

Choquet integral, no matter which of i�s strategies is being evaluated. To see, this, recall that the

Choquet expected utility of a given strategy, si; is a weighted sum of utilities. The decision-weight as-

signed to strategy ~s�i is � (fs�i : ui (si; s�i) � ui (si; ~s�i)g [ f~s�ig)�� (s�i : ui (si; s�i) � ui (si; ~s�i)) :

These weights depend on the way in which the strategy si ranks the strategies in S�i. Since there are

R! ways the elements of S�i can be ranked, in general there are R! decision weights used in evaluating

the Choquet integral with respect to a given capacity.5 If 8A $ S�i; ~s�i =2 A; � (A [ ~s�i) > � (A) then

the decision-weight on the strategy ~s�i is positive no matter how ~s�i is ranked by strategy si: The set

of strategies S�i can be partitioned into three sets, those strategies which are given positive weight

by all of the decision weights, those strategies given positive weight by some sets of decision weights

5Recall that R = jS�ij, is the number of strategies available to i�s opponent.
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but not others and those strategies which are given weight zero by all decision weights.6

Sarin and Wakker (1998) argue that the decision-maker�s beliefs may be deduced from the decision

weights in the Choquet integral. With this interpretation, B (�) is the set of strategies in which the

decision-maker �believes�in the strong sense that they always get positive weight. Thus B (�) can be

viewed as an extension of the inner support concept to capacities which are not necessarily convex,

since it is the intersection of the supports of the decision-weights. Similarly the strategies which

always get zero weight are those which the decision-maker believes to be impossible. The remaining

strategies can be interpreted as those which the decision-maker believes to be ambiguous. The weight

they get in the Choquet integral may or may not be positive depending on the context. Note that for

a convex capacity B (�) coincides with the inner support.

The example below shows that B (�) yields an intuitive result when it is applied to a neo-additive

capacity.

Example 2.1 Let � be a neo-additive capacity on S�i where � (A) = � (1� �) + (1� �)� (A) ; then

B (�) = supp� = fs�i 2 S�i : � (s�i) > 0g provided 0 6 � < 1:

Proof. If s =2 A � S; � (A [ s)� � (A) = [� (1� �) + (1� �)� (A [ s)]� [� (1� �) + (1� �)� (A)] =

[(1� �)� (A) + (1� �)� (s)]� [(1� �)� (A)] = (1� �)� (s) : Thus � (A [ s) > � (A), � (s) > 0:

Recall that we usually interpret � as an ambiguous belief. Thus it is natural that the support of

the capacity � is the support in the usual sense of the additive probability �: For further discussion

of the various support notions and the relation between them see Eichberger and Kelsey (2014) and

Ryan (2002).

2.3 Updating Ambiguous Beliefs

CEU is a theory of decision-making at one point in time. To use it in extensive form games we

need to extend it to multiple time periods. We do this by employing Generalized Bayesian Updating

(henceforth GBU) to revise beliefs. One problem which we face is that the resulting preferences may

not be dynamically consistent. We respond to this by assuming that individuals take account of

future preferences by using consistent planning, de�ned below. The GBU rule has been axiomatized

in Eichberger, Grant, and Kelsey (2007) and Horie (2013). It is de�ned as follows.

De�nition 2.5 Let � be a capacity on S�i and let E � S�i. The Generalized Bayesian Update

6The third set of pro�les is a null set.
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(henceforth GBU) of � conditional on E is given by:

�E (A) =
� (A \ E)

� (A \ E) + 1� � (Ec [A) ,

where Ec = S�inE denotes the complement of E.

The GBU rule coincides with Bayesian updating when beliefs are additive. For a neo-additive

belief � (�j�; �; �i) the GBU conditional on E is given by

�E (Aj�; �; �i) =

8>>>>><>>>>>:
0 if A \ E = ?;

�E (1� �) +
�
1� �E

�
�E if ; $ A \ E $ E;

1 if A \ E = E;

where �E = �
�+(1��)�(E) , and �

E (A) = �(A\E)
�(E) . Notice that for a neo-additive belief with � > 0, the

GBU update is well-de�ned even if � (E) = 0 (that is, E is a zero-probability event according to the

individual�s �theory�). In this case the updated parameter �E = 1; which implies the updated capacity

is a Hurwicz capacity that assigns the weight 1 to every event that is a superset of E, and (1� �) to

every event that is a non-empty strict subset of E.

The following result states that a capacity is neo-additive, if and only if both it and its GBU

update admit a multiple priors representation with the same � and the updated set of beliefs is the

prior by prior Bayesian update of the initial set of probabilities.7

Proposition 2.1 The capacity � is neo-additive for some parameters � and � and some probabil-

ity �, if and only if both the ex-ante and the updated preferences respectively admit multiple priors

representations of the form:

Z
ui (si; s�i) d� = � �min

q2P
Equi (si; s�i) + (1� �) �max

q2P
Equi (si; s�i) ;

Z
ui (si; s�i) d�

E = � � min
q2PE

Equi (si; s�i) + (1� �) � max
q2PE

Equi (si; s�i) ;

where P := fp 2 �(S�i) : p > (1� �)�g, PE :=
�
p 2 �(E) : p >

�
1� �E

�
�E
	
, �E = �

�+(1��)�(E) ,

and �E (A) = �(A\E)
�(E) .

7A proof can be found in Eichberger, Grant, and Kelsey (2012).
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We view this as a particularly attractive and intuitive result since the ambiguity-attitude, �, can

be interpreted as a characteristic of the individual which is not updated. In contrast, the set of priors

is related to the environment and one would expect it to be revised on the receipt of new information.8

2.4 Consistent Planning

As we have already foreshadowed, the combination of CEU preferences and GBU updating is not, in

general, dynamically consistent. Perceived ambiguity is usually greater after updating. Thus for an

ambiguity-averse individual, constant acts will become more attractive after updating. Hence if an

individual is ambiguity-averse, in the future (s)he may wish to take a option which gives a certain

payo¤, even if it was not in his/her original plan to do so. Following Strotz (1955), Siniscalchi (2011)

argues against commitment to a strategy in a sequential decision problem in favour of consistent

planning. This means that a player takes into account any changes in his/her own preference arising

from updating at future nodes. As a result, players will take a sequence of moves which is consistent

with backward induction. In general it will di¤er from the choice a player would make at the �rst move

with commitment.9 With consistent planning, however, dynamic consistency is no longer an issue.10

The dynamic consistency issues and consistent planning are illustrated by the following example of

individual choice in the presence of sequential resolution of uncertainty.

Example 2.2 Consider the following setting of sequential resolution of uncertainty. There are three

time periods, t = 0; 1; 2: In period 0 the decision-maker decides whether or not to accept a bet bW

which pays 1 in the event W (Win) and 0 in the complementary event L (Lose). The alternative is

to choose an act �b which yields a certain pay-o¤ of x; 0 < x < 1: At time t = 1 she receives a signal

which is either good G or bad B: A good (resp. bad) signal increases (resp. decreases) the likelihood

of winning. If at time 0 she chose to bet and the signal is good she now has the option of switching to

a certain payment bG: In e¤ect selling her bet. To summarise at time t = 0 the individual can choose

among the following three �strategies�:

�b accept a non-state contingent (that is, guaranteed) pay-o¤ of x; or,

8There are two alternative rules for updating ambiguous beliefs, the Dempster-Shafer (pessimistic updating) rule and
the Optimistic updating rule, Gilboa and Schmeidler (1993). However neither of these will leave ambiguity-attitude, �;
unchanged after updating. The updated � is always 1 (respectively, 0) for the Dempster-Shafer (respectively, Optimistic
updating) rule. See Eichberger, Grant, and Kelsey (2010). For this reason we prefer the GBU rule.

9From this perspective, commitment devices should be explicitly modelled. If a commitment device exists, e.g.,
handing over the execution of a plan to a referee or writing an enforcable contract, then no future choice will be
required.
10Bose and Renou (2014) and Karni and Safra (1989) use versions of consistent planning in games.
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bG accept the bet but switch to a certain payment if the signal at t = 1 is good or

bW accept the bet and retain it in period 1:

Suppose that the individual is a neo�additive expected payo¤ maximizer with capacity �. Her

�(probabilistic) belief� about the data generating process can be summarized by the following three

probabilities: � (G) = p, � (W jG) = q and � (W jB) = 0, where max fp; qg < 1 and min fp; qg > 0.

Her �lack of con�dence� in her belief is given by the parameter � 2 (0; 1), and her attitude toward

ambiguity is given by the parameter � which we assume lies in the interval (1� q; 1).

The strategy bG yields a constant pay-o¤ of q if the signal realization is G; while bW leads to a

pay-o¤ of 1 if the event W obtains and 0 otherwise. The state-contingent pay-o¤s associated with

these three strategies are given in the following matrix.

Events

B G \ L G \W

�b x x x

Bets bG 0 q q

bW 0 0 1

One-shot resolution If the DM is not allowed to revise her choice after learning the realization

of the signal in period 1 (or she can commit not to revise her choice), then the choice between bG

and bW is governed by her ex ante preferences which we take to be represented by the neo-expected

pay-o¤ function V (�) for which

V (bG; � (�j�; �; �)) = (1� �) pq + � (1� �) q, V (bW ; � (�j�; �; �)) = (1� �) pq + � (1� �) .

Notice that V (bW ; �) � V (bG; �) = � (1� �) (1� q) > 0. Furthermore, if x is set so that x =

(1� �) pq + � (1� �)
�
1+q
2

�
, then we also have

V
�
�b; � (�j�; �; �)

�
=
1

2
V (bG) +

1

2
V (bW ) .

So for a one-shot resolution scenario, the DM will strictly prefer to choose bW over both �b and bG.

Sequential resolution Now consider the scenario in which the DM has the opportunity to revise

her choice after she has learned the realization of the signal. Let �g (respectively, �b) denote the GBU
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of � conditional on G (respectively, B) realizing. If the signal realization is B then she is indi¤erent

between the pair of bets bW and bG. However consider the case where she learns the signal realization

is G. According to her ex ante preferences, she should stay with her choice of bW . Her updated

preference between the two bets bW and bG are characterized by the neo-expected pay-o¤ function

V (�; �g) for which

V (bG; �
g) = q, V (bW ; �

g) = (1� �g) q + �g (1� �) ,

where �g = �
�+(1��)p .

Notice that V (bG; �g)� V (bW ; �g) = �
�+(1��)p � (�� [1� q]) > 0: Hence we have

V (bG; �
g) > V (bW ; �

g) and V (bG; �b) = V (bW ; �b) ( = 0),

but V (bW ; �) > V (bG; �) ,

a violation of dynamic consistency (or what Skiadas (1997) calls �coherence�).

Naive Choice versus Consistent Planning If the DM is �naive�then in the sequential resolution

setting, she does not choose �b in period 1, planning to go with bW in the event the signal realization

is G. However, given her updated preferences, she changes her plan of action and chooses the bet

bG instead, yielding her a now guaranteed payo¤ of q. On the other hand, a consistent planner,

anticipating her future self would choose not to remain with the bet bW after learning the realization

of the signal was G, understands that her choice in the �rst period is really between �b and bG. Hence

she selects �b, since V
�
�b; �
�
> V (bG; �).

3 Multi-stage Games

We turn now to a formal description of the sequential strategic interaction between two decision-

makers. This is done by way of multi-stage games that have a �xed �nite number of time periods. In

any given period the history of previous moves is known to both players. Within a time period simul-

taneous moves are allowed. We believe these games are su¢ ciently general to cover many important

economic applications entailing strategic interactions. Below we describe our notation.

12



3.1 Description of the game.

There are 2 players, i = 1; 2 and T stages, 1 6 t 6 T . At each stage t, each player i simultaneously

selects an action ati.
11 Let at =



at1; a

t
2

�
denote a pro�le of action choices by the players in stage t.

The game has a set H of histories h which,

1. contains the empty sequence h0 = h?i (no records);

2. for any non-empty sequence h =


a1; :::; at

�
2 H, all subsequences ĥ =

D
a1; :::; at̂

E
with t̂ < t are

also contained in H.

The set of all histories at stage t are those sequences in H of length t�1, with the empty sequence

h0 being the only possible history at stage 1. Let Ht�1 denote the set of possible histories at stage

t with generic element ht�1 =


a1; :::; at�1

�
.12 Any history



a1; :::; aT

�
2 H of length T is a terminal

history which we shall denote by z. We shall write Z (= HT ) for the subset of H that are terminal

histories: Let H =
ST
t=1H

t�1 denote the set of all non-terminal histories and let � = jHj denote the

number of non-terminal histories.13 At stage t̂, all players know the history of moves from stages

t = 1 to t̂� 1.

For each h 2 H the set Ah = faj (h; a) 2 �Hg is called the action set at h. We assume that Ah

is a Cartesian product Ah = Ah1 � Ah2 , where Ahi denotes the set of actions available to player i after

history h. The action set, Ahi , may depend both on the history and the player. A pure strategy

speci�es a player�s move after every possible history.

De�nition 3.1 A (pure) strategy of a player i = 1; 2 is a function si which assigns to each history

h 2 H an action ai 2 Ahi .

Let Si denote the strategy set of player i, S = S1 � S2, the set of strategy pro�les and S�i =

Sj ; j 6= i; the set of strategies of i�s opponent. Following the usual convention, we will sometimes

express the strategy pro�le s 2 S as (si; s�i), in order to emphasize that player i is choosing her

strategy si 2 Si given her opponent is choosing according to the strategy s�i 2 S�i.

Fix a strategy pro�le s = (s1; s2) 2 S. For each t = 1; : : : ; T , let s(ht�1s ) denote the unique action

pro�le at =
�
at1; a

t
2

�
induced by this strategy pro�le s at stage t after history ht�1:

11 It is without loss of generality to assume that each player moves in every time period. Games where one player does
not move at a particular time, say t̂; can be represented by assigning that player a singleton action set at time t̂:
12Notice by de�nition, that H0 = fh0g.
13Notice that by construction �H = H [ Z.
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Thus for each strategy pro�le s, we have

� h0s = h
0 induces the action pro�le s

�
h0
�
= a1

� h1s =


a1
�

induces the action pro�le s
�

a1
��
= a2

� h2s =


a1; a2

�
induces the action pro�le s

�

a1; a2

��
= a3

...
...

� ht�1s =


a1; : : : ; at�1

�
induces the action pro�le s

�

a1; : : : ; at�1

��
= at

...
...

� hT�1s =


a1; : : : ; aT�1

�
induces the action pro�le s

�

a1; : : : ; aT�1

��
= aT

� hTs =


a1; : : : ; aT�1; aT

�
is a terminal history in Z.

This gives rise to a collection of functions


�t
�T
t=1
, where for each t = 1; : : : ; T , the function

�t : S ! Ht de�ned �t(s) :=


s(h��1s )

�t
�=1

2 Ht: The function �t assigns strategies to histories of

length t: It is, by construction, surjective since every history must arise from some combination of

strategies. A pay-o¤ function ui for player i, assigns a real number to each terminal history z 2 Z.

With a slight abuse of notation, we shall write ui (s) for the convolution ui � �T (s). We now have all

the elements to de�ne a multi-stage game.

De�nition 3.2 A multi-stage game � is a triple


f1; 2g ; H; ui; i = 1; 2

�
, where H is the set of all

histories, and ui; i = 1; 2 characterizes the players�pay-o¤s.

To study the impact of ambiguity we may wish to put restrictions on players�degree of ambiguity

or their ambiguity attitude. This can be achieved by assigning each player, i; a set of admissible

capacities, Ci; which is a subset of the set of capacities de�ned over her opponent�s strategy set S�i,

corresponding to those beliefs that are admissible for this player to have ex ante in this strategic

interaction. That is, Ci encodes both her perception of the strategic ambiguity as well as her attitude

toward this ambiguity. In this case each player is characterized by a pair (ui; Ci), where ui is her

payo¤ function de�ned over terminal histories (and implicitly, over strategy pro�les). An example of

a set of admissible capacities would be the case where player i is a neo-expected payo¤ maximizer

with neo-additive beliefs characterized by the pair of parameters (�i; �i) 2 [0; 1]� [0; 1] then her set of

admissible beliefs Ci = f� = � (�j�; �; �i) : �i 2 �(S�i)g. Thus for a neo-expected payo¤ maximizer,

we interpret �i 2 [0; 1] as re�ecting her (initial) perception of the degree of strategic ambiguity and

�i 2 [0; 1] as her degree of (relative) pessimism. Given a �probabilistic theory� �i 2 �(S�i) she
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evaluates the neo-expected payo¤ of playing strategy si as in equation (1). A standard expected

payo¤ maximizer corresponds to the polar case �i = 0.

3.2 Sub-histories, Continuation Strategies and Conditional Pay-o¤s.

A (sub-) history after a non-terminal history h 2 H is a sequence of actions h0 such that (h; h0) 2 H.

Adopting the convention that (h; h0) is identi�ed with h, denote by H
h
the set of histories following

h. Let Zh denote the set of terminal histories following h. That is, Zh =
n
z0 2 Hh

: (h; z0) 2 Z
o
.

Consider a given individual, player i, (she). Denote by shi a (continuation-) strategy of player

i which assigns to each history h0 2 H
h n Zh an action ai 2 A

(h;h0)
i . We will denote by Shi the

set of all those (continuation-) strategies available to player i following the history h 2 H and de�ne

Sh = Sh1�Sh2 to be the set of (continuation-) strategy pro�les. Each strategy pro�le sh =


sh1 ; s

h
2

�
2 Sh

de�nes a terminal history in Zh. Furthermore, we can take uhi : Z
h ! R, to be the pay-o¤ function

for player i given by uhi (h
0) = ui (h; h0), and correspondingly set uhi

�
sh
�
:= uhi (h

0) if the continuation

strategy pro�le sh leads to the play of the sub-history h0. Consider player i�s choice of continuation

strategy shi in S
h
i that starts in stage t: To be able to compute her conditional (Choquet) expected

payo¤, she must use Bayes�Rule to update her theory �i (a probability measure de�ned on S�i) to a

probability measure de�ned on Sh�i. In addition it is necessary to update her perception of ambiguity

represented by the parameter �i. Now, since �t�1 is a surjection, there exists a well-de�ned pre-image

S(h) :=
�
�t�1

��1
(h) � S for any history h 2 Ht�1. The event S�i(h) is the marginal of this event

on S�i given by

S�i(h) :=
n
s�i 2 S�ij 9si 2 Si;

�
�t�1

��1
(si; s�i) = h

o
.

Similarly, the event Si (h) is the marginal of this event on Si given by

Si(h) :=
n
si 2 Sij 9s�i 2 S�i;

�
�t�1

��1
(si; s�i) = h

o
.

Suppose that player i�s initial belief about how the opponent is choosing a strategy is given by a

capacity �i. Then, her evaluation of the Choquet expected payo¤ associated with her continuation

strategy shi is given by:

V hi

�
shi j�i

�
=

Z
ui

�
shi ; s

h
�i

�
d�hi

�
sh�i

�
,

where �hi is the GBU of �i conditional on history h being reached. Hence, in particular, if she is a neo-
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expected payo¤ maximizer with �i = � (�i; �i; �i) then her evaluation of the conditional neo-expected

payo¤ of her continuation strategy shi is given by:

V hi

�
shi j�hi

�
=
�
1� �hi

�
E�hi ui

�
shi ; �

�
+ �hi

"
�i min

sh�i2Sh�i
uhi

�
shi ; s

h
�i

�
+ (1� �i) max

sh�i2Sh�i
uhi

�
shi ; s

h
�i

�#
,

where �hi =
�i

�i+(1��i)�i(S�i(h)) (the GBU update of �i) and �
h
i is the Bayesian update of �i whenever

�hi < 1.

One-step deviations Consider a given a history h 2 Ht�1 and a strategy pro�le s 2 S. A one-step

deviation in stage t by player i from her strategy si to the action ai 2 Ahi leads to the terminal

history in Zh determined by the continuation strategy pro�le


ai; s

h
i (�t); sh�i

�
, where sh 2 Sh, is

the continuation of the strategy pro�le s starting in stage t from history h, and shi (�t) is player

i�s component of that strategy pro�le except for her choice of action in stage t. This enables us to

separate player i�s decision at stage t from the decisions of other players including her own past and

future selves.

4 Equilibrium Concept: Consistent Planning

Our solution concept is an equilibrium in beliefs. Players choose pure (behaviour) strategies, but

have possibly ambiguous beliefs about the strategy choice of their opponents. Each agent is required

to choose at every decision node an action, which must be optimal with respect to his/her updated

beliefs. When choosing an action a player treats his/her own future strategy as given. Consistency is

achieved by requiring that the support of these beliefs is concentrated on the opponent�s best replies.

Thus it is an solution concept in the spirit of the agent normal form.

De�nition 4.1 Fix a multi-stage game


f1; 2g ; H; ui; i = 1; 2

�
. A Consistent Planning Equilibrium

Under Ambiguity (CP-EUA) is a pro�le of capacities h�1; �2i such that for each player i = 1; 2;

si 2 supp ��i ) V hi

�
shi j�hi

�
> V hi

��
ai; s

h
i (�t)

�
j�hi
�
;

for every ai 2 Ahi , every h 2 Ht�1, and every t = 1; : : : ; T:

Remark 4.1 If jsupp �ij = 1 for i = 1; 2 we say that the equilibrium is singleton. Otherwise we say

that it is mixed. Singleton equilibria are analogous to pure strategy Nash equilibria.
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Remark 4.2 A CP-EUA satis�es the one step deviation principle. No player may increase his/her

conditional neo-expected payo¤ by changing his/her action in a single time period. We do not include

a formal proof since the result follows directly from the de�nition.

CP-EUA requires that the continuation strategy that player i is planning to play from history

h 2 Ht�1 is in the support of his/her opponent�s beliefs ��i. Moreover, the only strategies in the

support of his/her opponent�s beliefs ��i are ones in which the action choice at history h 2 Ht is

optimal for player i given her updated capacity �hi . This rules out �incredible threats� in dynamic

games. Thus our solution concept is an ambiguous analogue of sub-game perfection.14 Since we

require beliefs to be in equilibrium in each subgame, an equilibrium at the initial node will imply

optimal behaviour of each player at each decision node. In particular, players will have a consistent

plan in the sense of Siniscalchi (2011).

Mixed equilibria should be interpreted as equilibria in beliefs. To illustrate this consider a given

player (she). We assume that she chooses pure actions and any randomizing is in the mind of her

opponent. We require beliefs to be consistent with actual behaviour in the sense that pure strategies

in the support of the beliefs induce behaviour strategies, which are best responses at any node where

the given player has the move. The combination of CEU preferences and GBU updating is not, in

general, dynamically consistent. A consequence of this is that in a mixed equilibrium some of the

pure strategies, which the given player�s opponents believe she may play, are not necessarily optimal

at all decision nodes. This arises because her preferences may change when they are updated. In

particular equilibrium pure strategies will typically not be indi¤erent at the initial node. However at

any node she will choose actions which are best responses. All behaviour strategies in the support of

her opponents�beliefs will be indi¤erent. These issues do not arise with pure equilibria.

The following result establishes that when players have neo-additive beliefs, equilibrium exists for

any exogenously given degrees of ambiguity and ambiguity attitudes.

Proposition 4.1 Let � be a multi-stage game with 2 neo-expected payo¤ maximizing players. Then

� has at least one CP-EUA for any given parameters �1; �2; �1; �2; where 0 6 �i 6 1, 0 < �i 6 1; for

i = 1; 2:

Since existence of equilibrium with beliefs restricted to be neo-additive implies existence without

this constraint, our main result is a corollary.

14Recall that in a multi-stage game a new subgame starts after any given history h:
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Theorem 4.1 Let � be a multi-stage game with 2 players. Then � has at least one CP-EUA h�1; �2i :

Moreover CP-EUA will still exist if we require preferences to be either strictly ambiguity-averse or

strictly ambiguity-loving.

4.1 Non-Existence of CP-EUA in Pure Strategies

Finite games of complete and perfect information always have a Nash equilibrium in pure strategies.

This can be veri�ed by backward induction. Here we show by example that this result may no longer

hold when there is ambiguity. Thus a well-known property of Nash equilibria may no longer hold in

CP-EUA. Consider Game A below.

Figure 2: Game A

There are two Nash equilibria in pure strategies which are compatible with backward induction.

Player 1 may either play t or b at node no; and plays d at nodes n3-n6: Player 2 chooses ` at nodes

n1 and n2:

Proposition 4.2 Assume that Players 1 and 2 have neo-additive preferences with the same parame-

ters, � and �: For 1 > � > 5
6 and

1
4 > � > 0 there is no singleton CP-EUA in Game A.

Proof. Suppose, if possible, that a singleton equilibrium exists. Then either n1 or n2 (but not both)

must be on the equilibrium path. Without loss of generality assume that n1 is on the equilibrium path.

First note that d is a dominant strategy for Player 1 at nodes n3; n4; n5 and n6: Since CEU preferences

respect dominance, Player 1 will choose action d at these nodes. Then player 2�s neo-expected payo¤
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from his actions at node n1 are:

V2 (`; �2 (�j�; �; �1) jn1) = 6� (1� �) + ��:0 + (1� �) 6 = (1� ��) 6; V2 (r; �2 (�j�; �; �1) jn1) = 1:

Thus 2 will choose ` at node n1 provided 5
6 > ��, which is implied by the assumption

1
4 > �:

Now consider Player 2�s decision at node n2. In a singleton CP-EUA if node n1 is on the equilibrium

path node n2 must be o¤ the equilibrium path. Applying the formula for GBU updating we �nd that

2�s preferences at node n2 are represented by

�min
�
u2 (`; u) ; u2 (r; d)

	
+ (1� �)max

�
u2 (`; u) ; u2 (r; d)

	
:

Thus V 2 (`; �2jn2) = �:0 + (1� �) :6 = 6 � 6� and V 2 (r; �2jn2) = 1. Hence 2 will choose action r

provided � > 5
6 :

Now consider 1�s decision at node no: Her neo-expected payo¤ is:

V 1 (t; �2jno) = � (1� �) 3 + (1� �) 2; V 1 (b; �2jno) = 2��+ (1� �) 3:

Hence 1�s unique best response is b provided 1 > � (4� 5�), which always holds provided � 6 1
4 :

However this contradicts the original assumption that n1 is on the equilibrium path. The result

follows.

The parameter restrictions imply that both players perceive positive degrees of ambiguity and have

high levels of ambiguity-aversion.15 The crucial feature of this example is that Player 2 has di¤erent

ordinal preferences at node n2 depending whether or not it is on the equilibrium path. Ambiguity-

aversion causes Player 2 to choose the relatively safe action r o¤ the equilibrium path. However,

on the equilibrium path, he is prepared to accept an uncertain chance of a higher pay-o¤ since he

perceives this as less ambiguous. The di¤erence between choices on and o¤ the equilibrium path

prevents us from applying the usual backward induction logic.16

15Ambiguity-aversion is not crucial. One may construct a similar example where players have high degrees of
ambiguity-loving.
16This game is non-generic since it is symmetric. However the example is robust since if a small perturbation were

applied to all the pay-o¤s the game would cease to be symmetric. In this case, similar reasoning would still imply the
non-existence of a pure equilibrium.
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5 The Centipede Game

In this section, we apply our analysis to the centipede game. This is a two-player game with perfect

information. One aim is to see whether strategic ambiguity can contribute to explaining observed

behaviour. In this section we shall assume that both players have neo-additive preferences.17 The

centipede game was introduced by Rosenthal (1981) and studied in laboratory experiments by McK-

elvey and Palfrey (1992). A survey of subsequent experimental research can be found in Krokow,

Colman, and Pulford (2016).

5.1 The Game

The centipede game may be described as follows. There are two people, Player 1 (she) and Player 2

(he). Between them is a table which contains 2M one-pound coins and a single two-pound coin. They

move alternately. At each move there are two actions available. The player whose move it is may

either pick up the two-pound coin in which case the game ends; or (s)he may pick up two one-pound

coins keep one and give the other to his/her opponent; in which case the game continues. In the

�nal round there is a single two-pound coin and two one-pound coins remaining. Player 2; who has

the move, may either pick up the two-pound coin, in which case the game ends and nobody gets the

one-pound coins; or may pick up the two one-pound coins keep one and give the other to his opponent,

in which case the opponent also gets the two pound coin and the game ends. We label an action that

involves picking up two one-pound coins by r (right) and an action of picking up the two-pound coin

by d (down). The diagram below shows the �nal four decision nodes.

A standard backward induction argument establishes that there is a unique iterated dominance

equilibrium. At any node the player, whose move it is, picks up the 2-pound coin and ends the game.

There are other Nash equilibria. However these only di¤er from the iterated dominance equilibrium

o¤ the equilibrium path.

17One might criticise these preferences on the grounds that they only allow the best and worst outcomes to be over-
weighted but do not allow over-weighting of other outcomes. In many cases the worst outcome is death. However it is
likely that individuals would also be concerned about other bad outcomes such as serious injury and/or large monetary
losses. Thus in many cases individuals may over-weight a number of bad outcomes rather than just the very worst
outcome. Despite this potential problem, we believe this model is suitable for application to strategic situations in
particular the centipede game. Our reason is that this game has focal best and worst outcomes, that is, the high payo¤
at the end and the low payo¤ from stopping the game.
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Figure 3: Last stages of the centipede game

5.2 Notation

Given the special structure of the centipede game, we can simplify our notation. The tree can be

identi�ed with the non-terminal nodes H = f1; :::;Mg: For simplicity we shall assume that M is

an even number. The set of non-terminal nodes can be partitioned into the two player sets H1 =

f1; 3; :::;M � 1g and H2 = f2; 4; :::;Mg. It will be a maintained hypothesis that M > 4:

Strategies and Pay-o¤s A (pure) strategy for player i is a mapping si : Hi ! fr; dg: Given a

strategy combination (s1; s2) set m(s1; s2) := 0 if d is never played, otherwise set m(s1; s2) := m0 2 H

where m0 is the �rst node where action d is played. The pay-o¤ of strategy combination (s1; s2) is:

u1(s1; s2) = M + 2; if m(s1; s2) = 0;u1(s1; s2) = m(s1; s2) + 1 if m(s1; s2) is odd and u1(s1; s2) =

m(s1; s2)�1 otherwise. Likewise u2(s1; s2) =M; ifm(s1; s2) = 0; u2(s1; s2) = m(s1; s2)+1 ifm(s1; s2)

is even; u2(s1; s2) = m(s1; s2) � 1 otherwise. For each player i = 1; 2 and each node � in Hi, let s
�
i

denote the threshold strategy de�ned as s�i (m) = r, for m < �; and s�i (m) = d for m > � Let

s1i denote the strategy to play r always. Since threshold strategies s�i ; 1 6 � 6 M � 1; are weakly

dominant they deserve special consideration. As we shall show, all equilibrium strategies are threshold

strategies.

Subgames and Continuation Strategies For any node m0 2 H set m(s1; s2 j m0) := 0 if d is not

played at m0 or thereafter. Otherwise set m(s1; s2) := m00 2 fm0; :::;Mg where m00 is the �rst node

where action d is played in the subgame starting at m0. We will write ui(s1; s2 j m0) to denote the

pay-o¤ of the continuation strategy from nodem0, that is, u1(s1; s2 j m0) =M+2 ifm(s1; s2 j m0) = 0;

u1(s1; s2 j m0) = m(s1; s2 j m0)+1 ifm(s1; s2 j m0) is odd; u1(s1; s2 j m0) = m(s1; s2 j m0)�1 otherwise.

Similarly de�ne u2(s1; s2 j m0) = M if m(s1; s2 j m0) = 0; u2(s1; s2 j m0) = m(s1; s2 j m0) + 1 if
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m(s1; s2 j m0) is even; u2(s1; s2 j m0) = m(s1; s2 j m0)� 1 otherwise.

5.3 Consistent Planning Equilibria Under Ambiguity

In this section we characterise the CP-EUA of the centipede game with symmetric neo-expected

payo¤ maximizing players. That is, throughout this section we take � to be an M stage centipede

game, where M is an even number no less than 4, and in which both players are neo-expected payo¤

maximizers with �1 = �2 = � 2 [0; 1] and �1 = �2 = � 2 [0; 1].

There are three possibilities, cooperation continues until the �nal node, there is no cooperation

at any node or there is a mixed equilibrium. As we shall show that a mixed equilibrium also involves

a substantial amount of cooperation. The �rst proposition shows that if there is su¢ cient ambiguity

and players are su¢ ciently optimistic the equilibrium involves playing �right�until the �nal node. At

the �nal node Player 2 chooses �down�since it is a dominant strategy.

Proposition 5.1 For � (1� �) > 1
3 , there exists a CP-EUA h�1 (�j�; �; �1) ; �2 (�j�; �; �2)i, with �1 (s

�
2) =

�2 (s
�
1) = 1 for the strategy pro�le hs�1; s�2i in which m(s�1; s�2) = M . This equilibrium will be unique

provided the inequality is strict.

This con�rms our intuition. Ambiguity-loving preferences can lead to cooperation in the centipede

game. To understand this result, observe that � (1� �) is the decision-weight on the best outcome in

the Choquet integral. Cooperation does not require highly ambiguity loving preferences. A necessary

condition for cooperation is that ambiguity-aversion is not too high i.e. � 6 2
3 . Such ambiguity-

attitudes are not implausible, since Kilka and Weber (2001) experimentally estimate that � = 1
2 .

Recall that players do not cooperate in Nash equilibrium. We would expect that ambiguity-

aversion makes cooperation less likely, since it increases the attractiveness of playing down which

o¤ers a low but ambiguity-free payo¤. The next result �nds that, provided players are su¢ ciently

ambiguity-averse, non-cooperation at every node is an equilibrium.

Proposition 5.2 Let For � > 2
3 , there exists a CP-EUA h�1 (�j�; �; �1) ; �2 (�j�; �; �2)i, with �1 (s

�
2) =

�2 (s
�
1) = 1 for the strategy pro�le hs�1; s�2i ; in which m(s�1; s�2jm0) = m0 at every node m0 2 H. This

equilibrium will be unique provided � > 2
3 :

It is perhaps worth emphasizing that pessimism must be large in order to induce players to exit

at every node. If 12 < � <
2
3 the players overweight bad outcomes more than they overweight good
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outcomes. However non-cooperation at every node is not an equilibrium in this case even though

players are fairly pessimistic about their opponents�behaviour.

We proceed to study the equilibria when � < 2
3 and � (1� �) <

1
3 : This case is interesting, since

Kilka and Weber (2001) estimate parameter values for � and � in a neighbourhood of 12 . The next

result shows that there is no singleton equilibrium for these parameter values and characterises the

mixed equilibria which arise. Interestingly, the equilibrium strategies imply continuation for most

nodes. This supports our hypothesis that ambiguity-loving can help to sustain cooperation.

Proposition 5.3 Assume that � (1� �) < 1
3 and � <

2
3 . Then:

1. � does not have a singleton CP-EUA;

2. there exists a CP-EUA h�1 (�j�; �; �1) ; �2 (�j�; �; �2)i in which,

(a) player 1 believes with degree of ambiguity � that player 2 will choose his strategies with

(ambiguous) probability �1(s2) = p for s2 = sM2 ; 1 � p, for s2 = sM�2
2 ; �1(s2) = 0,

otherwise, where p = �(2�3�)
1�� ;

(b) player 2 believes with degree of ambiguity � that player 1 will choose her strategies with

(ambiguous) probability �2(s1) = q for s1 = sM�1
1 ; 1 � q, for s1 = sM�3

1 ; �2(s1) = 0,

otherwise, where q = 1�3�(1��)
3(1��) ;

(c) The game will end at M � 2 with player 2 exiting, at M � 1 with player 1 exiting, or at M

with player 2 exiting.

Notice that for the pro�le of admissible capacities h�1 (�j�; �; �1) ; �2 (�j�; �; �2)i speci�ed in Propo-

sition 5.3 to constitute a CP-EUA, we require Player 2�s �theory�about the �randomization�of Player

1�s choice of action at nodeM�1 should make Player 2 at nodeM�2 indi¤erent between selecting ei-

ther d or r. That is,M�1 = (1� �) ((1� q) (M � 2) + q (M + 1))+� (� (M � 2) + (1� �) (M + 1)),

which solving for q yields,

q =
1� 3� (1� �)
3 (1� �) . (3)

This is essentially the usual reasoning employed to determine the equilibrium �mix�with standard

expected payo¤ maximizing players.

The situation for Player 1 is di¤erent, however, since her perception of the �randomization�

undertaken by Player 2 over his choice of action at node M � 2 increases the ambiguity Player 1
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experiences at node M � 1. Given full Bayesian updating, this should generate enough ambiguity for

Player 1 so that she is indi¤erent between her two actions at node M � 1 given her �theory� that

Player 2 will choose d at node M . More precisely, given the GBU of Player 1�s belief conditional

on reaching node M � 1, Player 1 should be indi¤erent between selecting either d or r; that is,

M =
�
1� �M�1 (1� �)

�
(M � 1) + �M�1 (M + 2) ; where �M�1 = �

�+(1��)p . Solving for p yields,

p =
� (2� 3�)
1� � : (4)

Thus substituting p into the expression above for �M�1 we obtain �M�1 = 1
3(1��) and �

M�1 (1� �) =

1
3 , as required.

Remark 5.1 It may at �rst seem puzzling that as � ! 0, we have q ! 1
3 , p! 0 and �M�1 = 1

3(1��) ,

for all � 2
�
0; 1
3(1��)

�
, and yet for � = 0 (that is, with standard expected payo¤ maximizing players)

by de�nition �M�1 = 0 and the unique equilibrium entails both players choosing d at every node,

so in particular, q = p = 0. This discontinuity, is simply a consequence of the fact that (for �xed

�) �
�+(1��)p ! 1 as p ! 0 in contrast to an intuition that the updated degree of ambiguity �M�1

should converge to zero as � ! 0: Notice that for any (constant) p > 0, � ! 0 would indeed imply

�
�+(1��)p ! 0. However, to maintain an equilibrium of the type characterized in Proposition 5.3, p

has to increase su¢ ciently fast to maintain �M�1 = 1
3(1��) .

The discontinuity at � = 0 is puzzling if the intuition is guided by what one knows about mixed

strategies and exogenous randomizations of pay-o¤s in perturbed games. Moreover this argues against

interpreting any limit of a sequence of CP-EUA as � ! 0 as constituting a possible re�nement of

subgame perfect (Nash) equilibrium. Without optimism, there is no discontinuity, but then we are no

longer able to explain the observed continuation in centipede games.18

The mixed equilibria occur when � < 2
3 and � (1� �) <

1
3 : These parameter values could be

described as situations of low ambiguity and low pessimism. On the equilibrium path players are not

optimistic enough, given the low degrees of ambiguity, in order to play �right�at all nodes. However

low pessimism makes them optimistic enough for playing �right� once they are o¤ the equilibrium

path whenever it is not a dominated strategy. This di¤erence in behaviour on and o¤ the equilibrium

path is the reason for non-existence of a singleton equilibrium.

In the mixed equilibrium the support of the original beliefs would contain two pure strategies,
18We thank stimulating comments and suggestions from David Levine and Larry Samuelson for motivating this remark.
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Figure 4: Equilibrium regions

which Player 1 has a strict preference between. However at any node where they di¤er the behaviour

strategies which they induce are indi¤erent. (In these circumstances Player 2 might well experience

ambiguity concerning which strategy Player 1 is following.)

The conditions � T 2
3 and � (1� �) T

1
3 characterise the parameter regions for the three types of

CP-EUA equilibria. These are shown in �gure 4. For strong pessimism (� > 2
3) players will always

exit (red region), while for su¢ cient optimism and ambiguity (� (1� �) > 1
3) players will always

continue (blue region).

Kilka and Weber (2001) experimentally estimate the parameters of the neo-additive model as

� = � = 1
2 . For parameters in a neighbourhood of these values only the mixed equilibrium exists.

This would be compatible with a substantial degree of cooperation.

6 Bargaining

The alternating o¤er bargaining game, was developed by Stahl (1972) and Rubinstein (1982), has

become one of the most intensely studied models in economics, both theoretically and experimentally.

In its shortest version, the ultimatum game, it provides a prime example for a subgame perfect

Nash equilibrium prediction at odds with experimental behaviour. The theoretical prediction is of an

initial o¤er of the smallest possible share of a surplus (often zero) followed by acceptance. However
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experimental results show that the initial o¤ers range around a third of the surplus which is often,

but by far not always, accepted.

In bargaining games lasting for several rounds, the same subgame perfect equilibrium predicts a

minimal o¤er depending on the discount rate and the length of the game, which will be accepted in

the �rst round. Experimental studies show, however, that players not only make larger o¤ers than

suggested by the equilibrium but also do not accept an o¤er in the �rst round (Roth (1995), p. 293).

In a game of perfect information rational agents should not waste resources by delaying agreement.

In order to accommodate the observed delays, game-theoretic analysis has suggested incomplete

information about the opponent�s pay-o¤s. Though it can be shown that incomplete information can

lead players to reject an o¤er, the general objection to this explanation advanced in Forsythe, Kennan,

and Sopher (1991) remains valid:

�In a series of recent papers, the Roth group has shown that even if an experiment is

designed so that each bargainer knows his opponent�s utility pay-o¤s, the information

structure is still incomplete. In fact, because we can never control the thoughts and

beliefs of human subjects, it is impossible to run a complete information experiment.

More generally, it is impossible to run an incomplete information experiment in which

the experimenter knows the true information structure. Thus we must be willing to make

conjectures about the beliefs which subjects might plausibly hold, and about how they

may reasonably act in light of these beliefs. (p.243)�

In this paper we suggest another explanation. Following Luce and Rai¤a (1957), p.275, we will

assume that players view their opponent�s behaviour as ambiguous. Though this uncertainty will be

reduced by their knowledge about the pay-o¤s of the other player and their assumption that opponents

will maximise their pay-o¤, players cannot be completely certain about their prediction. As we will

show such ambiguity can lead to delayed acceptance of o¤ers.

Figure 5: The bargaining game

Consider the bargaining game in �gure 5. Without ambiguity, backward induction predicts a split

26



of h�(1� �); 1� �(1� �)i which will be accepted in period t = 1: Delay is not sensible because the

best a player can expect from rejecting this o¤er is the same payo¤ (modulo the discount factor) a

period later. Depending on the discount factor � the lion�s share will go to the player who makes the

o¤er in the last stage when the game turns into an ultimatum game.

Suppose now that a player feels some ambiguity about such equilibrium behaviour. Such ambiguity

appears particularly reasonable because the incentives of the two players are delicately balanced. If

a player has even a small degree of optimism, (s)he may consider it possible that, by deviating from

the expectations of the equilibrium path, the opponent may accept an o¤er which is more favourable

for her/him. Hence, there may be an incentive to �test the water�by deviating from the equilibrium

path. Note that this may be a low-cost deviation since, by returning to the previous path, just the

discount is lost. Hence, if the discount is low, i.e., the discount factor � is high, a small degree of

optimism may su¢ ce.

Decision makers with preferences represented by CEU with a neo-additive capacity who face

ambiguity � > 0 and update their beliefs according to the GBU rule give some extra weight 1�� to the

best expected payo¤and to the worst expected payo¤� and update their beliefs to complete ambiguity,

� = 1; if an event occurs which has probability zero according to their focal (additive) belief �. Hence,

o¤ the equilibrium path updates are well-de�ned but result in complete uncertainty. A decision maker

with neo-additive beliefs will evaluate her/his strategies following an out-o¤-equilibrium move and,

therefore probability zero event of � by their best and worst outcomes. Hence, from an optimistic

perspective, asking for a high share may have a chance of being accepted resulting in some expected

gain which can be balanced against the loss of discount associated with a rejection. Whether a strategy

resulting in a delay is optimal will depend on the degree of ambiguity �, the degree of optimism 1��

and the discount factor �:

The following result supports this intuition. With ambiguity and some optimism delayed agree-

ment along the equilibrium path may occur in a CP-EUA equilibrium.

Proposition 6.1 If ��(1��)�
1�(1��)[maxf1�(1��)�;�g+�] � �, then there exists a CP-EUA

h(�; �; �1) ; (�; �; �2)i such that �1 (s�2) = �2 (s�1) = 1 for the following strategy pro�le (s�1; s�2):

� at t = 1; Player 1 proposes division hx�; 1� x�i = (1; 0) ; Player 2 accepts a proposed division

hx; 1� xi if and only if x 6 1� [(1� �) (1� (1� �)�) + � (1� �)�max f1� (1� �)�; �g] ;

� at t = 2;
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� if Player 1�s proposed division in t = 1 was hx; 1� xi = h1; 0i, then Player 2 proposes

division hy�; 1� y�i = h(1� �)�; 1� (1� �)�i and Player 1 accepts a proposed division

hy; 1� yi if and only if y > (1� �)�;

� otherwise, Player 2 proposes division hŷ; 1� ŷi = h0; 1i ; Player 1 accepts the proposed

division hy; 1� yi if and only if y > (1� �)�;

� at t = 3; Player 1 proposes division hz�; 1� z�i = h1; 0i and Player 2 accepts any proposed

division hz; 1� zi.19

7 Relation to the Literature

This section relates the present paper to the existing literature. First we consider our own previous

research followed by the relation to other theoretical research in the area. Finally we discuss the

experimental evidence.

7.1 Ambiguity in Games

Most of our previous research has considered normal form games e.g. Eichberger and Kelsey (2014).

The present paper extends this by expanding the class of games. Two earlier papers study a limited

class of extensive form games, Eichberger and Kelsey (2004) and Eichberger and Kelsey (1999). These

focus on signalling games in which each player only moves once. Consequently dynamic consistency

is not a major problem. Signalling games may be seen as multi-stage games with only two stages and

incomplete information. The present paper relaxes this restriction on the number of stages but has

assumed complete information. The price of increasing the number of stages is that we are forced to

consider dynamic consistency.

Hanany, Klibano¤, and Mukerji (2016) (henceforth HKM) also present a theory of ambiguity in

multi-stage games. However they have made a number of di¤erent modelling choices. Firstly they

consider games of incomplete information. In their model, there is ambiguity concerning the type of

the opponent while his/her strategy is unambiguous. In contrast in our theory there is no type space

and we focus on strategic ambiguity. However we believe that there is not a vast di¤erence between

strategic ambiguity and ambiguity over types. It would be straightforward to add a type space to our

model, while HKM argue that strategic uncertainty can arise as a reduced form of a model with type
19Note this is irrespective of Player 1�s proposed division hx; 1� xi at t = 1, and irrespective of Player 2�s proposed

division hy; 1� yi at t = 2 :
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uncertainty. Other di¤erences are that HKM represent ambiguity by the smooth model, they use a

di¤erent rule for updating beliefs and strengthen consistent planning to dynamic consistency. A cost

of this is that they need to adopt a non-consequentialist decision rule. Thus current decisions may be

a¤ected by options which are no longer available.

We conjecture that similar results could have been obtained using the smooth model. However, the

GBU rule has the advantage that it de�nes beliefs both on and o¤ the equilibrium path. In contrast,

with the smooth rule, beliefs o¤ the equilibrium path are to some extent arbitrary. In addition, we

note that since there is little evidence that individuals are dynamically consistent, this assumption

is more suitable for a normative model rather than a descriptive theory. As HKM show, dynamic

consistency imposes strong restrictions on preferences and how they are updated.

Jehiel (2005) proposes a solution concept which he refers to as analogy-based equilibrium. In this

a player identi�es similar situations and forms a single belief about his/her opponents behaviour in all

of them. These beliefs are required to be correct in equilibrium. For instance in the centipede game

a player might consider his/her opponent�s behaviour at all the non-terminal nodes to be analogous.

Thus (s)he may correctly believe that the opponent will play right with high probability at the average

node, which increases his/her own incentive to play right. (The opponent perceives the situation

similarly.) Jehiel predicts that either there is no cooperation or cooperation continues until the last

decision node. This is not unlike our own predictions based on ambiguity.

What is common between his theory and ours is that there is an �averaging�over di¤erent decision

nodes. In his theory this occurs through the perceived analogy classes, while in ours averaging occurs

via the decision-weights in the Choquet integral. We believe that an advantage of our approach is

that the preferences we consider have been derived axiomatically and hence are linked to a wider

literature on decision theory.

7.2 Experimental Papers

Our paper predicts that ambiguity about the opponent�s behaviour may signi�cantly increase coop-

eration above the Nash equilibrium level in the centipede game. This prediction is broadly con�rmed

by the available experimental evidence, (for a survey see Krokow, Colman, and Pulford (2016)).

McKelvey and Palfrey (1992) study 4 and 6-stage centipede games with exponential pay-o¤s.

They �nd that most players play right until the last 3-4 stages, after which cooperation appears to

break down randomly. This is compatible with our results on the centipede game which predict that
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cooperation continues until near the end of the game.

Our paper makes the prediction that either their will be no cooperation in the centipede game

or that cooperation will continue until the last three stages. In the latter case it will either break

down randomly in a mixed equilibrium or break down at the �nal stage in a singleton equilibrium. In

particular the paper predicts that cooperation will not break down in the middle of a long centipede

game. This can in principle be experimentally tested. However we would note that it is not really

possible to refute our predictions in a 4-stage centipede as used by McKelvey and Palfrey (1992) .

Thus there is scope for further experimental research on longer games.20

8 Conclusion

This paper has studied extensive form games with ambiguity. This is done by constructing a thought

experiment, where we introduce ambiguity but otherwise make as few changes to standard models as

possible. We have proposed a solution concept for multi-stage games with ambiguity. An implication of

this is that singleton equilibria may not exist in games of complete and perfect information. This is also

demonstrated by the fact that the centipede game only has mixed equilibria for some parameter values.

We have shown that ambiguity-loving behaviour may explain apparently counter-intuitive properties of

Nash equilibrium in the Centipede game and non-cooperative bargaining. It also produces predictions

closer to the available evidence than Nash equilibrium.

8.1 Irrational Types

As mentioned in the introduction, economists have been puzzled about the deviations from Nash

predictions in a number of games such as the centipede game, the repeated prisoners�dilemma and the

chain store paradox. In the present paper we have attempted to explain this behaviour as a response

to ambiguity. Previously it has been common to explain these deviations by the introduction of an

�irrational type�of a player. This converts the original game into a game of incomplete information

where players take into consideration a small probability of meeting an irrational opponent. An

�irrational� player is a type whose pay-o¤s di¤er from the corresponding player�s pay-o¤s in the

original game. In such modi�ed games of incomplete information, it can be shown that the optimal

20There are a number of other experimental papers on the centipede game. However many of them do not study the
version of the game presented in this paper. For instance they may consider a constant sum centipede or study the
normal form. It is not clear that our predictions will apply to these games. Because of this, we do not consider them in
this review. For a survey see Krokow, Colman, and Pulford (2016).
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strategy of a �rational�player may involve imitating the �irrational�player in order to induce more

favourable behaviour by his/her opponents. This method is used to rationalize observed behaviour in

the repeated prisoner�s dilemma, (Kreps, Milgrom, Roberts, and Wilson (1982)), and in the centipede

game (McKelvey and Palfrey (1992)).

There are at least two reasons why resolving the con�ict between backward induction and observed

behaviour by introducing �irrational� players may not be the complete answer. Firstly, games of

incomplete information with �irrational�players predict with small probabilities that two irrational

types will confront each other. Hence, this should appear in the experimental data. Secondly, in

order to introduce the appropriate �irrational�types, one needs to know the observed deviations from

equilibrium behaviour. Almost any type of behaviour can be justi�ed as a response to some kind of

irrational opponent. It is plausible that individuals may play tit for tat in the repeated prisoners�

dilemma. Thus an intuitive account of cooperation in the repeated prisoners dilemma may be based

on a small probability of facing an opponent who plays tit for tat. However, for most games, there

is no such focal strategy which one can postulate for an irrational type to adopt. Theory does not

help to determine which irrational types should be considered and hence does not make usually clear

predictions in most games. In contrast our approach is based on axiomatic decision theory and can

be applied to any multi-stage game.

8.2 Directions for Future Research

In the present paper we have focused on multi-stage games. There appears to be scope for extending

our analysis to a larger class of games. For instance, we believe that it would be straightforward to

add incomplete information by including a type space for each player. Extensions to multi-player

games are possible. If there are three or more players it is usual to assume that each one believes

that his/her opponents act independently. At present it is not clear as to how one should best model

independence of ambiguous beliefs.21

It should also be possible to extend the results to a larger class of preferences. Our approach is

suitable for any ambiguity model which maintains a separation between beliefs and tastes and allows

a suitable support notion to be de�ned. In particular both the multiple priors and smooth models

of ambiguity �t these criteria. These models represent beliefs by a set of probabilities. A suitable

support notion can be de�ned in terms of the intersection of the supports of the probabilities in this

21There are still some di¤erences of opinion among the authors of this paper on this point.

31



set of beliefs. This is the inner support of Ryan (2002).

A natural application is to �nitely repeated games. Such games have some features in common

with the centipede game. If there is a unique Nash equilibrium then backward induction implies that

there is no scope for cooperation in the repeated game. However in examples, such as the repeated

prisoners�dilemma, intuition suggests that some cooperation should be possible.

We believe the model is suitable for applications in �nancial markets. In particular phenomena

such as asset price bubbles and herding have some features in common with the centipede game. Thus

we believe that our analysis could be used to study them. In an asset price bubble the value of a

security rises above the level, which can be justi�ed by fundamentals. Individuals continue buying

even though they know the price is too high since they believe it will rise still further. Thus at every

step a buyer is in�uenced by the perception that the asset price will continue to rise even though they

are aware it cannot rise for ever. This is somewhat similar to observed behaviour in the centipede

game, where players choose �right�many times even though they know that cooperation cannot last

for ever. Reasoning analogous to that of the present paper may be useful to explain an asset price

bubble in terms of ambiguity-loving behaviour.
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A Appendix: Proofs

A.1 Existence of Equilibrium

In this appendix we present the proofs of the existence results Proposition 4.1 and Theorem 4.1.

The strategy of our proof is to associate with � a modi�ed game �0; which is based on the agent-

normal form of �: We show that �0 has a Nash equilibrium and then use this to construct a CP-EUA

for �: The game �0 has 2� players.22 A typical player is denoted by ih(t); h (t) 2 HnZ; i = 1; 2: Thus

there are 2 players for each decision node in �.

The strategy set of Player ih(t);�ih(t) = �
�
A
h(t)
i

�
is the set of all probability distributions over

A
h(t)
i ; with generic element sih(t) 2 �ih(t) ; for i = 1; 2: Hence in game �0; Player ih(t) may choose any

mixed strategy over the set of actions Ah(t)i : Let � (h (t) ; �) denote the probability of history h (t) when

the strategy pro�le is �: This is calculated according to the usual rules for reducing compound lotteries

to simple lotteries. We shall suppress the arguments and write � = � (h (t) ; �) when convenient. Let

�i denote the marginal of � on S�i:

The pay-o¤ of Player ih(t) is �ih(t) : �ih(t) ! R; de�ned by �ih(t)
�
a
h(t)
i ; st+1i ; st�i

�
=
R
ui

�
a
h(t)
i ; st+1i ; st�i

�
d�ih(t) ; where �i is the neo-additive capacity on S�i de�ned by �i (?) =

0; �i (A) = �i (1� �i)�i (A) ;? $ A $ S�i; �i (S�i) = 1 and �ih(t) is the GBU update of �i conditional

on h (t) : Since �ih(t) is neo-additive:

�ih(t)

�
a
h(t)
i ; st+1i ; st�i

�
= �ih(t) (1� �i)Mih(t)

�
a
h(t)
i ; st+1i ; st�i

�
+ �ih(t)�imih(t)

�
a
h(t)
i ; st+1i ; st�i

�
+
�
1� �ih(t)

�
E�i

h(t)
ui

�
h (t) ; a

h(t)
i ; st+1i ; st�i

�
; (5)

where Mih(t)

�
a
h(t)
i ; st+1i ; st�i

�
= maxst�i2St�i ui

D
ht; a

h(t)
i ; st+1i ; st�i

E
; and mih(t)

D
a
h(t)
i ; st+1i ; st�i

E
= minst�i2St�i ui

D
ht; a

h(t)
i ; st�i

E
: Here �ih(t) denotes the Bayesian update of �

i; given that node h (t)

has been reached and h (t) has positive probability. (If h (t) has probability 0; then �ih(t) = 1 and

�ih(t) can be any probability distribution over S
t
�i:)

22Recall � = jHnZj denotes the number of non-terminal histories.
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If Player ih(t) plays a mixed strategy then his/her action may be described by a probability

distribution � over Ah(t)i ; which is treated as an ex-ante randomization. Eichberger, Grant, and Kelsey

(2016) show that individuals will be indi¤erent to ex-ante randomizations. Hence it is evaluated as

X
a2Ah(t)i

� (a)�ih(t)
�
a; st+1i ; st�i

�
: (6)

It follows that ih(t)�s preferences are linear and hence quasi-concave in his/her own strategy.23

Likewise if one of ih(t)�s �future selves�randomizes this is evaluated asP
st+1i 2St+1i

� (a)�ih(t)
�
a; st+1i ; st�i

�
; where � is the probability distribution over St+1i induced by future

randomizations. This is treated as an ex-ante randomization because it is resolved before the strategic

ambiguity arising from the choice of i�s opponent in the relevant subgame. We do not need to specify

ih(t)�s reaction to randomizations by his/her past selves since these are, by de�nition, already resolved

at the point where the decision is made.

Lemma A.1 The function �ih(t)
�
a
h(t)
i ; st+1i ; st�i

�
is continuous in s; provided 1 > �i > 0; for i = 1; 2:

Proof. Consider equation (5). First note that �ih(t) depends directly on s via the
�
a
h(t)
i ; st+1i ; st�i

�
term. It also depends indirectly on s since the degree of ambiguity �ih(t) and �ih(t) are functions of s:

It follows from our assumptions that the direct relation between s and � is continuous. By

equation (6), � is continuous in �ih(t) : Thus we only need to consider whether �ih(t) and �ih(t) are

continuous in s: Recall that �ih(t) is the probability distribution over terminal nodes induced by

the continuation strategies sti; s
t
�i: Since this is obtained by applying the law of compound lotteries

it depends continuously on s. By de�nition �hi =
�i

�i+(1��i)�i(S�i(h)) : This is continuous in � (h (t))

provided the denominator is not zero, which is ensured by the condition �i > 0: Since � (h (t)) is a

continuous function of s, the result follows.

The next result establishes that the associated game �0 has a standard Nash equilibrium.

Lemma A.2 The associated game �0 has a Nash equilibrium provided 1 > �i > 0; for i = 1; 2:

Proof. In the associated game �0; the strategy set of a typical player, ih(t); is the set of all probability

distributions over the �nite set Ah(t)i and is thus compact and convex. By equation (6) the pay-o¤,

�ih(t) , of Player ih(t) is continuous in the strategy pro�le �: Moreover �ih(t) is quasi concave in own

23To clarify these remarks about randomization apply to the modi�ed game �0: In the original game � there is an
equilibrium in beliefs and no randomization is used.

36



strategy by equation (6). It follows that �0 satis�es the conditions of Nash�s theorem and therefore

has a Nash equilibrium in mixed strategies.

Proposition 4.1 Let � be a 2-player multi-stage game. Then � has at least one CP-EUA for

any given parameters �1; �2; �1; �2; where 1 6 �i 6 0; 0 < �i 6 1; for i = 1; 2:

Proof. Let � =


�ih(t) : i = 1; 2; h 2 HnZ

�
denote a Nash equilibrium of �0: We shall construct a

CP-EUA �̂ of � based on �: Note that � may be viewed as a pro�le of behaviour strategies in �: Let

ŝ denote the pro�le of mixed strategies in �, which corresponds to �; and let � denote the probability

distribution which � induces over S: (If � is an equilibrium in pure strategies then � will be degenerate.)

The beliefs of player i in pro�le �̂ are represented by a neo-additive capacity �i on S�i; de�ned by

�̂i (B) = �i (1� �i) + (1� �i)�i (B) ; where B � S�i and �i denotes the marginal of � on S�i:

Let �̂ denote the pro�le of beliefs �̂ = h�̂1; �̂2i : We assert that �̂ is a CP-EUA of �: By Remark

4.2 it is su¢ cient to show that no player can increase his/her current utility by a one-step deviation.

Consider a typical player j: Let t̂; 0 6 t̂ 6 T; be an arbitrary time period and consider a given

history ĥ
�
t̂
�
at time t̂: Let �at̂j 2 A

h(t̂)
j denote an arbitrary action for j at history ĥ

�
t̂
�
: Since � is an

equilibrium of �0;

�jĥ(t̂)

�
~at̂j ; s

t̂+1
j ; st̂�j

�
> �jĥ(t̂)

�
�at̂j ; s

t̂+1
j ; st̂�j

�
for any ~at̂j 2 supp � (j) = supp �̂

ĥ(t̂)
j ; where � (j) denotes the marginal of � on A

h(t̂)
j . Without

loss of generality we may assume that ~at̂j = ŝ
ĥ(t̂)
j 2 supp �̂j : By de�nition �jĥ(t̂)

�
~at̂j ; s

t̂+1
j ; st̂�j

�
=R

uj

�
ŝ
ĥ(t̂)
j ; ŝt+1hj;1i; s

t
�j

�
d�
ĥ(t̂)
j ; where �

ĥ(t̂)
j is the GBU update of �j conditional on ĥ

�
t̂
�
: Since the

behaviour strategy ŝ
ĥ(t̂)
j is by construction a best response at ĥ

�
t̂
�
;
R
uj

�
ŝ
ĥ(t̂)
j ; ŝt+1j ; st�j

�
d�
ĥ(t̂)
j

>
R
uj

�
�at̂j ; ŝ

t+1
j ; st�j

�
d�
ĥ(t̂)
j ; which establishes that ŝ

ĥ(t̂)
j yields a higher pay-o¤ than the one step

deviation to �at̂j . Since both j and ĥ
�
t̂
�
were chosen arbitrarily this establishes that it is not possible

to improve upon �̂ by a one-step deviation. Hence by Remark 4.2, �̂ is a CP-EUA of �:

A.2 The Centipede Game Proofs

Proof of Proposition 5.1 We shall proceed by (backward) induction. The �nal node is M: At this

node 2 plays dM , which is a dominant strategy. This yields pay-o¤s hM � 1;M + 1i :

Node M � 1 Now consider Player 1�s decision at node M � 1: Assume that this node is on the

equilibrium path.24 The (Choquet) expected value of her pay-o¤s are:

24This will be proved once we have completed the induction.
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VM�1
1 (dM�1j�1 (�j�; �; �1)) =M;

VM�1
1 (rM�1j�1 (�j�; �; �1)) = � (1� �) (M + 2)+�� (M � 1)+(1� �) (M � 1) =M�1+3� (1� �) :

Thus rM�1 is a best response provided � (1� �) > 1
3 : To complete the proof we need to show that

s�i (�) = r� is the preferred action for all � 2 Hi with i = 1; 2.

Inductive step Consider node �: Assume � is on the equilibrium path. We make the inductive

hypothesis that r� is a best response at all nodes �; � < � < M � 1: There are two cases to consider:

Case 1 � = 2� + 1 Player 1 has the move. The expected value of her pay-o¤s are:

V �1 (d�j�1 (�j�; �; �1)) = �+ 1; V �1 (r�j�1 (�j�; �; �1)) = � (1� �) (M + 2) + ���+ (1� �) (M � 1) :

Thus r� is a best response provided (1� ��)M + 2� (1� �)� (1� �) > (1� ��) �+ 1;

, (1� ��) (M � �) > 2� 3� + 2��: Now (1� ��) (M � �) > 3 (1� ��) = 3� 3��: Thus a su¢ cient

condition is, 3� 3�� > 2� 3�+ 2��, 1 > 2��� 3� (1� �) ; which always holds since � (1� �) > 1
3 :

Case 2 � = 2� ; 1 6 � 6 M � 2: Player 2 has the move. The expected value of her pay-o¤s

are:

V �2 (d�j�1 (�j�; �; �1)) = �+ 1; V �2 (r�j�1 (�j�; �; �1)) = � (1� �) (M + 1) + ���+ (1� �) (M + 1) :

Thus r� is a best response provided: (1� ��) (M + 1) + ��� > �+ 1, (1� ��) (M � �) > ��:

Since M � � > 2; a su¢ cient condition for r� to be a best response is 2� 2�� > �� , �� 6 2
3 : Now

� (1� �) > 1
3 ) (1� �) + �� 6 2

3 : Thus r� is a best response under the given assumptions.

Having considered all possible cases we have established the inductive step. Thus there exists

an equilibrium in which cooperation continues until the �nal node when � (1� �) > 1
3 : Moreover if

� (1� �) > 1
3 then r� is the unique best response at the relevant nodes, which establishes uniqueness

of the equilibrium.

Proof of Proposition 5.2 We shall proceed by (backward) induction. At node the �nal node M;

dM is a dominant strategy. Now consider the decision at node M � 1: Assume this node is o¤ the

equilibrium path. (This assumption will be con�rmed when the proof is complete.)

Recall that, at nodes o¤ the equilibrium path, the GBU updated preferences may be represented

by the function, W (a) = (1� �)maxu (a)+�minu (a) : Player 1 moves at this node. Her (Choquet)

expected pay-o¤s from continuing are:
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VM�1
1 (rM�1j�1 (�j�; �; �1)) = (1� �) (M + 2) + � (M � 1) =M + 2� 3� < M

= VM�1
1 (dM�1j�1 (�j�; �; �1)) ; since � > 2

3 we may conclude that dM�1 is a best response.

Inductive step The inductive hypothesis is that d� is a best response at all nodes 2M �1 > � >

� > 1: Now consider the decision at node �: Assume this node is o¤ the equilibrium path and that

player i has the move at node �: His/her expected pay-o¤s are given by:

V �i (d�j�1 (�j�; �; �i)) = �+1; V �i (r�j�1 (�j�; �; �i)) = (1� �) (�+ 3)+�� = �+3 (1� �) :

(Player i perceives no ambiguity about his/her own move at node �+ 2.) Thus d� is a best response

provided: 1 > 3 (1� �), � > 2
3 : This establishes by induction that d� is a best response at all nodes

� such that 1 < � 6 2M; provided they are o¤ the equilibrium path.

Node 1 Finally we need to consider the initial node, which is di¤erent since it is on the equilibrium

path. Player 1 has to move at this node. Her expected pay-o¤s are:

V 11 (d1j�1 (�j�; �; �1)) = 2; V 11 (r1j�1 (�j�; �; �1)) = � (1� �) 4 + ��+ (1� �) = 3� (1� �) + 1:

Since � > 2
3 implies � (1� �) 6

1
3 ; which implies that d1 is a best response at the initial node. This

con�rms our hypothesis that subsequent nodes are o¤ the equilibrium path. The result follows.

Proposition A.1 For � < 2
3 and � (1� �) <

1
3 ;� does not have a singleton CP-EUA.

The proof of Proposition A.1 follows from Lemmas A.3, A.4 and A.5.

Lemma A.3 Assume � < 2
3 then at any node � ;M > � > 2; which is o¤ the equilibrium path, the

player to move at node � will choose to play right, i.e. r� :

Proof. We shall proceed by (backward) induction. To start the induction consider the decision at

node M � 1:

Node M � 1 Assume this node is o¤ the equilibrium path. Player 1 has the move. Her expected

pay-o¤ from continuing is, V 1 (r2M�1j�1 (�j�; �; �1)) = (1� �) (M + 2) + � (M � 1) =M + 2� 3� >

M = V 1 (dM�1j�1 (�j�; �; �1)) ; since � < 2
3 :

Inductive step Since � is o¤ the equilibrium path so are all nodes which succeed it. The inductive

hypothesis is that r� is a best response at all nodes M � 1 > � > � > � : Now consider the decision at

node �: First assume that Player 2 has the move at node �; which implies that � is an even number.

His expected pay-o¤s are given by:
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V 2 (d�j�2 (�j�; �; �2)) = �+ 1; V �2 (r�j�2 (�j�; �; �2)) = (1� �) (M + 1) + ��:

Thus r� is a best response provided: (1� �) (M + 1� �) > 1: Note that � 6 M � 2 and since

� < 2
3 ; 3 (1� �) > 1 hence (1� �) (M + 1� �) > 1 which establishes that right is a best response in

this case.

Now assume that Player 1 has the move at node �: Her expected pay-o¤s are given by:

V �1 (d�j�1 (�j�; �; �1)) = �+ 1; V �1 (r�j�1 (�j�; �; �1)) = (1� �) (M + 2) + ��:

The analysis for Player 2 shows that r� is also a best response in this case.

This establishes the inductive step. The result follows.

Lemma A.4 Assume � < 2
3 and � (1� �) <

1
3 : Let � be a M -stage centipede game, where M > 4:

Then there does not exist a singleton equilibrium in which Player 1 plays d1 at node 1:

Proof. Suppose if possible that there exists a singleton equilibrium in which Player 1 plays d1 at

node 1: Then all subsequent nodes are o¤ the equilibrium path. By Lemma A.3 players will choose

right, r�, at such nodes. Given this Player 1�s expected pay-o¤s at node 1 are:

V 11 (d1j�1 (�j�; �; �1)) = 2;

V 11 (r1j�1 (�j�; �; �1)) = � (1� �) (M + 2) + � (1� �) � 1 + (1� �) (M � 1) :

Thus d1 is a best response if 2 > (1� ��)M + 3� (1� �) + � � 1

, 3� 3� (1� �)� � > (1� ��)M > 4� 4��; since M > 4:

, 7��� 4� > 1: Since � < 2
3 ; 1 >

2
3� =

14
3 � � 4� > 7��� 4�; d1 cannot be a best response at node 1:

Lemma A.5 Assume � < 2
3 and � (1� �) <

1
3 : Let � be a M -stage centipede game, where M > 4:

Then there does not exist a singleton equilibrium in which Player 1 plays r1 at node 1:

Proof. Suppose if possible such an equilibrium exists. Let � denote the �rst node at which a player

fails to cooperate. Since cooperation will de�nitely break down at or before node M; we know that

1 < � 6M: There are three possible cases to consider.

Case 1 � =M: Consider the decision of Player 1 at node M � 1: Her expected pay-o¤s are:

VM�1
1 (dM�1j�1 (�j�; �; �1)) =M;

VM�1
1 (rM�1j�1 (�j�; �; �1)) = � (1� �) (M + 2) + �� (M � 1) + (1� �) (M � 1)

=M + 3� (1� �)� 1:

However � (1� �) < 1
3 , implies that rM�1 is not a best response. Thus it is not possible that � =M�1:
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Case 2 � 6 M � 1 and � = 2k + 1 This implies that Player 1 moves at node � and that all

subsequent nodes are o¤ the equilibrium path. By Lemma A.3, right is a best response at these nodes.

Hence her expected pay-o¤s are:

V �1 (d� j�1 (�j�; �; �1)) = � +1; V �1 (r� j�1 (�j�; �; �1)) = � (1� �) (M + 2)+ ��� + (1� �) (M � 1) :

Thus d� is a best response provided,

� + 1 > (1� ��)M + 2� (1� �) + ��� � (1� �), 2 + 2��� 3� > (1� ��) (M � �) :

Since M � � > 3; a necessary condition for d� to be a best response is:

5�� � 3� > 1 , 2�� > 1 + 3� (1� �) : However the latter inequality cannot be satis�ed since

� < 2
3 ; 3� (1� �) > � > ��; and �� < 1: Hence it is not possible that � is odd.

Case 3 � 6 M � 2 and � = 2k This implies that Player 2 moves at node � and that all

subsequent nodes are o¤ the equilibrium path. His pay-o¤s are

V �2 (d� j�1 (�j�; �; �2)) = �+1; V �2 (r� j�1 (�j�; �; �2)) = � (1� �) (M + 1)+���+(1� �) (M + 1) :

For d� to be a best response we need

� + 1 > (1� ��)M + 1� ��+ ��� , �� > (1� ��) (M � �) :

Since � < 2
3 ; �� <

2
3 and (1� ��) >

1
3 : In addition M � � > 2, which implies that this inequality

can never be satis�ed. Thus � cannot be even.

Having considered all possibilities we may conclude that there is no pure equilibrium where Player

1 plays r1 at node 1:

Proposition 5.3 If � < 2
3 and � (1� �) <

1
3 ; there is a CP-EUA in which the support of Player

1�s (resp. 2�s) beliefs is
n
sM2 ; s

M�2
2

o
(resp.

n
sM�1
1 ; sM+1

1

o
). The game will end at at M � 2 or M

with Player 2 exiting or at M � 1 with Player 1 exiting.

Proof. Assume that Player 1�s beliefs are a neo additive capacity based on the additive probability

�1 de�ned by �1(sM2 ) = p; for �1(s
M�2
2 ) = 1� p; �1 (s2) = 0 otherwise, where p = �(2�3�)

(1��) : Likewise

assume that Player 2�s beliefs are a neo additive capacity based on the additive probability �2 de�ned

by �2
�
sM+1
1

�
= q; for �2

�
sM�1
1

�
= 1� q; �2 (s1) = 0 otherwise, where q = 1�3�(1��)

3(1��) :

First consider the updated beliefs. At any node �; 0 6 � 6 M � 2; the updated beliefs are a

neo additive capacity with the same � and �: The new probability �0 is the restriction of the prior

probability � to the set of continuation strategies. At node M � 1; the GBU rule implies the updated

beliefs are a neo additive capacity with the same �; the updated � given by �01 :=
�

�+(1��)p : The
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updated � assigns probability 1 to sM2 :
25 We do not need to specify the beliefs at node M: Player 2

has a dominant strategy at this node which he always will choose.

Player 2 Consider Player 2�s decision at node M � 2: His actions yield pay-o¤s,

VM�2
2 (dM�2j�1 (�j�; �; �2)) and VM�2

2 (aM�2j�1 (�j�; �; �2)) : For both to be best responses they must

yield the same expected pay-o¤, which occurs when q = 1�3�(1��)
3(1��) ; by equation (3). Since � (1� �) 6 1

3

by hypothesis, q > 0. In addition q 6 1, 3 (1� �) > 1� 3� (1� �) which holds since � < 2
3 implies

(1� �) > 1
3 thus 1� 3� (1� �) < 3� 3�:

Player 1 Now consider Player 1�s decision at nodeM�1: His updated � is given by: �01 = �(p j

m0) := �
�+(1��)p :His strategies yield pay-o¤s V

M�1
1 (dM�1j�1 (�j�; �; �1)) and VM�1

1 (dM+1j�1 (�j�; �; �1)) :

For both of these strategies to be best responses they must yield the same expected utility which oc-

curs when p = 2��3��
1�� ; by equation (4). Since 2

3 > � by hypothesis, p > 0: Moreover 1 > p, 1� � >

2� � 3��, 1
3 > � (1� �) ; which also holds by hypothesis.

A.3 Bargaining

Proof of Proposition 6.1 To establish that the strategy pro�le speci�ed in the statement of

Proposition 6.1 constitutes a CP-EUA, we work backwards from the end of the game.

At t = 3. Since this is the last period, it is a best response for player 2 to accept any proposed

division hz; 1� zi by player 1. So in any consistent planning equilibrium, player 1 will propose a h1; 0i

division after any history.

At t = 2. If player 1 rejects player 2�s proposed division hy; 1� yi, then the game continues to

period 3 where we have established player 1 gets the entire cake. However, the neo-expected payo¤ to

player 1 in period 2 of rejecting 2�s o¤er is (1� �)�. This is because by rejecting player 2�s proposed

division, player 1 is now in an �o¤-equilibrium� history h, with � (h) = 1. Thus her neo-expected

payo¤ is simply an (�; 1� �)-weighting of the best and worst outcome that can occur (given his own

continuation strategy). Hence for player 2�s proposed division hy; 1� yi to be accepted by player 1

requires y > (1� �)�.

So the neo-expected payo¤ for player 2 of proposing the division h(1� �)�; 1� (1� �)�i in

round 2 is (1� �2) (1� (1� �)�) + �2 (1� �)max f1� (1� �)�; �g, where �2 = �= (� + (1� �)�) if

hx; 1� xi = h1; 0i ; =1 otherwise. Notice that the �best�outcome for player 2 is either (1� (1� �)�)
25The form of the updated beliefs follows from the formulae in Eichberger, Grant, and Kelsey (2010).
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or possibly � which is what she would secure if player 1 rejected his proposed division and then fol-

lowed that by proposing in period 3 the (extraordinarily generous) division h0; 1i.

If player 2 proposes hy; 1� yi with y < (1� �)�, then according to our putative equilibrium,

player 1 rejects and player 2 receives a pay-o¤ of zero. However, his neo-expected payo¤ of that is

(1� �)max f1� y; �g, where 1 � y is what he would get if player 1 actually accepted his proposed

division. Thus his best deviation is the proposal hy; 1� yi = h0; 1i.

So we require:

(1� �2) (1� (1� �)�) + �2 (1� �)max f1� (1� �)�; �g > (1� �) : (7)

This is equivalent to

�(�; �) :=
�� (1� �)�

1� (1� �) [max f1� (1� �)�; �g+ �] � �2:

The following �gure shows the region of parameters (�; �) satisfying this constraint.

parameter region: �2 � �(�; �)

Clearly, when �2 = 1 (that is, when we are already o¤ the equilibrium path), (7) cannot hold for any

� strictly less than 1. So in that case, player 2�s best action is indeed to propose hy; 1� yi = h0; 1i,

which is what our putative equilibrium strategy speci�es in these circumstances.

At t = 1, if player 2 rejects player 1�s proposed division hx; 1� xi, then the game continues to

t = 2 in which case he o¤ers player 1 the division hy�; 1� y�i = h(1� �)�; 1� (1� �)�i ; which

according to her strategy she accepts.
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On the equilibrium path, �2 = � < 1, the neo-expected payo¤ for player 2 in period 1 of rejecting

player 1�s proposed division hx; 1� xi is (1� �) (1� (1� �)�)� + ��: In this putative equilibrium

Player 1 proposes the division hx�; 1� x�i = h1; 0i which player 2 rejects, since she anticipates an o¤er

of h(1� �)�; 1� (1� �)�i in period 2. So her period 1 neo-expected payo¤ is (1� �) (1� �)�2 +

� (1� �), since the �best�thing that could happen is player 2 actually accepts her proposed division

h1; 0i today!

Alternatively, player 1 might propose a division h~x; 1� ~xi, that would just entice player 2 to accept

today. That is, she could propose h~x; 1� ~xi where

~x = 1� [(1� �) (1� (1� �)�) + � (1� �)�max f1� (1� �)�; �g] :

The neo-expected payo¤ for player 1 of this deviation is: � (1� �)max f~x; �g : In order for it not

to be �pro�table�, we require (1� �) (1� �)�2 + � (1� �) > � (1� �)max f~x; �g ; which holds since

max f~x; �g < 1.
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